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Abstract Here we consider the autonomous two point boundary value problem:
—u"(z) = M (u(@)) ; z e (=11,
u(—1) =0 =wu(1),

where A > 0 and f : [0,00) — R is monotonically increasing and concave (f” < 0)
with f(0) < O (semipositone), f(t) > 0 for some ¢ > 0. We obtain the exact number
of positive solutions.

Keywords Semipositone; Two Point Boundary Value Problem; Positive Solutions.

2010 Mathematics Subject Classification 34B15, 34B18

1 Introduction

We study the positive solutions to the two point boundary value problem

—u(x)u”(x) = Af(u(z)), ze(=1,1) (1)
u(l) =0 =u(-1), (2)

where A > 0 and f : [0,00) — R is monotonically increasing and concave (f” < 0) with

f(0) < 0 (semipositone), f(t) >0 for some t > 0. (3)

We define g by g(t) = f(t)/t and G by G(t) = f:“ g(s)ds for any € that 0 < € <  where
[ denote the unique positive zero of f, g and also 6 denote the unique positive zero of G.
Also, let @ > (8 and g(6)/0 < ¢’'(6). Furthermore let g is such that

q(t) > 0; t>0. (4)

It can be easily seen that for any positive solution u satisfying (1), (2) we should have
sup{u(z) : z € [-1,1]} > 0. Also, clearly we have ¢'(00) :=lim;_ ¢'(t) = 0 and ¢"(t) <0
for all ¢ > 0. Therefore there exists an n > 0 such that ng’(n) = g(n); (g(t)/t)’ > 0 for all
t € (0,n) and (g(t)/t)’ <0 for all t € (n,00) (see[1]).

Let ¢(t) = (g(t)/t)’. Then differentiating and using g"” < 0 we have

¢'(t) < —26(t)/t,

so that ¢’ < 0 whenever ¢ > 0. Consequently ¢(t) < 0 for all ¢ suitably large. Also, by
using ¢’ (t) < —2¢(t)/t we conclude that there exists a unique 7 such that ¢(n) = 0 (see[1]).

Semipositone problems are not only of mathematical interest but also occur in applica-
tions such as population models with constant harvesting effort.
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We studied positone and semipositone problems with special functions given in [3, 4]. In
[2] semipositone problems with concave nonlinearities have been entensively studied with
an additional condition that f’(co) = 0. We note that this hypothesis is necessary for the
existence of positive solutions for large values of A. It also implies that the supremum norm
of positive solutions tends to co as A — oo (see [1]). Here we study how the existence
and multiplicity of positive solutions. In fact, we establish the exact geometry of the pos-
itive solution curves and hence the exact number of positive solutions for any A > 0. As
a by-product we relax the hypotheses on f in [2, Theorem 1.1(B)] and also establish the
exact number of positive solutions for any A > 0. Hence our results completely classify
semipositone problems with monotonically increasing cocave nonlinearities.

This paper is organised as follows. In section 1 we observe introduction. We prove the
Theorems in section 2. In section 3 we give a family of examples which satisfies all the
hypotheses of Theorem.

Note that we consider the case when u(x) > 0 for € (—1, 1), that is, we let the boudary
value problem solutions (1),(2) has no interior zeros in (—1,1).

Our main results are

2 Theorems
Theorem 1 If f, g satisfy conditions of this paper, then there exist A1, \* with
0< A\ <A <0

such that for A < A\ the problem (1),(2) has no positive solutions. For A\ = A1 the problem
(1),(2) has exactly one positive solution. For A\ € (A1, \*] the problem (1),(2) has exactly
two positive solutions. For A\ > \* the problem (1),(2) has ezxactly one positive solution. If
pa denotes the supremum norm of the positive solution, then

par =6 and lim py\ = +oo.
A—00

Proof Dividing (1) by u(z) we have
—u"(z) = Af(u(=))/u(). (5)
Multiplying (5) by u/(z) and integrating, we obtain
—[u'(@)]?/2 = A\G(u(z) — €) +c. (6)

