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1 Introduction

In this paper we follow the same literature and methods of Ruhan Zhao [1] with a little
change.
Let D = {z : |z| < 1} be the unit disk in the complex plane, and let ∂D = {z : |z| = 1} be
the unit circle. Let H(D) be the space of all analytic functions on the unit disk D. For
o < p < ∞ , let Hp denote the Hardy space which contains f ∈ H(D) such that

‖f‖p
Hp = sup

0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ < ∞.

For 0 < p < ∞ and −1 < α < ∞, let Ap,α denote the weighted Lebesgue spaces which
contain measurable functions f on D such that

‖f‖p
p,α =

∫

D

|f(z)|pdAα(z) < ∞,

where dAα(z) = (1 − |z|2)αdA(z) = (1 − |z|2)α dxdy
π

. We also denote by
Ap,α

a = Ap,α ∩ H(D), the weighted Bergman space on D, with the same norm as above. If
α = 0, we simply write them as Ap and Ap

a, respectively. Let g be an analytic function on D

, let X and Y be two spaces of analytic functions . We say that g is a pointwise multipliers
from X into Y if gf ∈ Y for any f ∈ X. The space of all pointwise multipliers from the space
X into the space Y will be denoted by M(X, Y ) . Let Mg be the multiplication operator
defined by Mgf = fg. A simple application of the closed graph theorem shows that g is
a pointwise multiplier between two weighted Bergman spaces or between a Hardy space
and a weighted Bergman space if and only if Mg is a bounded operator between the same
spaces. Pointwise multipliers are closely related to Toeplizt operators and Hankel operators.
They have been studied by many authors [1–4]for a few examples. The pointwise multipliers
between the Hardy space H2 and the unweighted Bergman spaces A2

a were characterized, [2].
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The pointwise multipliers between the Hardy space H2 and the unweighted Bergman spaces
A2

a were characterized by using the Carleson measure, [3]. their results are generalize
in, [1]. In order to state the results, we need notation of various other function spaces. For
0 < α < ∞, we say an analytic function f on D is in the α-Bloch space Bα , if

sup
z∈D

|f
′

(z)|(1 − |z|2)α < ∞.

As α = 1, B1 = B the well-known Bloch space. As 0 < α < 1, the space Bα = Lip1−α, the
analytic Lipshitz space which contains analytic functions f on D satisfying

|f(z) − f(w)| ≤ c|z − w|1−α,

for any z and w in D , [5]. If α > 1, it is known that f ∈ Bα if and only if

sup
z∈D

|f(z)|(1 − |z|2)α−1 < ∞,

or the antiderivative of f is in Bα−1. We define a general family of function spaces. We

will use a special Mobius transformation Φα(z) = (α−z)
(1−ᾱz) , which exchange 0 and a, and

has derivative Φ
′

a(z) = −
(1−|a|2)
(1−āz)2 . Let p, q and s be real numbers such that 0 < p < ∞ ,

−2 < q < ∞ and 0 < s < ∞. We say that an analytic function f on D belongs to the space
F (p, q, s), if

‖f‖p

F (p,q,s) = sup
a∈D

∫

D

|f
′

(z)|p(1 − |z|2)q(1 − |Φa(z)|2)sdA(z) < ∞.

The spaces F (p, q, s) were introduced in, [6]. They contains, as special cases, many classical
function spaces. It was proved that, for −1 < α < ∞, F (p, pα− 2, s) = Bα for any p > 0
and any s > 1, [6, 7].When s = 1 we define BMOA type spaces as follows: BMOAα

p =
F (p, pα− 2, 1). Unlike the α -Bloch spaces, the spaces BMOAα

p are different for different
values of p, [6]. It is known that, BMOA1

2 = BMOA, the classical space of analytic
functions of bounded mean oscillation. Let µ be a Borel measure on D ; we say that an
analytic function f is in the tent space T q

p (dµ) if

‖f‖T
q
p (dµ) =

(

∫ 2π

0

(

∫

Γ(θ)
|f(z)|q dµ(z)

(1−|z|2)

)
p
q

dθ

)
1
p

< ∞,

Where Γ(θ) is the Stolz angle at θ , which is defined for real θ as the convex hull of the set

{eiθ} ∪ {z : |z| <
√

1
2}. The tent spaces were introduced in, [8, 9].

