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Abstract Several types of Goodness-of-fit tests for Gumbel are compared. These
are Anderson-Darling, Modified Anderson-Darling (Bz), Cramer-von Mises, Zhang
Anderson-Darling, Zhang Cramer von-Mises and Liao-Shimokawa (L,). The parame-
ters values of Gumbel are estimated by Maximum Likelihood Estimation. The critical
values are modeled by two methods. For the first method, the critical values are ob-
tained from the average of 0. The second method is based on polynomial relationship.
In power study, several alternative distributions are selected to determine the rejec-
tion rates. The result shows that, Anderson-Darling test is the most powerful. Critical
values by polynomial are more reliable for small sample size.
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1 Introduction

Extreme Value Theory (EVT) is a field of statistics that concentrates on the event of
extreme. According to Coles [1], EVT describes the behavior of the distribution at either
maximum or minimum level. Indeed, EVT has been applied in various disciplines for model-
ing and hence predicting the extreme events which might have high potential of undesirable
consequences. For instance, Castillo et. al [2] have highlighted that information on the
maximum level of flood or wave rather than the average amount is essential for designing
a strong dam or breakwaters structures. In EVT, several extreme value distributions are
available to be modeled. Gumbel distribution is one of the extreme value models whereby
its density decays exponentially.

Goodness-of-fit (GOF) test is a stage where the degree of fit between a statistical model
and the observed values is examined and validated [3,4]. The GOF test should be con-
ducted prior to the modeling and decision making processes. This is because the prediction
and conclusion to be drawn depend very much on the selection of statistical model. The
appropriate selection of statistical model leads towards proper statistical analysis, good in-
terpretation and description of the population as a whole [5]. Several classical GOF tests are
Anderson-Darling (AD), Cramer-vonMises (CVM), Kolmogorov-Smirnov (KS) and Watson
(W) tests. Those empirical tests are known as more powerful than the Pearson y? test
[6,7]. Among the empirical tests, the AD and CVM tests are the most powerful tests [6].

Over the years, attention on the GOF tests for extreme value distributions have taken
place. Zempléni [4] presented the modified AD test to test the GOF for Generalized Ex-
treme Value (GEV). The Maximum Likelihood Estimation (MLE) was used to approximate
the parameters. The study signified that the modified AD test, which is called B? test is
better than AD test in terms of its sensitivity to the inconsistency at the relevant tail distri-
bution. However, a test with high sensitivity does not necessarily be powerful. At this level,
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the power of B? test over other GOF tests was not highlighted. Laio [8] discussed the per-
formance of the AD and CVM tests for extreme value distribution. He verified that the AD
test outperforms the CVM test while KS and x? tests tend to be less powerful. Kinnison [3]
developed the critical values for Gumbel distribution by using Correlation Coefficient GOF
test and he reported that the power of the test was reasonably good. However, Lockhart
and Spinelli [9] have shown that despite being a simple method of GOF test, the power of
the Correlation Coefficient GOF test is actually unpleasant.

Zhang [10] and Zhang & Wu [11] have introduced the modified AD, CVM and KS tests
known as Zhang Anderson-Darling (ZAD), Zhang Cramer-von Mises (ZCVM) and Zhang
Kolmogorov Smirnov (ZKS) as the alternative tests of GOF. The modifications were based
on the implementation of likelihood ratio test upon the classical GOF tests. The modified
tests were assessed for uniform and normal distributions. The ZAD and ZCVM tests are the
most powerful tests than AD, CVM and ZKS tests. In term of normality assessment, ZAD
and ZVCM are robust in the presence of normality departure. Nevertheless, the parameter
estimation method was not mentioned. Shabri & Jemain [5] compared the performance
between the AD test based on the likelihood ratio statistics (ZAD) and AD test based on the
Pearson x2. The parameter were estimated by unbiased of L-moment. The result showed
that for testing the GEV, the critical values of the AD test based on the likelihood ratio is
more powerful than the Pearson x? basis.

Shabri and Jemain [12] also discussed the GOF tests for extreme value type-1 (EV1) or
Gumbel distribution. The method of L-moment, moment method (MOM) and least square
(LS) were used to estimate the parameters of Gumbel distribution. The GOF tests involved
were the KS, CVM, W and probability plot correlation coefficient statistics tests. They
found that the AD test combined with LS produces the best result than other competitors.
The finding corresponds to the work done by Liao and Shimokawa [13]. They studied the
performance of the KS, CVM and AD tests for EV1 and 2-parameter Weibull distributions.
The parameters were estimated by two methods. The first method was the combination of
graphical plotting technique and LS (GPT-LS) while the second approach was MLE. The
result showed that GPT-LS estimation is superior to ML for the AD test, while the AD
test coupled with GPT-LS estimation is better than other classical tests. In addition, they
suggested a new statistics of GOF test. This new statistics called L,, was built based upon
the characteristics of KS, CM and AD tests. It is proven that the L, paired with GPT-LS
is the most powerful GOF test than other GOF tests.

