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Abstract Dengue is a mosquito-borne disease caused by virus and found mostly in

urban and semi-urban areas, in many regions of the world. Female aedes mosquitoes,

which usually bite during daytime, spread the disease. This flu-like disease may progress

to severe dengue and cause fatality. A generic reaction-diffusion model for transmission

of mosquito-borne diseases was proposed and formulated. The motivation is to explore

the ability of the generic model to reproduce observed dengue cases in Borneo, Malaysia.

Dengue prevalence in four districts in Borneo namely Kuching, Sibu, Bintulu and Miri

are compared with simulations results obtained from the temporal and spatio-temporal

generic model respectively. Random diffusion of human and mosquito populations are

taken into account in the spatio-temporal model. It is found that temporal simulations

closely resemble the general behavior of actual prevalence in the three locations except

for Bintulu. The recovery rate in Bintulu district is found to be the lowest among the

districts, suggesting a different dengue serotype may be present. From observation, the

temporal generic model underestimates the recovery rate in comparison to the spatio-

temporal generic model.
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1 Introduction

Dengue incidences have developed tremendously over the years. According to World Health
Organization [1], the number of dengue cases reported increased from 2.2 million in 2010 to 3.2
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million in 2015. There are four typical serotypes of dengue virus namely DEN-1, DEN-2, DEN-
3 and DEN-4. A fifth serotype, which displayed sylvatic cycle, has been identified [2]. Sylvatic
cycle means that the disease is transmitted to non-human primates. Normally the first dengue
infection is asymptomatic; nevertheless, individuals who are later exposed to one of the other
serotypes may develop severe dengue. Dengue is suspected whenever the symptoms observed
are high fever accompanied by headache, muscle joint pains, rash or nausea. Symptoms of severe
dengue are for example, severe abdominal pain, blood in vomit, rapid breathing, bleeding gums,
respiratory distress, severe bleeding, or organ impairment. The female Aedes aegypti mosquito
is the primary vector of dengue. After an incubation period of 4 to 10 days, an infected mosquito
is capable of transmitting the virus for the rest of its life.

Many mathematical models had been constructed according to the epidemiology of the
concerned infectious disease. These mathematical models are commonly based on the
understanding of the dynamics of the host and pathogen. Factors, which contribute to the
spread of diseases, can be analysed by integrating them in the models and studying the
increment or decrement of infectious cases. The study of epidemic modeling first started in 1766
when a mathematical model was developed by Daniel Bernoulli to analyse the performance
of inoculation on smallpox virus. He concluded using his model that inoculation increases
lifespan from birth by about three years. Then, Ronald Ross described the transmission
dynamics of malaria mathematically [3], of which he formulated the first malaria model where
susceptible and infectious states were considered for both human and mosquito populations.
The model illustrated the relationship between the number of mosquitoes and incidence of
malaria in humans. MacDonald extended Ross’ model [4] and applied it to the Global Malaria
Eradication Programme. Most disease models are deterministic models, which consist of
ordinary differential equations. For example, some dengue models were developed and analysed
by Feng and Velasco-Hernandez [5], Derouich and Boutayeb [6], Pinho et al. [7], Kongnuy et
al. [8] and Rodrigues et al. [9]. Belik et al. included regular bi-directional movements of
the host between base locations and accessible destinations in a metapopulation model [10].
Comparison between the model and ordinary diffusion and effective force of infection models
are carried out. Effective force of infection model considers the outcome of disease spread
across distance in spatially distinct populations. However, this method is deficient of explicit
movements therefore a systematic analysis is challenging. It is found that the front velocity
of the epidemic does not increase unboundedly but reaches a maximum level with increasing
global travel rate, which differs from reaction-diffusion approach.

In this study, the simulations from a generic model for mosquito-borne diseases are compared
with weekly-notified dengue cases. These cases are reported in the Sarawak Weekly Epid News
(2012). Dengue prevalence in four districts in Sarawak namely Kuching, Sibu, Bintulu and Miri
are compared with the numerical simulations from the temporal and spatio-temporal generic
model respectively. For the temporal model comparison, time span is 127 weeks, from week
39 in 2012 to week 9 in 2015. Subsequently, for spatio-temporal model comparison, time span
taken is 8 weeks, from week 30 in 2012 to week 47 in 2012. Particularly, movement of both
human and mosquito population is considered in the latter
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2 Model Formulation

Before the formulation of the generic model, mosquito-borne and vector-borne diseases
compartmental models were deliberated and the similarities identified [11]. This is because
the objective is to formulate a generic model, which can be applied to different kinds of
mosquito-borne diseases. The matching compartments used for vector-borne diseases are found
to be susceptible and infectious for both human and vector population. Since there are four
serotypes of dengue, getting infected induces immunity to the particular serotype however,
does not allow long term immunity against other serotypes infection [12]. Individuals who
are infected gain temporary immunity before becoming susceptible again. In this study, it is
assumed that infectious humans are removed to a recovered class for a limited time before
returning to susceptible state. The recovered class is constantly stable and decoupled from the
SI model. The generic mosquito-borne diseases model consists of Susceptible-Infectious (SI )
compartments for both human host and vector mosquito [13]. As the main motivation is to
investigate the effect of spatial heterogeneity and movement of human and mosquito population
on the spread of diseases, spatial factors are incorporated in the generic model. By studying
spatio-temporal disease models, it is found that the common terms are diffusion coefficients
and location dependent parameters. Besides that, terms such as birth rate, death rate, force of
infection and recovery rate are consistently included in vector-borne disease models. The key
point here is in the way these diseases are transmitted. The random movement of human and
mosquito populations are illustrated as random walks, where a group of dispersing humans and
mosquitoes behave comparatively to a group of particles diffusing in Brownian motion at large
spatial scale [14].