2 Carleson Type Measures

Carleson type measures, [10–13]. are the main tools of the investigation. Let X be a space
of analytic functions on D. Following the notations in [14], we say a Borel measure dµ on
D is an (X, q) -Carleson measure if

∫

D

|f |qdµ(z) ≤ c‖f‖q
X
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for any function f ∈ X . Let I ⊂ ∂D be an arc. Denote by |I| the normalized arc length of
I so that |∂D| = 1. Let S(I) be the Carleson box defined by

S(I) = {z : 1 − |I| < |z| < 1,
z

|z|
∈ I}.

There are many different versions of Carleson type theorems. Here we collect those results
we need later. The first result is the classical result for the case p = q, [15]. for the case
p < q, [16]. A proof of the equivalence of (ii) and (iii) can be found in, [17].

Theorem 1 For µ a positive Borel measure on D and 0 < p ≤ q < ∞, the following
statements are equivalent:
(i) The measure µ is an (Hp, q) -Carleson measure.
(ii) There is a constant c1 > 0 such that, for any arc I ⊂ ∂D,

µ(S(I)) ≤ c1|I|
q

p .

(iii) There is a constant c2 > 0 such that, for every a ∈ D,
∫

D

|Φ
′

a(z)|
q
p dµ(z) ≤ c2.

For the case 0 < q < p < ∞ , the following result is in, [18, 19].

Theorem 2 For µ a positive Borel measure on D and 0 < q < p < ∞, the following
statements are equivalent:
(i) The measure µ is an (Hp, q) -Carleson measure.

(ii) The function θ →
∫

Γ(θ)
dµ

1−|z|2 belongs to A
p

(p−q) , where Γ(θ) is the Stolz angle at θ. For

the weighted Bergman spaces Ap,α
a , the following result was obtained by several authors and

can be found in, [20]. The equivalence of (i) and (ii) is the same as the equivalence of (ii)
and (iii) in Theorem 1

Theorem 3 For µ a positive Borel measure on D , 0 < p ≤ q < ∞ and −1 < α < ∞, the
following statements are equivalent:
(i) The measure µ is an (Ap,α

a , q) -Carleson measure.
(ii) There is a constant c1 > 0 such that, for any arc I ⊂ ∂D,

µ(S(I)) ≤ c1|I|
(2+α) q

p .

(iii)There is a constant c2 > 0 such that, for every α ∈ D,
∫

D

|Φ
′

a(z)|(2+α) q

p dµ(z) ≤ c2.

We denote by D(z) = D(z, 1
4 ) = {w : |Φz(w)| < 1

4}. For the case 0 < q < p < ∞, the
following result for the case α = 0, [9, 21]. For −1 < α < ∞ , the result can be similarly
proved as in, [9].

Theorem 4 For µ a positive Borel measure on D , 0 < q < p < ∞ and
−1 < α < ∞ , the following statements are equivalent:
(i) The measure µ is an (Ap,α

a , q) -Carleson measure.

(ii) The function z → µ(D(z))(1 − |z|2)−2−α ∈ A
p

(p−q) ,α.
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3 Proofs of the Verifications Theorems

We first give a simple integral criterion for H∞.

Lemma 1 Let p > 0 and let f ∈ H(D) . Then the following conditions are equivalent:
(i) f ∈ H∞.
(ii) (foΦa) is a bounded subset of Ap,α

a for some α > −1
(iii) (foΦa) is a bounded subset of Ap,α

a for all α > −1
(iv) supa∈D

∫

D
|f(z)|p(1 − |z|)−2(1 − (|Φa(z)|2))sdA(z) < ∞ for some s > 1.

(v) supa∈D

∫

D
|f(z)|p(1 − |z|)−2(1 − (|Φa(z)|2))sdA(z) < ∞ for all s > 1.