The methods of calculating the critical values are based on mean function and polyno-
mial function. Therefore, the aim of this study is to identify which method is better in
establishing reliable values of critical values. Based on the critical values, the main interest
of this study is to determine which GOF test when combined with MLE method is the most
powerful test for Gumbel distribution.

2 Extreme Value Theory

EVT is represented by the extreme value models. Based on Coles [1], the formulation of
the model for maximum level is based on M,,=max(Xy,..., X,,), where M,, is the maximum
value of the observation under the distribution function over n time.
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Theorem 1 Let X1, ..., X, be an independent random variables with the distribution func-
tion F, and let asymptotic argument be M,, = max (X1, ..., Xy). If there exist sequences of
constants {a, > 0} and {b,} such that

lim Pr (M Sx) — F ()

n—oo a

where F is a non-degenerate distribution function, then GEV is:

Fl) _eXp{_ e (x;u”%}

where —oo < p < 00 s location parameter, o > 0 is scale parameter and —oo < £ < 00 1S
shape parameter, and [1 + & ( )] >0

As & — 0, the limiting distribution is Gumbel distribution. The distribution function of

Gumbel is
ro-en{ o[- (554))

The quantile of Gumbel distribution is

x=p—olog(—logl)

where U is the hypothetical distribution function. There are many types of hypothetical
distribution function. The common choice is U;.,, = % [14]. The rank, U;.,, of ith
order statistics from sample size of n is uniformly distributed U(0, 1).

3 Methodology

The statistical simulations and analysis were done by R programming language 2.12.0. The
value of pu is set to be 0 while of o be 5, 10, 15, 20, 25, 30, 35, and 40 subsequently. Coles
and Dixon [15] proposed Penalized Maximum Likelihood Estimator to approximate the
parameters of extreme value models particularly for small sample size. Nevertheless, the
method is more applicable for £ # 0. Hence, as Gumbel model constitutes to & = 0, we
used the existing parameter approximation, that is MLE to estimate the values of 1 and o.

The loglikelihood of Gumbel distribution is

o= Eeol (5] £ (55

=1

) —nlogo

where x; is the ith ordered values of sample size of n from Gumbel distribution. The
maximum likelihood estimates were obtained by maximizing the loglikelihood with respect
to each parameter p and o.
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3.1 GOF tests
The GOF tests involved are shown below, where the ith order statistics is from sample size

of n:

3.1.1 AD test

n

AD=-%" 2 —1 {In[F (z)] +In[l = F (zpny1-4)]} —n

; n
1=1

3.1.2 B2 test

BQZ_ZZi—l{m[l—F(anrlﬂ_)]}_i_g_ZF(xi)

; n n
1=1

3.1.3 CVM test

3.1.4 ZAD test

n—1+0.5 1—0.5

ZAD = Z{ nrie) =]

1=

3.1.5 ZCVM test

n 1 _1 2
F(z:)
ZCVM =) {hl lm] }

i=1 i—0.75

3.1.6 L, test

1 max [% — F (), F (z;) — %]




The Goodness-of-fit Test for Gumbel Distribution: A comparative Study 39

3.2 Critical Values

The random variables for Gumbel distribution were simulated based on the quantile function
for sample of size n=10, 30 and 100. The Monte-Carlo simulation approach was employed
to produce the statistics values for each GOF test. The statistics values for each GOF test
were recorded. The process was iterated 10,000 times. The 10, 000 number of statistics
values were arranged in ascending order. The critical values at the significance level of 0.01,
0.05, 0.10, 0.15 and 0.20 were obtained from the statistics values at the percentile of 99, 95,
90, 85, and 80 respectively. The critical values are the reference values of deciding whether
to reject or fail to reject the Hy. The hypothesis involved were

Hy: Gumbel model fits the data.
Hi: Gumbel model does not fit the data.

The association between different values of ¢ and critical values was established by two
methods. The first method was done by measuring each critical value from the average
value of o for each sample size and significance level. Thus, the same critical values will
be used for 5 < o < 45 at the corresponding sample size and significance level. Shabri
and Jemain [12] has performed polynomial at degree of 5 to obtain the agreement between
different values of £ and critical values. Likewise, in this study, it is of interest to identify the
agreement between 5 < o < 45 and critical values. The value of coefficient of determination,
R? indicates to what extent the dependent variable can be predicted by the independent
variable. The value close to 1 implies strong association between both variables, hence
accurate prediction. In this study, the polynomial functions at degree of 7 for each GOF test
at every significance level and sample size have the R? values approximately 1. Therefore,
the polynomial function at degree of 7 was selected and is defined as

Yy =mo+mio + mao? + m303 + m4a4 + m5a5 + mga6 + m7a7, 5<o0 <45

where y is the critical value, while my, ..., m7 are the coefficient of regression. The questions
whether these two approaches produce different values of critical values and which method
is more reliable were assessed in the power study of GOF.