The human population is divided into two compartments namely susceptible SH and
infectious IH. The density of susceptible and infectious human populations are SH(t, x) and
IH(t, x) where location x is considered. The dynamics of total human population is assumed
to obey

∂NH(t, x)

∂t
= DH

∂2NH(t, x)

∂x2
+ γ + dHNH(t, x)

where total human density is

NH = SH + IHDH

∂2NH(t, x)

∂t2

represents the random movement of total human population across the environment. The
diffusion coefficient DH portrays the change in the rate of change of human movement. It
represents the speed of spatial diffusion that is mean square distance covered per unit time.
It is assumed that diffusion coefficient for both susceptible and infectious is constant. The
mosquito population is also divided into susceptible SM and infectious IM SM (t, x) and IM(t, x)
are the spatial density of susceptible and infectious mosquito respectively. Furthermore, total
mosquito density is NM = SM + IM , giving us the total human and mosquito density at any
point x and time t are NH(t, x) and NM (t, x) respectively.

∂2SH

∂x2 is the change in the rate of change in the density of susceptible human population in
the x direction. This is similar for IH, SM and IM . New recruitment of susceptible human is
through birth and immigration at rate γ per unit time. In addition, those who are infectious
recover from the disease and return to the susceptible class at a constant rate r per unit time.
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The duration of infectious period is 1/r time. Susceptible individuals die a natural death at
rate dH . This death is of natural mortality and not dependent on the disease. The lifespan of a
human is thus 1/dH time. Furthermore, an infectious mosquito transfers the infection if it takes
blood meal on a susceptible human. The parameter g gives the searching rate of a mosquito,
meaning the rate at which a mosquito encounters a human per unit of human density and λ,
is the time taken for a mosquito to complete a blood meal for each bite taken. The rate that
susceptible human gets infected is

c
gNH(t, x)

1 + gλNH (t, x)

IM(t, x)

NH(t, x)
,

where c is the probability of transmission per bite from an infectious mosquito to a susceptible
human and the term IM (t,x)

NH(t,x)
is the probability of an infectious mosquito bites a human. The

equation gNH(t,x)
1+gλNH(t,x)

is Holling type II functional response [28] where it follows the assumption
that the consumer is limited by its capacity to process food. For the type II response, the rate
of consumption of blood meal rises as the human density increases, however, it will reach a
plateau where the biting rate stays constant even if the human density grows. This is because
the higher the human density, the lower the proportion of human being bitten by a mosquito.
Thus if density of available humans are high, the time spent on searching for human is reduced.
This allows the available time spent on taking a blood meal to increase hence the proportion
reaches a maximum when all available time is spent taking blood meal, limiting the number of
humans the mosquito can bite, causing a plateau. Moreover, considering the latent period for
human, τH , the number of new infectious cases is

c
gNH(t − τH , x)

1 + gλNH (t− τH , x)

IM(t − τM , x)

NH(t − τH, x)
SH(t− τH , x).

It is assumed that an individual will be able to transmit the disease or become infectious
after the latent period. It is considered that infectious cases are initiated when an infectious
mosquito takes a blood meal from a susceptible human before the human latent period, t− τH.
Hence, the disease is considered to transfer to an infectious human before the latent period.
Infectious humans move randomly at the rate of DH

∂2IH

∂x2 . To maintain simplicity, susceptible
and infectious are assumed to have equal movement ability. This means that those who are
sick are presumed to be able to move just as much as those who are healthy. Those who have
recovered become susceptible again at rate r per unit time. Similar to the susceptible pool,
infectious individuals succumb to natural mortality at a rate dH per unit time.

New admission of susceptible mosquito by birth at a rate Λ per unit time. Susceptible
mosquitoes are assumed to diffuse through the environment randomly at a rate DM

∂2SM

∂x2 , where
DM is the diffusion coefficient for mosquito population. A susceptible mosquito gets infected
when it takes a blood meal on an infectious human. The rate that a susceptible mosquito gets
infected is

b
gNH(t, x)

1 + gλNH(t, x)

IH(t, x)

NH(t, x)
,

where b is transmission per bite from an infectious human to a susceptible mosquito and the
term IH(t,x)

NH(t,x)
is the probability of infectious human, IH per human. The number of new infectious

mosquito cases is

b
gNH(t − τM )

1 + gλNH(t − τM)

IH(t− τH , x)

NH(t − τM)
SM (t− τM , x),
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taking into account that contact occurred before the mosquito incubation period, τM . The
lifespan of mosquitoes is considered to be 1/dM time since it is taken that the mosquitoes die
naturally at a rate dM per unit time.

Thus, upon characterization of the problem as discussed above, the governing equations of
this generic model are formulated to be as follows:

∂SH(t, x)

∂t
= DH

∂2SH(t, x)

∂x2
+ γ − c

gNH(t, x)

1 + gλNH(t, x)

IM(t, x)

NH(t, x)
SH(t, x) + rIH − dHSH(t, x), (1)

∂IH(t, x)

∂t
= DH

∂2IH(t, x)

∂x2

+ c
gNH(t − τH , x)

1 + gλNH(t − τH , x)

IM(t− τM , x)

NH(t − τH , x)
SH(t− τH , x) − (dH + r)IH(t, x), (2)

∂SM(t, x)

∂t
= DM

∂2SM (t, x)

∂x2
+ Λ − b

gNH(t, x)

1 + gλNH(t, x)

IH(t, x)

NH(t, x)
SM (t, x)− dMSM (t, x) (3)

∂IM(t, x)

∂t
= DM

∂2IM(t, x)

∂x2

− dMIM(t, x) + b
gNH(t − τM )

1 + gλNH(t − τM )

IH(t− τH , x)

NH(t − τM)
SM (t − τM , x). (4)

A Neumann boundary condition is imposed on the system of equations (1)-(4) hence the
domain Ω which is the spatial habitat with the boundary ∂Ω where n denotes the exterior
normal to ∂Ω:

∂SH

∂n
=

∂IH

∂n
=

∂SM

∂n
=

∂IM

∂n
= 0, t > 0, x ∈ ∂Ω.