Proof Let f ∈ H∞ . Then

sup
a∈D

∫

D

|foΦa(z)|p(1 − |z|)αdA(z) ≤ ‖f‖p
H∞

∫

D

(1 − |z|2)αdA(z) < ∞

for any α > −1 . This (i) implies (iii) . It is trivial that (iii) implies (ii). Let {foΦa} be
a bounded subset of Ap,α

a for α > −1 . If α ≥ 0, we fix an r ∈ (0, 1). By subharmonicity of
|foΦa|

p, we get

|f(a)|p = |foΦα(0)|p ≤ 1
r2

∫

D(0,r) |foΦa(z)|pdA(z)

≤ 1
r2(1−r2)α

∫

D(0,r) |foΦa(z)|p(1 − |z|2)αdA(z)
(3.1)

Thus

sup
a∈D

|f(a)|p ≤ c(r) sup
a∈D

∫

D

|foΦa(z)|p(1 − |z|2)αdA(z) < ∞.

So f ∈ H∞. For the case −1 < α < 0 , we notice that

∫

D

|foΦa(z)|pdA(z) ≤

∫

D

|foΦa(z)|p(1 − |z|2)αdA(z).

Thus this reduces the problem to the case α = 0 .Thus (ii) implies (i) . If we change the
variable Φα(z) by w and let s = α + 2 , then it is easy to see that (iv) is equivalent to (ii)
, and (v) is equivalent to (iii) . The proof is complete .2

Replacing f by f
′

, we immediately have an integral criterion for the space B0 = {f ∈
H(D), f

′

∈ H∞}.

Lemma 2 Let p > 0 and let f ∈ H(D) . Then the following conditions are equivalent:
(i) f ∈ Bo .
(ii) {f

′

oΦa} is a bounded subset of Ap,α
α , for some a > −1.

(iii) {f
′

oΦa} is a bounded subset of Ap,α
α , for all a > −1.

(iv) f ∈ F (p,−2, s) for some s > 1.
(v) f ∈ F (p,−2, s) for all s > 1.

We also need the following lemma.
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Lemma 3 Let 0 < p < ∞, q < −2 and s > 0. Let f ∈ H(D) . If

sup
a∈D

∫

D

|f(z)|p(1 − |z|)q(1 − |Φa(z)|2)sdA(z) < ∞, (3.2)

then f = 0.

Proof Let 0 < p < ∞, q < −2 and s > 0 . Let f ∈ H(D) and satisfy (3.2). Fix r ∈ (0, 1).
Similarly as in the proof of Lemma 1, by subharmonicity of |foϕa|

p , we get

|f(a)|p = |foΦa(0)|p ≤ 1
r2

∫

D(0,r)
|foΦa(w)|pdA(w)

= 1
r2

∫

D(a,r)
|f(z)|p|Φ

′

a(z)|2dA(z)

≤ 16
r2(1−|a|2)2

∫

D(a,r)
|f(z)|pdA(z),

where D(a, r) = {z : |Φa(z)| < r} . It is known that, for z ∈ D(a, r),
1 − |z|2 ∼ 1 − |a|2, [22]. Thus, for a suitable constant c

|f(a)|p(1 − |a|2)q+2 ≤ 16c
r2

∫

D(a,r)
|f(z)|p(1 − |z|2)qdA(z)

≤ 16c
r2(1−r2)s

∫

D(a,r)
|f(z)|p(1 − |z|2)q(1 − |Φa(z)|2)sdA(z).

Thus, if (3.2) holds then

sup
a∈D

|f(a)|(1 − |a|2)q+2 ≤ M < ∞,

Where M is an absolute constant. Thus |f(a)| ≤ M(1 − |a|2)−q−2. When
q < −2,−q − 2 > 0 . Letting |a| → 1 we see that lim|a|→1 |f(a)| = 0 . By the maximal
principle, we get that f(z) = 0 for any z ∈ ∂D .2

The main verification results are the following two theorems.

Theorem 5 Let g be an analytic function on D , let −1 < α, β < ∞, β > 3α and let
γ∗ = β+2

2 − α+2
2−ε

, for 0 ≤ ε < 2 or ε > 2.