3.3 Power Study of GOF

The tables for critical values were developed based on different types of GOF tests, sample
sizes and significance levels. The power study of GOF is essential to determine the reliability
of the critical values. The Monte-Carlo simulation method was used to develop the power
values or also known as rejection rates. The random variables for sample of size n=10,
30 and 100 were generated 10, 000 times from Gumbel quantile function. The rejection
rate was measured by taking the average number of statistics values that exceed the critical
value. The critical value of the GOF test is reliable for Gumbel model if the rejection rate of
Hj is near to the value of the chosen significance level. For instance, at significance level of
0.01, the rejection rate should be approximately 0.01. If one expects the observed values to
be distributed acording to Gumbel model, then he should fail to reject Hy. This is achieved
when the statistics value is smaller than the given critical value.

A good GOF test should be able to reject Hy when the critical values for Gumbel model
is used to test the degree of fit for distribution other than Gumbel, which is called alterna-
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tive distribution. In order to determine which GOF test is the most powerful, it is crucial to
assess which GOF test has the highest rejection rates for several alternative distributions.
The random variables for sample of size n=10, 30 and 100 were generated 10,000 times from
the following alternative distributions:

(i) Normal distribution, N ~ (0, 10)
(ii) x? distribution, x? ~ (1)

(iii) Cauchy distribution, Cauchy ~ (0, 1)

)
)
)
(iv) Beta distribution, Beta ~ (2,2)
(v) Exponential distribution, Exp ~ (1)
)

(vi) Logistic distribution, Logis ~ (0, 1)

The rejection rates for 6 alternative distributions were averaged at each sample size and
significance level. Therefore, every GOF test has the average rejection rates according to
the respective significance level and sample size. The GOF test with the highest average
rejection rates is the most powerful GOF test for Gumbel distribution.

4 Results and Discussion

Table 1 exhibits the critical values of each GOF test based on mean function which represents
the critical values for 5 < o < 45. On the other hand, the number of tables for critical
values by polynomial function depend on the number of parameter values. For o=5, 10,
15, 20, 25, 30, 35, 40 and 45, there should be nine tables accordingly. In this study, critical
values for =10, 20 and 30 are presented by Table 2, Table 3 and Table 4 respectively. For
power study, the result for 0=10 is discussed.

The critical values presented in Table 2, Table 3 and Table 4 are comparable. This
implies that the critical values produced by polynomial function are somewhat similar for
0=10, 20 and 30. In addition, the critical values based on mean function in Table 1 are also
reasonably close to the values given by Table 2, Table 3 and Table 4. At this stage, two
different methods of establishing the relationship between the critical values and o values do
not have obvious different values of critical values. Based on Table 1, Table 2, Table 3 and
Table 4, the critical values for B2 and ZCVM tests increase as the number of n increases.
However, the critical values for ZAD test is in decreasing order. The critical values for L,
test has increasing trend for all significance levels except at 0.01. For classical tests of AD
and CVM, neither definite increasing nor decreasing order can be observed.

Table 5 and Table 6 illustrate the rejection rates for Gumbel distribution based on mean
and polynomial functions. The results for 0=10 are presented. For polynomial function
basis, it is expected that the results for other selected o values follow the same way. For
rejection rates on the basis of polynomial function (Table 6), the rejection rates for Gumbel
distribution are consistently close to the respective significance level. At significance level
of 0.01, the rejection rates for all GOF tests across different sample sizes were reasonably
near to 0.01. This similar trend goes to other significance levels as well. Thus, the values of
rejection rates that are close to the related significance level signified that the critical values
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based on polynomial function are reliable for Gumbel model. Based on mean function,
the rejection rates have the same results with that of polynomial function basis except for
small sample size, which is 10. For n=10, the rejection rates are away from the respective
significance level. Therefore, the rejection rates in the power study has shown that despite
having comparable values of critical values, the critical values by polynomial function is
more reliable than by mean function for small sample size.

It was signified that all GOF tests have the reliable critical values for evaluating the
Gumbel distribution except for mean function method at n=10. Based on the critical
values, it is essential to identify which GOF test is the most powerful test for Gumbel
distribution. The power of GOF test is based on the probability of rejecting of Hy when
the alternative distributions is tested. Tables 7 and 8 show the rejection rates and average
rejection rates based on mean function for the alternative distributions. On the other hand,
Tables 9 and 10 illustrate the rejection rates and average rejection rates based on polynomial
function. Based on Table 7, Table 8, Table 9 and Table 10, the AD test has the highest
values of average rejection rates. This signified that the AD test is the most powerful test
among other competitors. However, for n=10 at significant level of 0.05, 0.10, 0.15 and 0.20,
the ZCVM test generally is more powerful than the AD test. Moreover, the B? test is the
least powerful test except at significance level of 0.01. At 0.01 significance levels, L,, test
becomes the least powerful for n=10 as opposed to the ZCVM test which has the lowest
degree of power for n=30 and 100. Overall, both mean and polynomial functions have
reached similar trend of rejection rates for alternative distribution. Both methods stated
that AD is the most powerful test, but for small sample size (n=10), ZCVM is outperform.