Since positive solutions are known to be symmetric with respect to z = 0 and vw'(x) > 0
for z € (—1,0) we have p := sup{u(z)|z € (—1,1)} = u(0) and p > 0. Taking x = 0 in (6)
implies that

u' () = V/2XG(p — €) — G(u — €)], x € [-1,0]. (7)

Now integrating (7) over [—1, x], we obtain

u(@) du
0 VG(p—€) —Glu—ce)

=V2\(z +1) x € [~1,0], (8)
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which in turn implies that

U

1 [* d
A= b vET e Y

by taking # = 0 in (8). Hence for any \ if there exists a p € [0, 0o) with M (p) = v/, then (1),
(2) has a positive solution u(x) given by (8) satisfying sup{u(z) : z € (=1,1)} = u(0) = p.
In fact, M(p) is a continuous function which is differentiable over (6, co) with

d _ 1 (p) — H(pv) )
70 =7 | G o ae gt (10)
where

H(t) = Gt — ) — (t/2)g(t);  t>e (11)

For p € (0, 00) we recall from (9) that

_ 1 P ! dv
M= \/G<p—e>/o VI— Gl —0/Glp—0)

Note that ¢'(co) = 0, therefore we have H'(t) < 0 for t < n, H'(n) = 0 and H'(t) > 0 for
t >m. Since H(e) < 0 we have H(t) < 0 for t € (0, n] which, in turn, implies that M’'(p) < 0
for p < n. Since lim;_.o H(t) = 400 we have H(t) > 0 for ¢ large and hence M'(p) > 0

for p large. It remains to prove that lim, ..o M(p) = +oo. Let limy 400 g(t) = M;
0 < M < 400 then lim;_, o G(t)/t = M consequently we have

Jim M(p) = (1/\/5)(p/\/G(p))/0 \/fhi—v = V2(p//G(p))-

But lim, o G(p) = +o0 and lim,_.o p?/G(p) = lim, . 2p/g(p) = +00. Thus

. (12)

lim M(p) = +o0
pP— 00
easily follows. O

Theorem 2 If we have the boundary value problem
—u"(z) = M (u(z)), ze(=1,1) (13)
u(1) =0 = u(~1), (14)
where A > 0 and f : [0,00) — R is monotonically increasing and concave (f"” < 0) with
limy o f(t) = —o0, f(t) > 0 for some t > 0, and limy_, o tf'(t) =0 and (f(0)/6) < f'(6),
then there exist \*, A1 such that 0 < Ay < A* < oo and the problem (13),(14) have no
positive solutions for 0 < A < A1 and for the case A = \1 has exactly one positive solution.
Also, for A € (A1, X*] the problem (13),(14) has ezxactly two positive solutions and for A > \*

has exactly one positive solution. If px denotes the supremum norm of the positive solution,
then we have py~ = 0 and limy_, o, py = +00.
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Proof The proof follows from arguments similar to the ones in Theorem 1. O

3 Examples

Consider f(t) = —1/(t +1) +t. Then f(0) < 0,f'(¢) > 0 for all ¢ > 0 and f"(¢) < 0 for
all ¢ > 0. We have ¢(t) = ﬁ +1and 8= (v5—1)/2and ¢'(t) > 0 for all ¢ > 0. Also,

e=03and G(t) = [,3 " g(s)ds = t +In(1 +10/(3 + 10t)) — In(1 + 10/3). Since G(1) > 0,

thus 6 € (0,1). Also, we have
—t3 — 212 42t 4 2

TV = a1y

-1
t)=(g)/t) = (57—
60 = 6O = (Fr
Note that ¢(1) > 0 and ¢(2) < 0 and hence there exists n € (1,2) with ¢(n) = 0. Thus
we have n > 6 > 3. We see that the above f, g satisfies all the hypotheses of Theorem. In
fact, for any positive real numbers b, ¢, d, m we get an f(t) = —b/(ct + d) + mt that it can
satisfies all the hypotheses of Theorem.
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