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Abstract Here we consider the autonomous two point boundary value problem:

−u
′′(x) = λf(u(x)) ; x ∈ (−1, 1),

u(−1) = 0 = u(1),

where λ > 0 and f : [0,∞) → R is monotonically increasing and concave (f ′′ < 0)
with f(0) < 0 (semipositone), f(t) > 0 for some t > 0. We obtain the exact number
of positive solutions.
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1 Introduction

We study the positive solutions to the two point boundary value problem

−u(x)u′′(x) = λf(u(x)), x ∈ (−1, 1) (1)

u(1) = 0 = u(−1), (2)

where λ > 0 and f : [0,∞) → R is monotonically increasing and concave (f ′′ < 0) with

f(0) < 0 (semipositone), f(t) > 0 for some t > 0. (3)

We define g by g(t) = f(t)/t and G by G(t) =
∫ ε+t

ε
g(s)ds for any ε that 0 < ε < β where

β denote the unique positive zero of f, g and also θ denote the unique positive zero of G.
Also, let θ > β and g(θ)/θ < g′(θ). Furthermore let g is such that

g′(t) > 0; t > 0. (4)

It can be easily seen that for any positive solution u satisfying (1), (2) we should have
sup{u(x) : x ∈ [−1, 1]} ≥ θ. Also, clearly we have g′(∞) := limt→∞ g′(t) = 0 and g′′(t) < 0
for all t > 0. Therefore there exists an η > 0 such that ηg′(η) = g(η); (g(t)/t)′ > 0 for all
t ∈ (0, η) and (g(t)/t)′ < 0 for all t ∈ (η,∞) (see[1]).
Let φ(t) = (g(t)/t)′. Then differentiating and using g′′ < 0 we have

φ′(t) < −2φ(t)/t,

so that φ′ < 0 whenever φ > 0. Consequently φ(t) ≤ 0 for all t suitably large. Also, by
using φ′(t) < −2φ(t)/t we conclude that there exists a unique η such that φ(η) = 0 (see[1]).

Semipositone problems are not only of mathematical interest but also occur in applica-
tions such as population models with constant harvesting effort.
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We studied positone and semipositone problems with special functions given in [3, 4]. In
[2] semipositone problems with concave nonlinearities have been entensively studied with
an additional condition that f ′(∞) = 0. We note that this hypothesis is necessary for the
existence of positive solutions for large values of λ. It also implies that the supremum norm
of positive solutions tends to ∞ as λ → ∞ (see [1]). Here we study how the existence
and multiplicity of positive solutions. In fact, we establish the exact geometry of the pos-
itive solution curves and hence the exact number of positive solutions for any λ > 0. As
a by-product we relax the hypotheses on f in [2, Theorem 1.1(B)] and also establish the
exact number of positive solutions for any λ > 0. Hence our results completely classify
semipositone problems with monotonically increasing cocave nonlinearities.

This paper is organised as follows. In section 1 we observe introduction. We prove the
Theorems in section 2. In section 3 we give a family of examples which satisfies all the
hypotheses of Theorem.

Note that we consider the case when u(x) > 0 for x ∈ (−1, 1), that is, we let the boudary
value problem solutions (1),(2) has no interior zeros in (−1, 1).
Our main results are

2 Theorems

Theorem 1 If f, g satisfy conditions of this paper, then there exist λ1, λ
∗ with

0 < λ1 < λ∗ < ∞

such that for λ < λ1 the problem (1),(2) has no positive solutions. For λ = λ1 the problem
(1),(2) has exactly one positive solution. For λ ∈ (λ1, λ

∗] the problem (1),(2) has exactly
two positive solutions. For λ > λ∗ the problem (1),(2) has exactly one positive solution. If
ρλ denotes the supremum norm of the positive solution, then

ρλ∗ = θ and lim
λ→∞

ρλ = +∞.