Table 1: Critical Values of GOF Tests Using Mean Function

AD B?
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 0.554 0.607 0.683 0.815 1.118 10.163 10.284 10.452 10.717 11.283
30 0.507 0.558 0.628 0.747 1.019 30.173 30.282 30.422 30.629 31.026
100 | 0.511 0.562 0.632 0.752 1.029 100.569 100.767 101.020 101.400 102.090
CVM ZAD
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 0.090 0.100 0.115 0.140 0.203 3.417 3.442 3.479 3.545 3.706
30 0.080 0.089 0.101 0.122 0.172 3.365 3.378 3.395 3.424 3.495
100 | 0.080 0.089 0.102 0.123 0.173 3.327 3.332 3.339 3.351 3.380
ZCVM Ly
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 5.010 5.533 6.293 7.639 11.574 | 2.141 2.257 2.416 2.679 3.434
30 7.340 8.079 9.109 10.973  16.722 | 2.185 2.299 2.454 2.715 3.374
100 | 10.429 11.408 12.781 15.194 22.372 | 2.268 2.380 2.532 2.780 3.364

5 Conclusion

In this study, given by the MLE method, the performance of several GOF tests for Gumbel
distribution were compared. Among the GOF tests, identification of the most powerful GOF
test is of interest. This is because the most powerful GOF test gives the most promising
evidence on the degree of fit between the observed values and the Gumbel model. Hence, the
prediction of future extreme events by Gumbel model is more likely to be precise. Otherwise,
the appropriateness of the Gumbel to model the observed values can be questioned.
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Table 2: Critical Values of GOF Tests Using Polynomial Function, o = 10

o =10
AD B?
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 0503  0.547  0.612  0.726 _ 0.955 | 9.951 10.011 _ 10.099  10.200  10.451
30 | 0502  0.554  0.619  0.746  1.011 | 30.156  30.267  30.411  30.622  31.027
100 | 0512  0.559  0.630  0.748  1.029 | 100.511 100.775 101.066 101.366 102.109
CVM ZAD
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 0.080  0.088  0.099  0.120  0.161 | 3.398 3.419 3.452 3510 3.659
30 | 0.079  0.088  0.100  0.122  0.173 | 3.366 3.378 3.396 3.425 3.485
100 | 0.080  0.089  0.102  0.124  0.174 | 3.327 3.332 3.339 3.350 3.379
ZCVM T
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 4557 5.014 5672  6.876  10.698 | 2.053 2.158 2.304 2.580 3.415
30 | 7.358  8.116  9.167  10.962 16.142 | 2.179 2.287 2.428 2.683 3.347
100 | 10.458 11.377 12.754 15.266 22.289 | 2.271 2.383 2.528 2.788 3.351
Table 3: Critical Values of GOF Tests Using Polynomial Function, o = 20
o =20
AD B?
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 0507 0546  0.619  0.721 _ 0.970 | 9.996 10.0648 10.158  10.296 _ 10.607
30 | 0508  0.560  0.630  0.748  1.005 | 30.172  30.278  30.416  30.607  30.963
100 | 0.510  0.567  0.633  0.744  1.054 | 100.518 100.766 101.082 101.367 102.031
CVM ZAD
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 0.080  0.089  0.100  0.121 _ 0.168 | 3.399 3.421 3.452 3.515 3.644
30 | 0.079  0.089  0.101  0.123  0.167 | 3.366 3.375 3.391 3.422 3.493
100 | 0.080  0.090  0.102  0.123  0.176 | 3.327 3.332 3.339 3.350 3.379
ZCVM Tn
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 4599  5.051  5.758  6.957  10.716 | 2.053 2.166 2.309 2.558 3.276
30 | 7.250 8.034 8962  10.962 16.811 | 2.186 2.303 2.468 2.728 3.363
100 | 10.446 11.381 12.882 15.186 22.490 | 2.270 2.387 2.530 2.779 3.361
Table 4: Critical Values of GOF Tests Using Polynomial Function, ¢ = 30
o =30
AD B?
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 0559 0576  0.655  0.768  1.014 | 10.131  10.265  10.433  10.766  11.450
30 | 0510 0.574  0.633  0.743  1.026 | 30.185  30.286  30.438  30.618  30.989
100 | 0.503  0.599  0.635  0.747  1.024 | 100.590 100.834 101.129 101.339 101.961
CVM ZAD
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 0.087 0.097  0.108  0.134  0.174 | 3.414 3.435 3.458 3.563 3.712
30 | 0.081  0.091 0102 0.119  0.171 | 3.377 3.374 3.392 3.426 3.482
100 | 0.082  0.092  0.107 0.123  0.172 | 3.327 3.332 3.338 3.349 3.374
ZCVM I
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 | 4898 5212 5813  7.080  12.165 | 2.109 2.215 2.350 2.639 3.279
30 | 7.288  8.389  9.016  11.515 16.888 | 2.185 2.308 2.478 2.693 3.389
100 | 10.646 11.441 13.425 15.045 21.829 | 2.276 2.398 2.523 2.798 3.346
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Table 5: Rejection Rates Using Mean Function for Gumbel Distribution