3 Results and Discussion

3.1 Theoretical Analysis of Temporal Generic Model

The basic properties of the generic model (1)-(4) are considered in this section. The basic
reproduction number, R0 is the threshold value where when R0 > 1, a disease will invade a
population, otherwise, the disease will die out. Moreover, the stability of the disease-free and
endemic equilibrium for this generic model is studied.

3.1.1 Threshold Dynamics

Let κ := (Ω̄,R4) be the Banach space with supremum norm ‖.‖κ. The concept of norm
established the concept of length of a vector in Rn Let V be a vector space. A function α
:V → R is called a norm on V if it has the following properties:

(i) α(x) ≥ 0, α(x) = 0 only for x = 0 (positivity)

(ii) α(rx) = |r|α(x) for all r ∈ R (homogeneity)

(iii) α(x + y) ≤ α(x) + α(y) (triangle inequality).

A vector space on which a norm is defined is called a normed vector space. A Banach space
is a complete normed vector space. Thus, a Banach space is a vector space that allows the
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computation of vector length and distance between vectors. It is complete as a Cauchy sequence
of vectors always converges to a particular limit that is within the space. A Cauchy sequence
is a sequence whose elements become arbitrarily close to each other as the sequence progresses.
For τ ≥ 0, let τ = max {τM , τH} hence, τ is the maximum between τM , the mosquito latent
period and τH, the human latent period.

A metric space X is strongly ordered if for every open subset U in X the following holds:

(i) There exist a, b ∈ U with a � x � b ∀ x ∈ U, and

(ii) There exists x ∈ U with a � x � b ∀ a, b ∈ U with a � b

Then define C = C ([−τ, 0] , κ) with norm ‖ϕ‖ = maxθ∈[−τ,0] ‖ϕ (θ)‖κ. Next, C is a Banach
space. Allowing Cτ = C ([−τ, 0] , κ+) and representing κ+ := C(Ω̄,R4

+), both (κ, κ−1) and
(C, C+) are strongly ordered spaces.

Given a function u : [−τ, σ) → κ for σ > 0, prescribe ut ∈ C by ut(θ) = u(t+ θ), θ ∈ [−τ, 0].
Set κ1 and Cτ be the subsets in κ and C defined by

κ1 :=
{

ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ∈ κ+, ∀x ∈ Ω−

}

.

Let κ := (Ω̄,R) thus κ+ := (Ω̄,R+). Consequently, let us suppose that Yi(t) : κ1 → κ1, t ≥
0, i = 1, 2, 3, 4 be the semigroups associated with DH∆ − dH , DH∆ − (dH + r) , DM∆ − dM

and DM∆ − dM , respectively, subject to Neumann boundary condition. Let Ai : D (Ai) → κ
be the generator of Yi. Y (t) = (Y1(t), Y2(t), Y3(t), Y4(t)) : κ → κ is a semigroup by the operator
A := (A1, A2, A3, A4) defined on D(A) := D(A1) × D (A2) × D (A3) × D (A4). It follows in
Wang and Zhao [15] that for each t > 0, Y (t) is compact and positive.

Define F = (F1, F2, F3, F4) : Cτ → κ by

F1 (ϕ) (x) = γ − cgϕ1(0, x)ϕ4(0, x)

1 + gλϕH(0, x)
+ rϕ2(0, x), (5)

F2 (ϕ) (x) =
cgϕ1(−τH, x)ϕ4(−τH, x)

1 + gλϕH(−τH , x)
− rϕ2(0, x), (6)

F3 (ϕ) (x) =
bgϕ3(0, x)ϕ2(0, x)

1 + gλϕH(0, x)
, (7)

F4 (ϕ) (x) =
bgϕ3(−τM , x)ϕ2(−τM , x)

1 + gλϕH(−τM , x)
, (8)

for all x ∈ Ω− and ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ Cτ where ϕH = ϕ1 + ϕ2 and ϕM = ϕ3 + ϕ4.
The generic model (1-4) is an autonomous system and it can be studied as the following:

∂u1(t, x)

∂t
= DH

∂2u1(t, x)

∂x2
+ γ − c

gu4(t, x)

1 + gλ(u1(t, x) + u2(t, x))
u1(t, x) + ru2(t, x)− dHu1(t, x)

∂u2(t, x)

∂t
= DH

∂2u2(t, x)

∂x2
+c

gu4(t− τM , x)

1 + gλ(u1(t− τH , x) + u2(t − τH, x))
u1(t−τH, x)−(dH +r)u2(t, x),

∂u3(t, x)

∂t
= DM

∂2u3(t, x)

∂x2
+ Λ − b

u2(t, x)

1 + gλ(u1(t, x) + u2(t, x))
u3(t, x)− dMu3(t, x)
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∂u4(t, x)

∂t
= DM

∂2u4(t, x)

∂x2
− dMu4(t, x) + b

gu2(t − τM )

1 + gλ(u1(t − τM ) + u2(t− τM ))
u3(t − τM , x),

where u(t, x) = (u1(t, x), u2(t, x), u3(t, x), u4(t, x))T = (SH(t, x), IH(t, x), SM(t, x), IM(t, x))T .

So the above system can be written as this abstract functional differential equation:

du

dt
= Au + F (ut) , t > 0

u0 = ϕ ∈ Cτ

(9)

It is adopted from Martin and Smith [24] that for any ϕ ∈ Cτ , there exists a unique non-
continuable mild solution u (t, φ) such that ut(ϕ) ∈ Cτ for all t in its maximal interval of
existence. In addition, as the solution u (t, φ) is differentiable, it is a classical solution of (1)-
(4) with Neumann boundary for t > τ . There is no explicit equation for this solution. The
justification is that the solution exists in Cτ . A solution for a partial differential equation of
order k is at least continuously differentiable k times, meaning all derivatives in this equation
exist and are continuous. Hence, it is called classical solution. Any classical solution is a mild
solution. A mild solution is a classical solution if and only if it is continuously differentiable.