(i) If γ∗ > 0 then M(A2−ε,α
a , A2,β

a ) = B1+γ

(ii) If γ∗ = 0 then M(A2−ε,α
a , A2,β

a ) = H∞

(iii) If γ∗ < 0 then M(A2−ε,α
a , A2,β

a ) = {0}
(iv) If 1

s
= 1

2
− 1

2−ε
and δ

s
= β

2
− α

2−ε
, then M(A2−ε,α

a , A2,β
a ) = As,δ

a .

3.1 Proof of Theorem 5

Proof By definition, an analytic function g ∈ M(A2−ε,α
a , A2,β

a ) if and only if, for any
f ∈ A2−ε,α

a ,
∫

D

|f(z)g(z)|2dAβ(z) ≤ c‖f‖2
2−ε,α. (3.3)

Let dµg(z) = |g(z)|2dAβ(z). Then (3.3) means that dµg is an (A2−ε,α
a , 2)-Carleson measure.

Now we will prove (i), (ii) and (iii) at the same time. By Theorem 3, if ε ≥ 0, (3.3) is
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equivalent to the fact that

sup
a∈D

∫

D

|Φ
′

a(z)|
2(2+α)

2−ε dµg(z) < ∞,

which is the same as

sup
a∈D

∫

D

|g(z)|2(1 − |z|2)β−
2(2+α)
(2−ε) (1 − |Φa(z)|2)

2(2+α)
2−ε dA(z) < ∞. (3.4)

From, [10]. Φa(z) = a−z
1−āz

⇒ Φ
′

a(z) = − (1−|a|2)
(1−āz)2

therefore |Φ
′

a(z)|2 =
(1−|a|2)2

(1−āz)4

1 − |Φa(z)|2 =
(1 − |z|2)(1 − |a|2)

|1− āz|2
= (1 − |z|2)|Φ

′

a(z)|

therefore

|Φ
′

a(z)| = (1 − |z|2)−1(1 − |Φa(z)|2) (3.5)

dµg(z) = |g(z)|2dAβ(z) = |g(z)|2(β + 1)(1 − |z|2)βdA(z) (3.6)

sup
a∈D

∫

D

|Φ
′

α(z)|
2(2+α)
(2−ε) dµg(z) < ∞ (3.7)

From (3.5), (3.6), (3.7) we have

sup
a∈D

∫

D

(1 − |z|2)−
2(2+α)
(2−ε) (1 − |Φa(z)|2)

2(2+α)
(2−ε) |g(z)|2(1 − |z|2)β.(β + 1)dA(z) < ∞

therefore

sup
a∈D

∫

D

|g(z)|2(1 − |z|2)β− 2(2+α)
(2−ε) (1 − |Φa(z)|2)

2(2+α)
(2−ε) (β + 1)dA(z) < ∞

therefore

sup
a∈D

∫

D

|g(z)|2(1 − |z|2)β−
2(2+α)
(2−ε) (1 − |Φa(z)|2)

2(2+α)
(2−ε) dA(z) < ∞.

Notice that, as 0 ≤ ε < 2 or ε > 2,
2(2+α)
(2−ε)

> 1. Let G be an antiderivative of g. If γ∗ > 0,

then β − 2(2+α)
(2−ε)

> −2 . (3.4) means G ∈ B
β
2 − (2+α)

(4−ε) = B
(β+2)

2 − (2+α)
(2−ε) ,which is equivalent to

the fact that g = G
′

∈ B
1+ (β+2)

2 − (2+α)
(2−ε) see, [6, 7, 23–25]. Thus (i) is proved. If γ∗ = 0 then

β − 2(2+α)
(2−ε) = −2. By Lemma 1, (3.4) is equivalent to that g ∈ H∞, which proves (ii). If

γ∗ < 0, then β − 2(2+α)
(2−ε)

< −2. By Lemma 3, (3.4) implies g = 0 , which proves (iii). For

proving (iv), we use Theorem 4. Let ε < 0 . By Theorem 4, (3.3) is equivalent to the fact
that