AD B?

n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01

10 0.144 0.104 0.063 0.029 0.004 | 0.070 0.034 0.010 0.001 0.000
Gumbel | 30 0.200 0.150 0.099 0.050 0.009 | 0.206 0.150 0.101 0.050 0.011
100 | 0.203 0.148 0.105 0.051 0.011 | 0.194 0.148 0.099 0.047 0.010

CVM ZAD

n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01

10 0.139 0.099 0.061 0.026 0.003 | 0.155 0.115 0.076 0.036 0.005
Gumbel | 30 0.198 0.153 0.101  0.052 0.009 | 0.202 0.149 0.101 0.053 0.011
100 | 0.206 0.148 0.104 0.052 0.011 | 0.206 0.156 0.102 0.051 0.011

n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01

10 0.153 0.115 0.074 0.037 0.008 | 0.158 0.110 0.077 0.036 0.010
Gumbel | 30 0.197 0.150 0.103 0.053 0.010 | 0.204 0.156 0.098 0.055 0.010
100 | 0.196 0.154 0.102 0.052 0.013 | 0.205 0.153 0.105 0.052 0.011

Table 6: Rejection Rates Using Polynomial Function for Gumbel Distribution

AD B?

n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01

10 0.206 0.154 0.100 0.053 0.013 | 0.216 0.159 0.103 0.059 0.010
Gumbel | 30 0.210 0.151 0.104 0.051 0.010 | 0.208 0.155 0.107 0.050 0.009
100 | 0.201 0.150 0.098 0.052 0.010 | 0.223 0.148 0.099 0.052 0.009

CVM ZAD

n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01

10 0.206 0.154 0.101  0.052 0.013 | 0.212 0.158 0.103 0.054 0.011
Gumbel | 30 0.202 0.156 0.105 0.053 0.009 | 0.195 0.145 0.091 0.048 0.015
100 | 0.202 0.146 0.096 0.050 0.010 | 0.065 0.145 0.101 0.055 0.011

ZCVM Ly

n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01

10 0.210 0.158 0.105 0.056 0.011 | 0.201 0.151 0.099 0.048 0.009
Gumbel | 30 0.195 0.146 0.092 0.048 0.014 | 0.202 0.158 0.106 0.056 0.011
100 | 0.201 0.145 0.098 0.051 0.009 | 0.200 0.145 0.098 0.049 0.010
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Table 7: Rejection Rates Using Mean Function for Alternative Distributions

AD B?
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 0.688 0.645 0.570 0.463 0.304 | 0.412 0.394 0.357 0.305 0.224
Normal 30 0.733 0.688 0.623 0.521 0.343 | 0.443 0.435 0.417 0.390 0.340

100 | 0.741 0.687 0.616 0.522 0.345 | 0.452 0.427 0411 0.385 0.334

10 0.692 0.642 0.568 0.475 0.298 | 0.419 0.400 0.353 0.305 0.220
X2 30 0.742 0.683 0.613 0.517 0.347 | 0.447 0.432 0.421 0.397 0.354
100 | 0.735 0.682 0.609 0.518 0.344 | 0.443 0.426 0416 0.386 0.350

10 0.683 0.640 0.566 0.476 0.302 | 0.399 0.393 0.357 0.306 0.216
Cauchy 30 0.740 0.685 0.619 0.521 0.351 | 0.447 0437 0.419 0.386 0.355
100 | 0.730 0.683 0.616 0.524 0.339 | 0.442 0.427 0408 0.383 0.345

10 0.693 0.638 0.561 0.463 0.307 | 0.410 0.391 0.346 0.311 0.223
Beta 30 0.732 0.686 0.629 0.513 0.348 | 0.448 0.443 0.419 0.390 0.340
100 | 0.730 0.684 0.616 0.512 0.335 | 0.447 0.426 0.408 0.386 0.344

10 0.688 0.639 0.570 0.454 0.301 | 0.412 0.384 0.348 0.306  0.220
Exp 30 0.734 0.678 0.612 0.516 0.356 | 0.444 0.431 0.412 0.388 0.350
100 | 0.737 0.683 0.612 0.513 0.343 | 0.454 0.430 0411 0.392 0.344