3.1.2 Basic Reproduction Number of the Generic Model

The theory of basic reproduction number for compartmental models of reaction diffusion models
by Wang and Zhao [25] is applied here. Time delay is disregarded here to evaluate the impact of
spatial heterogeneity and movement on the spread of diseases. The focus is on one dimensional
spatial environment as the purpose is to simplify matters. In this study, the one dimensional
environment is limited to Ω = (0, 1). Incubation period in humans, τH and incubation period in
mosquitoes, τM are set to zero. Neumann boundary is introduced to the generic model therefore

∂IH(0, t)

∂x
=

∂IH(1, t)

∂x
=

∂IM(0, t)

∂x
=

∂IM(1, t)

∂x
= 0.

The aim is to study the consequence of spatial heterogeneity on the transmission of disease.
From the model, the disease-free equilibrium is (S0

H , 0, S0
M , 0) where S0

H = γ

dH
and S0

M = Λ
dM

.
Adopting the method by Wang and Zhao [25], the elliptic eigenvalue problem associated with
linear parabolic system are these ordinary differential equations:

λIH =
d

dx

(

DH

dIH

dx

)

+ c
g

1 + gλ
(

γ

dH

)IM(t, x)− (r + dH)IH, x ∈ (0, 1)

λIM =
d

dx

(

DM

dIM

dx

)

+ b
g

1 + gλ
(

γ

dH

)

Λ

dM

IH(t, x)− dMIM , x ∈ (0, 1).
(10)

Lemma 1 Problem (10) has a principal eigenvalue λ∗ with a positive eigenfunction.

Let ν1 be the unique positive eigenvalue of the eigenvalue problem

− d

dx

(

DH

dφ

dx

)

+ (r + dH)φ = ν
bg Λ

dM
cg γ

dH

(1 + λg γ

dH
)dM(1 + λg γ

dH
)
φ, x ∈ (0, 1) (11)
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∂φ(0,t)
∂x

= ∂φ(1,t)
∂x

= 0, with a positive eigenfunction thus R0 = 1
ν1

. If R0 = 1
ν1

> 1, this indicates
that dengue will persist in the population.

Proof

Substituting IH = φ1 and IM = φ2 in (10), the eigenvalue problem is written as below in order
to apply the theorem presented by Wang and Zhao [25]:

λφ1 =
d

dx

(

DH

dφ1

dx

)

+ c
g

1 + gλ
(

γ

dH

)φ2(t, x) − (r + dH)φ1, x ∈ (0, 1) (12)

λφ2 =
d

dx

(

DM

dφ2

dx

)

+ b
g

1 + gλ
(

γ

dH

)

Λ

dM

φ1(t, x)− dMφ2, x ∈ (13)

∂φ1(0, t)

∂x
=

∂φ1(1, t)

∂x
=

∂φ2(0, t)

∂x
=

∂φ2(1, t)

∂x
= 0.

DM
d2φ2

dx2 is ignored because the impact of the movement of mosquitoes is not studied here. This
is because the movement of mosquitoes is at a smaller spatial scale compared to humans’ as
human mobility plays a much more significant role. Thus equation (13) becomes

λφ2 = b
g

1 + gλ
(

γ

dH

)

Λ

dM

φ1(t− τM , x)− dMφ2, x ∈ (0, 1).

Adopting the definition by Wang and Zhao [25], the generator which is closed and resolvent
positive, B is found to be

B =





d
dx

(

DH
dφ1

dx

)

− (r + dH) c g

1+gλ
“

γ

dH

”

γ

dH

b g

1+gλ
“

γ
dH

”

Λ
dM

−dM



 .

Following this, the linear operator Lλ becomes

Lλ =
d

dx

(

DH

dφ

dx

)

+ c
g

1 + gλ
(

γ

dH

)

γ

dH

(λI − (−dM ))−1b
g

1 + gλ
(

γ

dH

)

Λ

dM

φ − (r + dH)φ,

∀λ > −dM x ∈ (0, 1).

Let
g

1 + gλ
(

γ

dH

) ≥ 0

and
g

1 + gλ
(

γ

dH

) 6= 0.

There exists an interval [e, f ] ⊂ (0, π) such that

g

1 + gλ
(

γ

dH

) > 0
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for ∀x ∈ [e, f ]. Let

A := cbγmin x∈[e,f ]





g

1 + gλ
(

γ

dH

)

g

1 + gλ
(

γ

dH

)



 Λ,

and λ1 is the principal eigenvalue of the eigenvalue problem d
dx

(

DH
dφ

dx

)

− (r+dH)φ = λφ, x ∈
(e, f), φ(e) = φ(f) = 0, with φ∗(x) is a positive eigenfunction.

Since λ0 :=
(λ1−dM )dHdM +

√
(dHd2

M +λ1dHdM )2+4dHdM A

2dHdM
and A > 0 hence λ0 > −dM ,

Lλ0φ
∗(x) ≥ d

dx

(

DH
dφ∗(x)

dx

)

+ (λ0I − (−dM ))−1 A
dHdM

φ − (r + dH)φ ∗ (x),

=
(

λ1 + A
(λ0+dM )dHdM

)

φ∗(x)

= λ0φ∗(x), ∀x ∈ (c, d).

Thus Lλ0φ
∗(x) ≥ λ0φ

∗(x), ∀x ∈ (c, d) for all x ∈ (0, π)\{c, d}. Thereupon, eλ0tφ0(x) is a
subsolution of the integral form to the system ut = Lλ0

u. By using Theorem 2.3 by Wang and
Zhao [25], equations in (12-13) has an eigenvalue with a nonnegative eigenfunction and the
eigenfunction is positive.