∫

D

[µg(D(z,
1

4
))(1 − |z|2)−2−α]

(2−ε)
−ε dAα(z) < ∞,
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Where dµg is given above. Thus, [10]:

∫

D

[
1

(1− |z|2)2+α

∫

D(z, 1
4 )

|g(w)|2dAβ(w)]
(2−ε)
−ε dAα(z) < ∞. (3.8)

For: (3.3) Means that dµg is an (A2−ε,α
a , 2) -Carleson measure and from Theorem 4, and

(3.3) the function z → µg(D(z))(1 − |z|2)−2−α ∈ A
2−ε
−ε

,α which implies that

∫

D

[µg(D(z))(1 − |z|2)−2−α]
2−ε
−ε dAα(z) < ∞

from Theorem 3

D(z) = D(z,
1

4
) = {w : |Φz(w)| <

1

4
}

therefore
∫

D

[µg(D(z,
1

4
))(1 − |z|2)−2−α]

(2−ε)
−ε dAα(z) < ∞

∫

D

[µg(w)(1 − |z|2)−2−α]
(2−ε)
−ε dAα(z) < ∞. (3.9)

dµg(w) = |g(w)|2dAβ(w)

therefore

µg(w) =

∫

D(z, 1
4 )

|g(w)|2dAβ(w) (3.10)

From (3.9) and (3.10) we have

∫

D

[
1

(1− |z|2)2+α

∫

|g(w)|2dAβ(w)]
(2−ε)
−ε dAα(z) < ∞.

By subharmonicity of |g|2−ε, it is easy to see that (by proof of Lemma 3),

|g(z)|2(1 − |z|2)β+2 ≤ c

∫

D(z, 1
4 )

|g(w)|2dAβ(w).

For the proof of Lemma 3 we have

|g(a)|2−ε ≤ 16
r2(1−|a|2)2

∫

D(a,r)
|g(z)|2−εdA(z)

≤ 16
r2(1−|a|2)2

∫

D(a,r)
|g(z)|2−εdAβ(z)

(1−|z|2)β

|g(a)|2−ε(1 − |z|2)β(1 − |a|2)2 ≤
16c1

r2

∫

D(a,r)

|g(z)|2−εdAβ(z)

Let a = z, r = 1
4
, z = w

|g(z)|2−ε(1 − |z|2)β+2 ≤ 16(16)c1

∫

D(z, 1
4 )

|g(w)|2−εdAβ(w)
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therefore

|g(z)|2−ε(1 − |z|2)β+2 ≤ c

∫

D(z, 1
4 )

|g(w)|2−εdAβ(w). (3.11)

When c = (16)2c1. Thus (3.8) implies that
∫

D

[|g(z)|2(1 − |z|2)β−α]
(2−ε)
−ε dAα(z)

=
∫

D
|g(z)|

2(2−ε)
−ε (1 − |z|2)

2β−εβ−2α

−ε dA(z) < ∞.

(3.12)

i.e. from (3.8) and (3.11) we have

∫

D

[
1

(1− |z|2)2+α
|g(z)|2(1 − |z|2)β+2]

(2−ε)
−ε dAα(z) < ∞

then
∫

D
[|g(z)|2(1 − |z|2)β−α]

(2−ε)
−ε dAα(z)

=
∫

D
|g(z)|

2(2−ε)
−ε (1 − |z|2)

(2β−εβ−2α)
−ε (1 − |z|2)−αdAα(z)

=
∫

D
|g(z)|

2(2−ε)
−ε (1 − |z|2)

(2β−εβ−2α)
−ε dA(z) < ∞

Let 1
s

= 1
2
− 1

2−ε
and δ

s
= β

2
− α

2−ε
. Then s = 2(2−ε)

(−ε)
and δ = (2β−εβ−2α)

(−ε)
. Thus (3.12)

means g ∈ As,δ
a (by definition of (Ap,α

a )). Conversely, if g ∈ As,δ
a , then an easy application

of Hölder’s inequality shows that g ∈ M(A
(2−ε),α
a , A2,β

a ).
The proof is complete.2

We need some preliminary results.