10 0.689 0.636 0.556 0.468 0.303 | 0.411 0.384 0.353 0.309 0.222
Logistic 30 0.741 0.686 0.621 0.527 0.355 | 0.445 0.433 0.422 0.384 0.345
100 | 0.736 0.676 0.620 0.513 0.349 | 0.443 0.433 0411 0.388 0.354

Average power 10 0.689 0.640 0.565 0.467 0.303 | 0.411 0.391 0.352 0.307 0.221
30 0.737 0.684 0.620 0.519 0.350 | 0.446 0.435 0.418 0.389 0.347
100 | 0.735 0.683 0.615 0.517 0.343 | 0.447 0.428 0411 0.387 0.345

CVM ZAD
n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 0.646  0.603 0.523 0.428 0.270 | 0.716 0.672 0.587 0.465 0.270
Normal 30 0.690 0.653 0.583 0.489 0.325 | 0.698 0.631 0.553 0.425 0.218

100 | 0.697 0.647 0573 0.492 0.332 | 0.631 0.560 0.465 0.332 0.146

10 0.647 0.597 0.522 0.435 0.263 | 0.728 0.675 0.581 0.469 0.256
X2 30 0.702 0.641 0.574 0.488 0.334 | 0.707 0.632 0.548 0.421 0.217
100 | 0.694 0.637 0.573 0.482 0.325 | 0.630 0.553 0.458 0.343 0.149

10 0.645 0.597 0.524 0.435 0.267 | 0.720 0.671 0.589 0.479 0.255
Cauchy 30 0.696 0.644 0.582 0.486 0.332 | 0.703 0.624 0.549 0.423 0.222
100 | 0.697 0.638 0.572 0.492 0.323 | 0.627 0.554 0.468 0.340 0.150

10 0.651 0.593 0.521 0.422 0.269 | 0.723 0.665 0.580 0.471 0.271
Beta 30 0.685 0.643 0.589 0.484 0.331 | 0.696 0.627 0.547 0.411 0.215
100 | 0.684 0.638 0.570 0.477 0.318 | 0.630 0.556 0.468 0.329 0.148

10 0.644 0.597 0.528 0.414 0.262 | 0.722 0.672 0.592 0.453 0.257
Exp 30 0.687 0.638 0.571 0.486 0.337 | 0.693 0.623 0.538 0.415 0.211
100 | 0.692 0.644 0574 0.484 0.332 | 0.637 0.561 0.458 0.335 0.148

10 0.649 0.594 0.514 0.429 0.272 | 0.726 0.662 0.581 0.467 0.264
Logistic 30 0.698 0.641 0.583 0.494 0.337 | 0.697 0.637 0.544 0.422 0.223
100 | 0.697 0.632 0578 0.486 0.335 | 0.628 0.550 0.467 0.339 0.149

Average power | 10 0.647 0.597 0.522 0.427 0.267 | 0.723 0.670 0.585 0.467 0.262
30 0.693 0.643 0.580 0.488 0.333 | 0.699 0.629 0.547 0.420 0.218
100 | 0.694 0.639 0.573 0.485 0.328 | 0.631 0.556 0.464 0.336  0.148
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Table 8: Rejection Rates Using Mean Function for Alternative Distributions (Cont.)

ZCVM L

n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
10 0.733 0.692 0.607 0.487 0.248 | 0.558 0.512 0.441 0.340 0.169
Normal 30 0.695 0.631 0.557 0.418 0.169 | 0.612 0.567 0.489 0.375 0.186

100 | 0.614 0.551 0.458 0.328 0.116 | 0.634 0.568 0.496 0.391 0.200
10 0.737 0.689 0.604 0.499 0.243 | 0.571 0.511 0.431 0.351 0.171
X2 30 0.700 0.629 0.547 0.416 0.166 | 0.625 0.554 0.483 0.375 0.185
100 | 0.613 0.550 0.457 0.335 0.120 | 0.622 0.559 0.496 0.385 0.195
10 0.729 0.685 0.607 0.499 0.237 | 0.559 0.507 0.440 0.353 0.172
Cauchy 30 0.690 0.625 0.552 0.420 0.173 | 0.623 0.563 0.491 0.380 0.189
100 | 0.614 0.547 0.461 0.337 0.116 | 0.623 0.562 0.492 0.385 0.198
10 0.734 0.684 0.598 0.493 0.248 | 0.565 0.502 0.428 0.339 0.170
Beta 30 0.688 0.630 0.547 0.405 0.163 | 0.616 0.561 0.489 0.370 0.181
100 | 0.612 0.549 0.465 0.324 0.112 | 0.621 0.563 0.487 0.374 0.186
10 0.731 0.693 0.616 0.479 0.237 | 0.560 0.510 0.441 0.330 0.172
Exp 30 0.683 0.616 0.542 0.414 0.163 | 0.618 0.561 0.482 0.376 0.187
100 | 0.620 0.551 0.453 0.326 0.112 | 0.624 0.573 0.487 0.379 0.162
10 0.736  0.680 0.602 0.487 0.246 | 0.560 0.505 0.433 0.343 0.168
Logistic 30 0.690 0.635 0.542 0.418 0.173 | 0.624 0.562 0.486 0.383 0.186
100 | 0.616 0.540 0.455 0.332 0.115 | 0.632 0.562 0.499 0.387 0.201
Average power | 10 0.733 0.687 0.606 0.491 0.243 | 0.562 0.508 0.436 0.343 0.170
30 0.691 0.628 0.548 0.415 0.168 | 0.620 0.561 0.487 0.377 0.186
100 | 0.615 0.548 0.458 0.330 0.115 | 0.626 0.565 0.493 0.384 0.190