To use Theorem 3.3 [15], it is defined that

F (x) :=





0 c g

1+gλ
“

γ
dH

”

γ

dH

b g

1+gλ
“

γ

dH

”

Λ
dM

0





and

B =

(

L1 + M11 M12

M21 M22

)

=





d
dx

DH
dφ1

dx
− (r + dH) c g

1+gλ
“

γ
dH

”

γ

dH

b g

1+gλ
“

γ
dH

”

Λ
dM

−dM





for the model (1-4). According to Theorem 3.2 in [25], thus r(−B−1F ) = 1/ν1.
The computation of R0 is carried out numerically for the generic system using the principal

eigenvalue problem (11), adopting the method by Wang and Zhao [25]. Say h = 1/(n+1), and
xi = ih for 1 ≤ i ≤ n with x0 = 0 to xn+1 = π.

Subsequently, d
dx

(

DH
dφ

dx

)

= −DH

h2 [φ(xi+1) − 2φ(xi) + φ(xi−1)] , ∀x ∈ [1, n] and applying
Neumann boundary condition, i = 0, d

dx
φ = 0, thus 1

h
[φ(x1) − φ(x0)] = 0, so φ(x0) = φ(x1) is

acquired.
Similarly, when i = n, d

dx
φ = 0, thus 1

h
[φ(xn+1) − φ(xn)] = 0, φ(xn+1) = φ(xn).

Approximating (11) enables us to obtain

Eu + Ru = νSu (14)

where u = (u1, u2, ..., un)
T ,

E =
1

h2















DH −DH 0 · · · 0
−DH 2DH −DH · · · 0

...
...

...
...

...
0 0 · · · 2DH −DH

0 0 · · · −DH DH
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R =















r + dH 0 0 · · · 0
0 r + dH 0 · · · 0
...

...
...

...
...

0 0 · · · r + dH 0
0 0 · · · 0 r + dH















and S =



























bcg2Λγ
“

1+gλ γ
dH

”2

d2

M
dH

0 · · · 0 0

0 bcg2Λγ
“

1+gλ γ
dH

”

2

d2

M
dH

· · · 0 0

...
...

...
...

...

0 0 · · · bcg2Λγ
“

1+gλ γ
dH

”

2

d2

M dH

0

0 0 · · · · · · bcg2Λγ
“

1+gλ
γ

dH

”

2

d2

M dH



























.

If K=E+R, then (14) becomes Ku = νSu. Consequently, let u0 = (1, 1, ..., 1)T , and define
an iteration sequence vk = K−1Suk−1, k ≥ 1, uk = vk

‖vk‖∞
, k ≥ 1 where vk is attained by

solving Kvk = Suk−1. If eigenvalues of K−1S are given by φ1 > |φ2| ≥ |φ3| ≥ ... ≥ |φn| and
ω1 is an eigenvector corresponding to φ1, this implies that lim‖vk‖∞ = ν1, lim vk = ω1/‖ω1‖∞,

giving us the approximations of ν1 and its eigenfunction, respectively. Thus, it is found that
R0 = 1

ν1

.
Linearizing the system of equations (1-4) at the disease-free equilibrium E0 =

(S0
H , 0, S0

M , 0) =
(

γ

dH
, 0, Λ

dM
, 0

)

as applied in [15], equations (2) and (4) becomes

∂IH(t, x)

∂t
= DH

∂2IH(t, x)

∂x2
+ c

gNH

1 + gλNH

γ

dH

IM(t, x)− (dH + r)IH(t, x) (15)

∂IM(t, x)

∂t
= DM

∂2IM(t, x)

∂x2
− dMIM(t, x) + b

gNH

1 + gλNH

Λ

dM

IH(t, x). (16)

Adopting the Krein-Rutmann theorem, r(Lε) > 0 is the unique eigenvalue of the Lε having a
strong eigenvector [15]. As Lε is a strongly positive linear operator and following the uniqueness
of the eigenvalue, thus r(Lε) = r(Mε).

Mε =











ε

dM

cg γ

dH

(1 + λg γ

dH
)(r + dH)

bg Λ
dM

(1 + λg γ

dH
)dM

ε

(r + dH)











where its spectral radius r(Mε) is an eigenvalue with a positive eigenvector in R2. Each element
in Mε is positive thus the explicit R0 for the system (15)-(16) is

R0 =

√

bgS0
M

(1 + λgS0
H)dM

× cgS0
H

(1 + λgS0
H )(r + dH)

.
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Taking ε → 0+, where

M0 =













0
cg γ

dH

(1 + λg γ

dH
)(r + dH)

bg Λ
dM

(1 + λg
γ

dH

)dM

0













,

hence R0 = r(L) = r(M0) =
√

bgΛdH

(dH+λgγ)d2

M

× cgγ

(dH+λgγ)(r+dH)
. The basic reproduction number

is the threshold value where when R0 > 1, the disease prevails in the population and when
R0 < 1, the disease dies out. 2

3.1.3 Equilibrium Points of the Generic Model

A dynamical system consists of a set of differential equations. The equilibrium point of a
dynamical system is the solution for the set which does not change in time. To inspect
the situation in the future, a system can be analyzed at its equilibrium point. Disease-free
equilibrium points are steady states where there is no infection in the population. This model
is studied without diffusion thus DH = 0 and DM = 0 reducing this system (1-4) to ordinary
differential equations. Diseased compartments for this model are infectious human population
IH and infectious mosquito population IM . The equilibrium point for the generic model can be
determined by setting equations (1-4) as zero and calculating the values for each variable. The

disease-free equilibrium, E0 = (S0
H, 0, S0

M , 0) =
(

γ

dH
, 0, Λ

dM
, 0

)