Lemma 4 Let f ∈ H(D) and 0 < p < ∞. Then for any integer n > 0;

(i) if Tnf ∈ Ap,α then
∫ 1

0
Mp

p (r, Tnf)dr ≤ K‖Tnf‖p
p,α;

(ii) if
∫ 1

0
Mp

p (r, Tnf)(1 − r2)αdr < ∞; then Tnf ∈ Ap,α and

‖Tnf‖p
p,α ≤ K

∫ 1

0

Mp
p (r, Tnf)(1 − r2)αdr.

For the proof see, [26–28].

Proposition 1 Let f ∈ H(D) and 0 < p < ∞. Then f ∈ Ap,α
α if and only if

fn(z)(1 − |z|2)n ∈ Ap,α, and ‖f‖p,α is comparable to

n−1
∑

k=1

|fk(0)| + ‖fn(z)(1 − |z|2)n‖p,α.

For the case 1 ≤ p < ∞ , a proof is given in, [22]. When 0 < p < 1, the unweighted
case(α = 0) was proved in, [26]. The proof of the weighted case is similar to that in,
[26]. We sketch the proof here for completion. Denote by Tnf(z) = fn(z)(1 − |z|2)n and

Mp
p (r, f) = 1

2π

∫ 2π

0
|f(reiθ)|pdθ
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Proof Let Tnf(z) = fn(z)(1 − |z|2)n. Let f ∈ Ap,α
α . Then by, [26]. and

Lemma 4,

‖Tnf‖p
p,α ≤ K

∫ 1

0
Mp

p (r, Tnf)(1 − r2)αdr

= K
∫ 1

0
Mp

p (r, fn)(1 − r2)np+αdr

≤ K
∫ 1

0
Mp

p (r, f)(1 − r2)αdr

≤ K‖f‖p
p,α.

This proved that Tnf ∈ Ap,α and ‖Tnf‖p
p,α ≤ K‖f‖p

p,α. On the other hand, by Proposition
1 in, [22]. we see that |fn(0)| ≤ K‖f‖p,α. Thus

n−1
∑

k=1

|fk(0)| + ‖Tnf‖p,α ≤ K‖f‖p,α.

Conversely, let Tnf ∈ Ap,α. Then by, [26]. and Lemma 4, we get

‖f‖p
p,α ≤ K

∫ 1

0 Mp
p (r, Tnf)(1 − r2)αdr

≤ K(
∑n−1

k=1 |f
n(0)|p +

∫ 1

0 Mp
p (r, Tnf)(1 − r2)np+αdr)

≤ K(
∑n−1

k=1 |f
n(0)|p + ‖Tnf‖p

p,α).

which implies that ‖f‖p,α ≤ K(
∑n−1

k=1 |f
k(0)|p + ‖Tnf‖p

p,α). The proof is complete.2

Proposition 2 Let f ∈ H(D). Let 0 < p < ∞,−2 < q < ∞, and n ∈ N . Then
f ∈ F (p, q, 1) if and only if

sup
a∈D

∫

D

|fn(z)|p(1 − |z|2)(n−1)p+q(1 − |Φa(z)|2)dA(z) < ∞.

Remark 1 Since BMOAα
p = F (p, pα− 2, 1), Proposition 2 says that, for

0 < p < ∞ and 0 < α < ∞, f ∈ BMOAα
p if and only if

sup
a∈D

∫

D

|fn(z)|p(1 − |z|2)(n−1+α)p−2(1 − |Φa(z)|2)dA(z) < ∞.

Using Proposition 1, the proof of Proposition 2 is exactly the same as the proof in, [29].
and so is omitted here. Note that, however, the proof cannot go through for the general
space F (p, q, s) when 0 < s < 1 and 0 < p < 1 even with Proposition 1. Now we prove the
second main Theorem.

Theorem 6 Let g be an analytic function on D , let 0 < β < ∞, β < ∞, β > 3α and
γ∗ = β+2

2
− 1

2−ε
, for 0 ≤ ε < 2 or ε > 2.