The assessment on GOF tests is initiated with the development of critical values. The
development of critical value is important because the critical values is the points of ref-
erence for the practitioner to decide whether to utilize the selected statistical model or
not. Therefore, the critical values that were established are necessary to be verified. The
development of critical values on the basis of mean and polynomial functions were com-
pared. The critical values on the basis of mean function are close to the values produced
by polynomial function. However, the power study shows that the polynomial function is
more reliable than the mean function for small sample size (n=10).

Although there is close resemblance between the critical values of all GOF tests, the
powers of the GOF tests vary. The power study evaluate the average rejection rates of
every GOF test for alternative distributions. The AD test that has the highest average
rejection rates is the most powerful test. However, for small sample size, which is 10,
the ZCVM test generally is more powerful. In contrast, the least powerful test commonly
belongs to B2 test. In general, the AD test combined with MLE produces the most powerful
GOF test for Gumbel distribution.

This study can be conducted for other kinds of extreme value distributions. Further
research can be extended to examine the performance of GOF tests for different types of
parameter estimations. In addition, the degree of sensitivity of each GOF test can be
observed as well.
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Table 9: Rejection Rates Using Polynomial Function for Alternative Distributions
AD B?
n 0.20 0.15 0.0 005 001 | 0.20 0.15 0.10 0.05  0.01
10 | 0.740 0.708 0.638 0.537 0.378 | 0.4564 0.447 0.423 0.404 0.353
Normal 30 | 0.732 0.700 0.631 0.520 0.350 | 0.450 0.444 0.418 0.386 0.347
100 | 0.731 0.701 0.618 0.522 0.344 | 0.450 0.432 0.405 0.403 0.342
10 | 0.741 0.702 0.627 0.540 0.383 | 0.450 0.439 0.413 0.402 0.351
x2 30 | 0.744 0.692 0.626 0.522 0.346 | 0.457 0.436 0.418 0.392 0.345
100 | 0.733 0.676 0.624 0.511 0.344 | 0.440 0.427 0.411 0.389 0.341
10 | 0.748 0.703 0.623 0.545 0.372 | 0.458 0.449 0.425 0.407 0.352
Cauchy 30 | 0.740 0.695 0.630 0.521 0.345 | 0.448 0.432 0.418 0.385 0.343
100 | 0.733 0.678 0.621 0.522 0.351 | 0.450 0.423 0.419 0.384 0.346
10 | 0.735 0.703 0.635 0.535 0.383 | 0.458 0.438 0.415 0.409 0.348
Beta 30 | 0.741 0.690 0.627 0.527 0.352 | 0.450 0.436 0.413 0.401 0.339
100 | 0.732 0.683 0.620 0.515 0.345 | 0.448 0.424 0.414 0.391 0.338
10 | 0.749 0.697 0.638 0.534 0.379 | 0.460 0.442 0.437 0.405 0.351
Exp 30 | 0.747 0.689 0.627 0.516 0.344 | 0.448 0.437 0.411 0.391 0.340
100 | 0.742 0.680 0.619 0.519 0.342 | 0.444 0.434 0.410 0.391 0.341
10 | 0.742 0.694 0.630 0.526 0378 | 0.4564 0.439 0.430 0.396  0.357
Logistic 30 | 0.740 0.695 0.627 0.527 0.360 | 0.440 0.430 0.422 0.389  0.352
100 | 0.731 0.687 0.617 0.518 0.339 | 0.450 0.428 0.420 0.388 0.339
Average power | 10 0.743 0.701 0.632 0.536 0.379 | 0.457 0.442 0.424 0.404 0.352
30 | 0.741 0.694 0.628 0.522 0.350 | 0.449 0.436 0.417 0.391 0.344
100 | 0.734 0.684 0.620 0.518 0.344 | 0.447 0.428 0.413 0.391 0.341
CVM ZAD
n 020 015 010 005 00l | 020 015 010 005 _ 0.01
10 | 0.701 0.668 0.608 0.504 0.360 | 0.762 0.720 0.650 0.533 0.314
Normal 30 | 0.696 0.663 0.590 0.490 0.334 | 0.684 0.634 0.543 0.411  0.242
100 | 0.689 0.658 0.576 0.483 0.330 | 0.371 0.564 0.463 0.345 0.151
10 | 0.701 0.662 0.594 0.506 0.368 | 0.773 0.719 0.641 0.532 0.311
x2 30 | 0.706 0.651 0.588 0.494 0.327 | 0.697 0.633 0.537 0.410 0.237
100 | 0.692 0.635 0.581 0.471 0.325 | 0.374 0.558 0.470 0.342 0.152
10 | 0.713 0.666 0.594 0.518 0.356 | 0.770 0.717 0.638 0.536  0.304
Cauchy 30 | 0.697 0.650 0.590 0.489 0.326 | 0.685 0.637 0.542 0.412 0.235
100 | 0.697 0.635 0.574 0.483 0.333 | 0.372 0.549 0.464 0.350 0.151
10 | 0.608 0.664 0.600 0.504 0.369 | 0.764 0.731 0.640 0.527 0.313
Beta 30 | 0.700 0.650 0.586 0.494 0.330 | 0.692 0.631 0.546 0.424  0.239
100 | 0.695 0.635 0.578 0.478 0.325 | 0.381 0.550 0.465 0.354 0.155
10 | 0.713 0.658 0.606 0.502 0.362 | 0.774 0.723 0.645 0.530 0.316
Exp 30 | 0.700 0.649 0.588 0.481 0.323 | 0.696 0.628 0.536 0.408 0.233
100 | 0.697 0.637 0.574 0.480 0.321 | 0.374 0.550 0.465 0.344 0.152
10 | 0.707 0.658 0.597 0.495 0.362 | 0.765 0.718 0.647 0.520 0.309
Logistic 30 | 0.699 0.656 0.584 0.497 0.335 | 0.701 0.627 0.533 0.427 0.245
100 | 0.689 0.643 0.575 0.477 0.326 | 0.373 0.556 0.462 0.344 0.141
Average power | 10 | 0.706 0.663 0.600 0.505 0.363 | 0.768 0.723 0.645 0.530 0.311
30 | 0.700 0.653 0.588 0.491 0.329 | 0.693 0.632 0.540 0.415 0.239
100 | 0.693 0.641 0.576 0.479 0.327 | 0.574 0.555 0.465 0.347 0.150
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Table 10: Rejection Rates Using Polynomial Function for Alternative Distributions (Cont.)