. Each compartment is scaled by

the total population to ease analysis.
Hence, Ih = IH

NH
, Im = IM

NM
and working with fractional quantities, Sh+Ih = 1 → Sh = 1−Ih

and Sm + Im = 1 → Sm = 1 − Im. As the fractions are differentiated with respect to time,

dIh

dt
=

d

dt

(

IH

NH

)

=
NH

d
dt

IH − IH
d
dt

NH

(NH)2
=

1

NH

(

d

dt
IH − Ih

d

dt
NH

)

=
cg

1 + gλNH

ImNM (1 − Ih) − rIh − γ
Ih

NH

(17)

and
dIm

dt
=

1

NM

(

d

dt
IM − Im

d

dt
NM

)

=
bg

1 + gλNH

IhNH(1 − Im) − Λ
Im

NM

. (18)

Both the human and mosquito population have to be positive hence the domain for the solutions
is: Ω =

{

(Ih, Im, NH , NM) ∈ <+
4 |Ih ≤ 1, Im ≤ 1, NH , NM > 0

}

According to Chitnis et al. [26], assuming that the initial conditions lie in Ω, the system
of equations above has a unique solution which remains in Ω, ∀t ≥ 0. To make the notation
simpler, general equilibrium of infectious human and mosquito population are denoted by I∗

h

and I∗
m. In addition, corresponding positive equilibrium human and moquito value are denoted

by N∗
hand N∗

M . Setting equations (17) and (18) to zero and solving them gives the equilibrium
point, E = (I∗

h, I
∗
m) where

I∗
h =

cgI∗
mN∗

MN∗
H

cgI∗
mN∗

MN∗
H + (rN∗

H + γ)(1 + gλN∗
H )

and I∗
m =

bgI∗
hN

∗
HN∗

M

Λ(1 + gλN∗
H) + bgI∗

hN
∗
HN∗

M

.
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for all equilibrium points on Ω∩ ∂R+
4 , Ih = Im = 0. If any of the diseased compartment is zero,

the other is also zero. To demonstrate this, (17) and (18) are equate to zero, and it is shown
below that if any of the diseased class is zero, then Ih = Im = 0.

Since

I∗
h =

cgI∗
mN∗

MN∗
H

cgImN∗
MN∗

H + (rN∗
H + γ)(1 + gλN∗

H)
, Im = 0

if and only if Ih = 0 and

I∗
m =

bgI∗
hN

∗
HN∗

M

bgI∗
hN

∗
HN∗

M + Λ(1 + gλN∗
H )

, Ih = 0

if and only if Im = 0.
The disease-free equilibrium, E0 is locally asymptotically stable if R0 < 1 and unstable if

R0 > 1. To show this, first of all, the disease-free equilibrium point, E0, is where Ih = Im = 0.
The stability of the equilibrium can be decided by the eigenvalues of a Jacobian matrix. If all
the Jacobian’s eigenvalues are negative values then the equilibrium is asymptotically stable.
The Jacobian matrix is checked at the E0 thus it is found to be







dIh

dt

/

∂Ih

dIh

dt

/

∂Im

dIm

dt
/

∂Ih

dIm

dt

/

∂Im






=







−(r + dH)
cgdHΛ

(dH + gλγ)dM

bgγ

(dH + gλγ)
−dM






.

The eigenvalues of this Jacobian matrix are

− (r + dH + dM ) ±
√

(r + dH + dM )
2
+ 4 (r + dH) (dM ) (R2

0 − 1)

2
,

when R0 < 1, all eigenvalues are negative thus E0 is locally asymptotically stable. However
when R0 > 1, the equilibrium is unstable as there exists an eigenvalue with positive real part.

3.2 Numerical Analysis of Temporal Generic Model

The simulations from this generic model are compared with the weekly-notified dengue cases
reported in Sarawak Weekly Epid News [16]. As the actual results fluctuate drastically, the
general behavior of the spread of dengue is obtained by finding the best-fit curve. This is
appropriate as the generic model describes the average trend of the transmission of diseases
and it is incapable of capturing rapid and stochastic changes in the behavior. Dengue prevalence
in four districts in Sarawak namely Kuching, Sibu, Bintulu and Miri are compared with the
numerical simulations from the temporal and spatio-temporal generic model respectively.

Firstly, the actual cases are compared with the numerical results from the temporal model
hence for this case, the diffusion rates of both human and mosquito population are set to zero.
The time span is 127 weeks that is from week 39 in 2012 to week 9 in 2015. Parameters
used are shown in Table 1. Since the data for mosquito population in Sarawak is inadequate,
the information for mosquito population such as the initial data for susceptible and infectious
mosquito, recruitment rate, Λ and mosquito death rate, dM are unknown therefore they are
determined when the best fit curve is obtained. In addition, the initial values of human
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population for each district, namely Kuching, Sibu, Bintulu and Miri in 2012 are estimated using
an exponential growth formula [17], xt = x0(1 + q)t where x is the population size, t is time and
q is the growth rate. The q values for each district are shown in Table 1. Inserting the parameter
values in Table 1 into the basic reproduction number in Lemma 2, gives R0 = 0.5985 for this
set of simulations. This indicates that in the long run when t → ∞, the disease will die out as
R0 < 1.

For Kuching district, the initial data used is SH = 615719, IH = 14, SM = 1.3 × 105 and
IM = 9. Actual cases are represented by a best fit curve. Therefore the initial data of actual and
simulated cases in Kuching and Bintulu differ slightly to cater for that. Simulation in Figure 1
shows an almost accurate depiction of the general behavior of the actual dengue prevalence in
Kuching for 127 weeks. The number of infectious humans drops drastically from the beginning
to week 8 and then increases steadily until week 126. The normalized root mean square error
(NRMSE) is 7.7 × 10−3 and the accuracy percentage is 98.24% for this comparison. In Figure
2, the simulated weekly dengue prevalence and actual cases are shown. Initial condition for
Sibu is SH = 247814, IH = 1, SM = 242500, IM = 8 , plus the NRMSE is 2.41 × 10−2 and
accuracy percentage, 93.85%.The numbers of infectious humans for both predicted and actual
are complementary in terms of behavior and magnitude as both grows exponentially from the
first week until week 126.