(i) If γ∗ > 0 then M(H2, A2,β
a ) = B1+γ

(ii) If γ∗ = 0 then M(H2, A2,β
a ) = H∞

(iii) If γ∗ < 0 then M(H2, A2,β
a ) = {0}

(iv) If 1
s

= 1
2 − 1

2−ε
then (H2, A2,β

a ) = T 2
s (dAβ)

(v) If s → ∞, then M(H2, A2,β
a ) = BMOA

1+
(1+β)

2
2 .
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3.2 Proof of Theorem 6

Proof We will prove (i), (ii), (iii) and (v) at the same time , by using Theorem 1. The
proof is similar to the proof of Theorem 5. Let g ∈ M(H2−ε, A2,β

a ) . This means, for any
f ∈ H2−ε ,

∫

D

|f(z)g(z)|2dAβ(z) ≤ c‖f‖2
H2−ε (3.13)

Let dµg(z) = |g(z)|2dAβ(z). Then (3.13) says that µg is an (H2−ε, 2)-Carleson measure. If
ε ≥ 0, by Theorem 1, this is equivalent to the fact that

sup
a∈D

∫

D

|Φ
′

α(z)|
2

(2−ε) dµg(z) < ∞, (3.14)

which is the same as

sup
a∈D

∫

D

|g(z)|2(1 − |z|2)β− 2
2−ε (1 − |Φa(z)|2)

2
2−ε dA(z) < ∞. (3.15)

sup
a∈D

∫

D

[(1− |z|2)−1(1 − |Φa(z)|2)]
2

2−ε |g(z)|2(β + 1)(1 − |z|2)βdA(z) < ∞

sup
a∈D

∫

D

|g(z)|2(1 − |z|2)β− 2
2−ε (1 − |Φa(z)|2)

2
2−ε (β + 1)dA(z) < ∞

therefore

sup
a∈D

∫

D

|g(z)|2(1 − |z|2)β− 2
2−ε (1 − |Φa(z)|2)

2
2−ε dA(z) < ∞

IF ε > 0 let G be an antiderivative of g . By, [7]. if γ∗ > 0, then β − 2
(2−ε) > −2

and so (3.15) means G ∈ B
(β−

2
4−ε

)

2 = B
(β+2)

2 − 1
(2−ε) ,which is equivalent to the fact that

g = G
′

∈ B1+ β+2
2 − 1

2−ε thus (i) is proved . If γ∗ = 0 then β − 2
(2−ε) = −2. By Lemma 1,

(3.15) equivalent to that g ∈ H∞ , which proves (ii). If γ∗ < 0 then β − 2
(2−ε) < −2. by

Lemma 3, (3.15) implies g = 0, which proves (iii). If ε = 0 , then (3.15) is the same as

sup
a∈D

∫

D

|g(z)|2(1 − |z|2)β−1(1 − |Φa(z)|2)dA(z) < ∞. (3.16)

Applying Proposition 1 to the antiderivative G of g with n = 2 and β > −1 , we see that
(3.16) is equivalent to

sup
a∈D

∫

D

|g
′

(z)|2(1 − |z|2)β+1(1 − |Φa(z)|2)dA(z) < ∞.

Thus,

g ∈ F (2, 1 + β, 1) = F (2, 2[1 +
(β + 1)

2
] − 2, 1) = BMOA

1+ (β+1)
2

p .

This proves (v) . For proving (iv), we use Theorem 2, the fact that µg is an (H2−ε,−2)-
Carleson measure is equivalent to that the function

θ →

∫

Γ(θ)

dµg(z)

1 − |z|2
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belongs to A
2−ε
−ε , where Γ(θ) is the Stolz angle at θ , and dµg is given above . Thus

∫ 2π

0

∫

Γθ

(
dµg(z)

1 − |z|2
)

(2−ε)
−ε dθ < ∞,

or
∫ 2π

0

(

∫

Γθ

(
|g(z)|2dAβ(z)

1 − |z|2
)

2−ε
−ε dθ < ∞,

which means g ∈ T 2
s (dAβ), where 1

s
= 1

2−
1

2−ε
. Thus (iv) holds and the proof is completed.2
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