Proof Dividing (1) by u(x) we have

−u′′(x) = λf(u(x))/u(x). (5)

Multiplying (5) by u′(x) and integrating, we obtain

−[u′(x)]2/2 = λG(u(x) − ε) + c. (6)

Since positive solutions are known to be symmetric with respect to x = 0 and u′(x) > 0
for x ∈ (−1, 0) we have ρ := sup{u(x)|x ∈ (−1, 1)} = u(0) and ρ ≥ θ. Taking x = 0 in (6)
implies that

u′(x) =
√

2λ[G(ρ− ε) − G(u − ε)], x ∈ [−1, 0]. (7)

Now integrating (7) over [−1, x], we obtain

∫ u(x)

0

du
√

G(ρ− ε) − G(u− ε)
=

√
2λ(x + 1) x ∈ [−1, 0], (8)
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which in turn implies that

√
λ =

1√
2

∫ ρ

0

du
√

G(ρ− ε) − G(u − ε)
:= M(ρ) (9)

by taking x = 0 in (8). Hence for any λ if there exists a ρ ∈ [θ,∞) with M(ρ) =
√

λ, then (1),
(2) has a positive solution u(x) given by (8) satisfying sup{u(x) : x ∈ (−1, 1)} = u(0) = ρ.
In fact, M(ρ) is a continuous function which is differentiable over (θ,∞) with

d

dρ
M(ρ) =

1√
2

∫ 1

0

H(ρ) − H(ρv)

[G(ρ− ε) − G(ρv − ε)]3/2
dv, (10)

where
H(t) = G(t − ε) − (t/2)g(t); t ≥ ε. (11)

For ρ ∈ (θ,∞) we recall from (9) that

M(ρ) =
1√
2

ρ
√

G(ρ − ε)

∫ 1

0

dv
√

1 − [G(ρv − ε)/G(ρ− ε)]
. (12)

Note that g′(∞) = 0, therefore we have H ′(t) < 0 for t < η, H ′(η) = 0 and H ′(t) > 0 for
t > η. Since H(ε) < 0 we have H(t) < 0 for t ∈ (0, η] which, in turn, implies that M ′(ρ) < 0
for ρ ≤ η. Since limt→∞ H(t) = +∞ we have H(t) > 0 for t large and hence M ′(ρ) > 0
for ρ large. It remains to prove that limρ→+∞ M(ρ) = +∞. Let limt→+∞ g(t) = M ;
0 < M ≤ +∞ then limt→+∞ G(t)/t = M consequently we have

lim
ρ→∞

M(ρ) = (1/
√

2)(ρ/
√

G(ρ))

∫ 1

0

dv√
1 − v

=
√

2(ρ/
√

G(ρ)).

But limρ→∞ G(ρ) = +∞ and limρ→∞ ρ2/G(ρ) = limρ→∞ 2ρ/g(ρ) = +∞. Thus

lim
ρ→∞

M(ρ) = +∞

easily follows. 2

Theorem 2 If we have the boundary value problem

−u′′(x) = λf(u(x)), x ∈ (−1, 1) (13)

u(1) = 0 = u(−1), (14)

where λ > 0 and f : [0,∞) → R is monotonically increasing and concave (f ′′ < 0) with
limt→0 f(t) = −∞, f(t) > 0 for some t > 0, and limt→+∞ tf ′(t) = 0 and (f(θ)/θ) < f ′(θ),
then there exist λ∗, λ1 such that 0 < λ1 < λ∗ < ∞ and the problem (13),(14) have no
positive solutions for 0 < λ < λ1 and for the case λ = λ1 has exactly one positive solution.
Also, for λ ∈ (λ1, λ

∗] the problem (13),(14) has exactly two positive solutions and for λ > λ∗

has exactly one positive solution. If ρλ denotes the supremum norm of the positive solution,
then we have ρλ∗ = θ and limλ→∞ ρλ = +∞.
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Proof The proof follows from arguments similar to the ones in Theorem 1. 2

3 Examples

Consider f(t) = −1/(t + 1) + t. Then f(0) < 0,f ′(t) > 0 for all t ≥ 0 and f ′′(t) < 0 for
all t ≥ 0. We have g(t) = −1

t(t+1) + 1 and β = (
√

5 − 1)/2 and g′(t) > 0 for all t > 0. Also,

ε = 0.3 and G(t) =
∫ 0.3+t

0.3 g(s)ds = t + ln(1 + 10/(3 + 10t))− ln(1 + 10/3). Since G(1) > 0,
thus θ ∈ (0, 1). Also, we have

φ(t) = (g(t)/t)′ = (
−1

t2(t + 1)
+ 1/t)′ =

−t3 − 2t2 + 2t + 2

t3(t + 1)2
.

Note that φ(1) > 0 and φ(2) < 0 and hence there exists η ∈ (1, 2) with φ(η) = 0. Thus
we have η > θ > β. We see that the above f, g satisfies all the hypotheses of Theorem. In
fact, for any positive real numbers b, c, d, m we get an f(t) = −b/(ct + d) + mt that it can
satisfies all the hypotheses of Theorem.
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