Next, Bintulu initial data is SH = 194326, IH = 5, SM = 1000 and IM = 5. Comparison
of simulated and actual cases of Bintulu district is displayed in Figure 3 from week 1 to week
50, the discrepancy is noticeable and the actual prevalence is higher than the simulated cases.
However, after that, both actual and simulated cases coincide until week 126. The decrement
of the actual cases is at a slower rate in comparison to simulated cases in the first five weeks.
The reason of the deterioration of simulated cases in the first few weeks is due to the low initial
value of infectious mosquito in this data set. The NRMSE and accuracy percentage for this set
of comparison is 0.25 and 61.16%. As the simulated result is not in good agreement with the
actual data of week 1 to 50, the value of the recovery rate, r, is varied to get a better fit. It
is found that when r = 0.245, the number of infectious human is complementary to the actual
cases for the first three weeks as illustrated in Figure 4. In addition, the accuracy percentage
increases to 97.45%. The corresponding duration of infectious period is about four weeks. The
distinct infectious period indicates that the strain of dengue virus in Bintulu may be different.
Different genotypes of dengue causes different infectious period. Average infectious period of
dengue as reported is 3 to 14 days [18]. From these results, reducing r increases the number of
cases IH in the simulations. This leads to a better fit with the actual cases suggesting that the
dengue strain in this district has a longer infection period. A longer infectious period means the
period an individual stays infectious is prolonged leading to more cases.This finding coincides
with the explicit R0 found in Lemma 2 that when r decreases, R0 increases. The increment of
R0 signifies a higher number of infectious cases when one infectious case is introduced into a
totally susceptible population.

Finally, it is clear in Figure 5 that the simulated number of infectious humans in Miri is in
good agreement with the actual cases. The initial data used is SH = 311934, IH = 2, SM = 10
and IM = 8. The infectious human population shows an exponential growth from the initial
state to week 126. The NRMSE is 3.45 × 10−2 and the accuracy percentage is found to be
94.73%. The mosquito death rate for this simulation is dM = 8.0 × 104 week−1 as this value
enables the best-fit curve to be acquired. In summary, the temporal generic model is validated
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based on the comparison made between the numerical results and the actual dengue cases in
the four districts in Sarawak.

Figure 1: Weekly Dengue Cases in Kuching from Week 39 in 2012 to Week 9 in 2015 and
Predicted Cases from Temporal Generic Model

Figure 2: Weekly Dengue CXases in Sibu from Week 39 in 2012 to Week 9 in 2015 and Predicted
Cases from Temporal Generic Model
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Figure 3: Weekly Dengue Cases in Bintulu from Week 39 in 2012 to Week 9 in 2015 and
Predicted Cases from Temporal Generic Model

3.3 Numerical Analysis of Spatio-Temporal Generic Model

Subsequently, numerical simulations from the spatio-temporal generic model are compared
with the actual cases in the selected districts mentioned earlier. The geolocations are obtained
by calculating the distance between the centre point, chosen to be Kuching, and the other
districts using their corresponding latitude and longitude, gives x = (Kuching, Sibu, Bintulu,
Miri) = (0, 178, 345, 517). Considering the actual density of infectious human, the best fit
mathematical functions could not be determined as negative values are obtained. Therefore,
initial values for each location and population is interpolated. The values of the total human
population in these locations in the year 2012 are estimated from the Sarawak Facts and
Figures 2012 [19]. Thus, the initial data of population is: SH = (330.53, 111.14, 26.91, 66.27),
IH = (7.5×10−3, 4.5×10−4, 26.9×10−4, 4.2×10−4), SM = (66.79.108.75, 0.1385, 2.1×10−3)and
IM = (4.8× 10−3, 1.3× 10−3, 6.9× 10−4, 1.7× 10−3). The time span considered for this study is
8 weeks. Particularly, the movement of both human and mosquito populations are taken into
account in this case. As the actual diffusion rate for human and mosquito populations are not
known, it is assumed to be 2 km2week−1 as this enables the best representation of the actual
cases. The values for recruitment and death rate of mosquitoes are considered equal for all
locations. New parameter values used are stated in Table 2. Changing the values of time for a
mosquito to consume blood per bite, λ and mosquito death rate dM allows a depiction of the
actual scenario. The value for recovery rate, r is different for each district to obtain the best
curve that represents the real cases.

From the graph in Figure 6, it is observed that the simulated density of infectious human
resembles that of the actual cases in Kuching for all the eight weeks. The cases decrease in an
exponential manner. The RMSE and percentage accuracy for this comparison is 1.5077× 10−4

and 97.05%. Next, the infectious human density increases steadily with time and is similar
to the actual prevalence in Sibu for the considered period as shown in Figure 7. The RMSE
and accuracy percentage by comparing the model’s predicted and actual value is 6.4551× 10−6

and 98.93%.
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Figure 4: Weekly Dengue Cases in Bintulu from Week 39 to 47 in 2012 and Predicted Cases
from Temporal Generic Model

Figure 5: Weekly Dengue Cases in Miri from Week 39 in 2012 to Week 9 in 2015 and Predicted
Cases from Temporal Generic Model
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The generic spatio-temporal model is able to predict the infectious human density in Bintulu
for week 1 as displayed in Figure 8. However, in the subsequent weeks, the simulated result
shows an upward trend while the actual infectious cases decline slowly. The RMSE is found to
be 5.5303 × 10−4 and the percentage accuracy is 36.59%. For this case, the recovery rate, r is
observed to be lowest among the districts studied as shown in Table 2. The infectious period,
which coincides with this recovery rate, is 2.9 weeks. The best fit of the generic temporal
model’s simulation depicted in Figure 4, also displayed a recovery rate lower than other districts
resulting in an infectious period of 4 weeks, slightly longer than the period obtained from the
spatio-temporal model. This shows that temporal generic model underestimates the recovery
rate in comparison to the spatio-temporal generic model. From this observation, the serotype
of dengue virus in Bintulu may differ from the other districts hence the longer period needed
for those who are infected to recover from dengue. According to Gubler et al. [20] studies in
dengue epidemic showed that there is variation in different serotypes.