ZCVM Ly

n 0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01

10 0.780 0.745 0.675 0.557 0.286 | 0.599 0.563 0.492 0.383 0.172

Normal 30 0.680 0.629 0.546 0.411 0.183 | 0.615 0.576 0.505 0.393 0.199

100 | 0.609 0.558 0.461 0.325 0.115 | 0.627 0.578 0.497 0.385 0.198

10 0.788 0.735 0.668 0.560 0.290 | 0.603 0.557 0.480 0.380 0.176

X 30 0.694 0.627 0.539 0.418 0.181 | 0.625 0.563 0.498 0.396 0.186
100 | 0.613 0.548 0462 0.323 0.120 | 0.626 0.560 0.502 0.371 0.199
10 0.785 0.737 0.665 0.565 0.280 | 0.603 0.559 0.476 0.383 0.172
Cauchy 30 0.682 0.625 0.544 0.409 0.184 | 0.620 0.567 0.498 0.388 0.188
100 | 0.609 0.541 0459 0.330 0.116 | 0.621 0.562 0.500 0.379 0.204
10 0.779 0.741 0.673 0.556 0.286 | 0.604 0.561 0.492 0.381 0.168
Beta 30 0.684 0.629 0.546 0.425 0.184 | 0.615 0.572 0.496 0.392 0.193
100 | 0.613 0.546 0461 0.336 0.117 | 0.618 0.561 0.493 0.383 0.197
10 0.783 0.741 0.670 0.556 0.293 | 0.611 0.557 0.486 0.381 0.177
Exp 30 0.690 0.623 0.538 0.403 0.176 | 0.618 0.566 0.493 0.391 0.191
100 | 0.615 0.547 0463 0.324 0.118 | 0.627 0.564 0.493 0.376 0.192
10 0.779 0.728 0.669 0.550 0.285 | 0.611 0.557 0.491 0.372 0.176
Logistic 30 0.697 0.628 0.541 0.427 0.190 | 0.625 0.562 0.493 0.394 0.202

100 | 0.616 0.555 0.456 0.329 0.109 | 0.616 0.564 0.498 0.378 0.191

Average power | 10 0.782 0.738 0.670 0.557 0.287 | 0.605 0.559 0.486 0.380 0.174

30 0.688 0.627 0.542 0.416 0.183 | 0.620 0.568 0.497 0.392 0.193
100 | 0.613 0.549 0.460 0.328 0.116 | 0.623 0.565 0.497 0.379 0.197
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