Furthermore, for Miri, it is displayed in Figure 9 that the generic spatio-temporal model’s
infectious human density coincides closely with the actual values from week 2 to week 5. The
actual dengue cases decreases slowly over time while the predicted density decreases drastically
from week 6 to week 8. It is notable that the model is able to predict the density of infectious
human up to 5 weeks for this particular district. The RMSE and the percentage accuracy for
this set of comparison is 9.88 × 10−6 and 98.71%. In summary, the spatio-temporal generic
model is able to generate results of infectious human density which resembles the actual cases
in three out of four districts in Sarawak. The result for Bintulu district is unsatisfactory and
from the numerical results, the recovery rate is lower than the other districts studied.

Figure 6: Weekly Dengue Cases in Kuching from Week 39 to 47 in 2012 and Predicted Cases
from the Spatio-Temporal Generic Model
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Figure 7: Weekly Dengue cCases in Sibu from Week 39 to 47 in 2012 and Predicted Cases from
the Spatio-Temporal Generic Model

Figure 8: Weekly Dengue Cases in Bintulu from Week 39 to 47 in 2012 and Predicted Cases
from the Spatio-Temporal Generic Model
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Figure 9: Weekly Dengue Cases in Miri from Week 39 to 47 in 2012 and Predicted Cases from
the Spatio-Temporal Generic Model

4 Conclusion

In this study, a generic spatio-temporal for the transmission of a mosquito-borne disease is
formulated. As the generic model is formulated for various types of mosquito-borne diseases,
the intention is to explore its capability to portray real infectious cases. This model is validated
by the comparison done between the numerical simulations with the actual cases of dengue.
From the comparison of dengue prevalence data in Kuching, Sibu, Bintulu and Miri districts
in Sarawak, it can be concluded that the temporal simulations closely resembles the general
behavior of the actual prevalence in the four selected locations. The basic reproduction number
for the set of parameters is R0 = 0.5985 indicating the disease will eventually die out. Reducing
r in numerical results increases the number of cases which also led to increment of accuracy
percentage when compared with actual data. This result coincide with the explicit R0 equation
that a smaller r value causes a hike in the number of new cases caused by an infectious
individual. The spatio-temporal generic model produced values of infectious human density,
which agrees with the actual cases in Kuching, Sibu and Miri. As for Bintulu, the generic model
predicted the first week result quite accurately, however, results for the rest of the weeks are
not in good agreement. After the recovery rate is altered, the accuracy percentage improves
from 61.16% to 97.45%. One reason that the recovery rate differs is perhaps due to a different
type of the dengue strain in Bintulu. Moreover, from observation, the temporal generic model
underestimates the recovery rate in comparison to the spatio-temporal generic model. From
the comparisons, it was deduced that the simulations from the temporal generic model is in
good agreement with the general behavior of actual dengue prevalence in the four districts.
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Table 1: Values of Parameters Used for Kuching, Sibu, Bintulu and Miri for Simulation of
Model

Parameter Kuching Sibu Bintulu Miri Source

diffusion coefficient for humans,
DH [km2/ week]

NIL

diffusion coefficient for
mosquitoes, DM [km2/ week]

NIL

human recruitment rate, γ
[individual/week]

2.01× 102 2.01× 102 2.01× 102 2.01× 102 [21]

time for a mosquito to consume
blood per bite, λ [week]

3.5 3.5 3.5 3.5 [15]

searching rate of a mosquito, g
[week−1]

2.8 2.8 2.8 2.8 [22]

transmission probability per bite
from IM → SH , c

7.5× 10−1 7.5 × 10−1 7.5 × 10−1 7.5× 10−1 [23]

human death rate, dH [week−1] 8.27× 10−5 8.27× 10−5 8.27× 10−5 8.27× 10−5 [21]

recovery rate, r [week−1] 8.24× 10−1 8.24× 10−1 8.24× 10−1 8.24× 10−1 [18]

mosquito recruitment rate, Λ
[individual/week]

1.0× 103 1.0 × 103 1.0 × 103 1.0× 103

transmission probability per bite
from IH → SM , b

7.5× 10−1 7.5 × 10−1 7.5 × 10−1 7.5× 10−1 [23]

mosquito death rate, dM [week−1] 8.0× 10−3 8.0 × 10−3 8.0 × 10−3 8.0× 10−3

incubation period in humans, τH

[week]
1 1 1 1 [24]

incubation period in mosquitoes,
τM [week]

1.4 1.4 1.4 1.4 [20]

Table 2: New Parameter Values Used for Kuching, Sibu, Bintulu and Miri for Simulation of
Model

Parameter Kuching Sibu Bintulu Miri

diffusion rate for humans, DH

[km/week]
2 2 2 2

diffusion rate for mosquitoes,
DM [km/week]

2 2 2 2

time for a mosquito to
consume blood per bite,
λ[week]

3.3 3.3 3.3 3.3

recovery rate, r [week−1] 8.24× 10−1 6.39× 10−1 3.4× 10−1 8.58× 10−1

mosquito death rate, dM

[week−1]
2.0× 10−1 2.0 × 10−1 2.0× 10−1 2.0× 10−1

Area [km2] 1.86× 103 2.23× 103 7.22× 103 4.71× 103
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