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Abstract Using the closure operator axioms for a matroid presented here, for all the

matroids defined on the same ground set E, two posets are provided: one is consisted

by the system of the closure operators of all these matroids; another is instructed by

the system of all these matorids. Additionally, when the set E is finite, by graph

theory, two different skecthes to search out all the matroids defined on E are given.
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1 Introduction and Prliminaries

It is well known that there is no single class of structures that one calls infinite
matroids [1–3]. This paper will use the definition of matroids of arbitrary cardinality given
by Betten and Wenzel [1]. The definition has been used by many researches [1, 4–10]. The
main purpose of this paper is to provide an axiom system for a matroid of arbitrary cardi-
nality by its closure operator. Additionally, it provides some applications of the new axiom
system as follows: for simplicity, in what follows, let E be an arbitrary–possibly infinite.
The objectives of the paper are the following:

• Constructing a poset which is consisted by the system of closure operators of matroids
defined on E;

• Presenting a poset construction consisted by all the matroids defined on E;

• When E is finite, two thoughts for searching all the matroids defined on E will be
provided. Comparing with that Mao [11], we will know that both of thoughts given
in this paper are different from the method given by Mao [11].

In what follows, we assume that P(E) denotes the powerset of E. We only review some
preliminary knowledge here. For others, the knowledge of finite matroids are seen [12, 13 ];
poset theory come from [14, 15]; order and the axiom of choice etc. are referred to Hunger-
ford [16 ]; graph theory and combinatorial algorithms are seen from Korte and Vygen [17].

First of all, we recall some knowledge about a matroid of arbitrary cardinality. Definition
1 and Lemma 1 come from Betten and Wenzel [1]; Definition 2 and Lemma 2 are referred
to Higuchi [18]; Definition 3 is seen Hungerford [16, p.13].

Definition 1 Assume m ∈ N0 and F ⊆ P(E). Then the pair M := (E,F) is called a
matroid of rank m with F as its closed sets, if the following axioms hold:
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(F1) E ∈ F ;

(F2) If F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;

(F3) Assume F0 ∈ F and x1, x2 ∈ E \ F0. Then one has either

(i) {F ∈ F|F0 ∪ {x1} ⊆ F } = {F ∈ F|F0 ∪ {x2} ⊆ F } or

(ii) F1∩F2 = F0 for certain F1, F2 ∈ F containing F0∪{x1} or F0∪{x2}, respectively;

(F4) m = max{n ∈ N0| there exist F0, F1, ..., Fn ∈ F with F0 ⊂ F1 ⊂ ... ⊂ Fn = E}.

The closure operator σ = σM : P(E) → F of M is defined by σ(A) :=
⋂

F∈F

A⊆F

F .

Obviously, Definition 1 is the extension of that of a finite matroid. For the sake of
convenience, in this paper, a matroid of arbitrary cardinality will be simply called a matroid
except for special describing.

Lemma 1 Assume M = (E,F) is a matroid with σ as its closure operator. Then

(1) For any family (Fi)i∈I of closed sets in M , F :=
⋂

i∈I

Fi ∈ F .

(2) For any A ⊆ E, the set σ(A) is the smallest set in F containing A. In particular,
σ(A) = A if and only if A ∈ F . Moreover, σ satisfies the following conditions, which
characterize a closure operator:

A ⊆ σ(A) = σ(σ(A)) for all A ⊆ E; for A ⊆ B ⊆ E one has σ(A) ⊆ σ(B).
Furthermore, σ satisfies the following exchange condition:

For A ⊆ E and x, y ∈ E \ σ(A), one has y ∈ σ(A ∪ {x}) if and only if x ∈ σ(A ∪ {y}).

Secondly, some knowledge about closure operator on E and Moore family of subsets of
E are reviewed in the following Definition 2 and Lemma 2.

Definition 2 A map C : P(E) → P(E) is called a closure operator on E if it satisfies for
A, B ⊆ E

(i) A ⊆ C(A);

(ii) A ⊆ B ⇒ C(A) ⊆ C(B);

(iii) C(C(A)) = C(A).

A family A of subsets of E is called Moore family if it satisfies

(i) E ∈ A;

(ii) ∅ 6= ϕ ⊆ A ⇒ ∩ϕ ∈ A.
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We denote by MF (E) the set of all the Moore families of subsets of E. Let AC = {A ⊆
E|C(A) = A} and CO(E) denote the set of all the closure operators on E.

Lemma 2 If C is a closure operator on E. Then for each A ⊆ E, it has C(A) = ∩{B ∈
AC |A ⊆ B}. The map β : C 7→ AC is a bijection of CO(E) onto MF (E).

Let X ∈ A ∈ MF (E) and B = A \ {X}. Then

X 6= ∩{B ∈ B|X ⊆ B} ⇐⇒ B ∈ MF (E).

For the need of Theorem 3, we recall the definition of well ordered as follows.

Definition 3 Let (P,≤) be a poset. If every nonempty subset of P has a least (or mini-
mum) element, then P is said to be well ordered.

In this paper, we denote all the matroids on E by IM(E); CM(E) and FM(E) are
defined as follows:

(1) C ∈ CM(E) if and only if there is M ∈ IM(E) with σM as its closure operator such
that σM = C.

(2) P(E) ⊇ F ∈ FM(E) if and only if there exists M ∈ IM(E) such that F is the set of
closed sets of M .

2 Closure Operator Axioms

This section presents a theorem that gathers the closure operator axioms for a matroid.
The theorem builds the foundation of the other results in this paper which is essential in
the study on matroids.

Theorem 1 (Closure operator axioms) A function σ : P(E) → P(E) is the closure operator
of a matroid on E ⇔ for X, Y subsets of E and x, y ∈ E,

(S1) X ⊆ σ(X);

(S2) Y ⊆ X ⇒ σ(Y ) ⊆ σ(X);

(S3) σ(X) = σ(σ(X));

(S4) y /∈ σ(X), y ∈ σ(X ∪ x) ⇒ x ∈ σ(X ∪ y);

(S5) For any chain satisfying σ(X) ⊂ σ(X1) ⊂ . . . ⊂ σ(Xα) = σ(Y ), then α ∈ N0 such
that α < ∞ where Xi ⊆ E, (i = 1, 2, . . . , α).
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Proof (⇒) From (2) in Lemma 1, we may express that (S1)-(S4) are right for σ. According
to (F4) in Definition 1, there is m < ∞. This follows (S5) to be hold.

(⇐) Let σ : P(E) → P(E) be a function satisfying (S1)-(S5). Then the collection
{X ⊆ E | σ(X) = X} is F(σ) and F(σ) ∈ MF (E)) because Lemma 2. Hence E ∈ F(σ)
and

⋂

Fi∈F(σ)

i∈I

Fi ∈ F(σ). That is to say, (F1) and (F2) hold for F(σ). In addition σ(A) =

∩{B ∈ F(σ)|A ⊆ B}. Therefore, both (F1) and (F2) are checked.
Next to prove (F3).
Firstly, we prove (F3)(i).
Assume F0 ∈ F(σ), x1, x2 ∈ E \ F0. Let σ(F0 ∪ x1) = F1 and σ(F0 ∪ x2) = F2. Then if

{F ∈ F(σ)|F0 ∪ {x1} ⊆ F } = {F ∈ F(σ)|F0 ∪ {x2} ⊆ F }, one has σ(F0 ∪ {x1}) = ∩{F ∈
F(σ)|F0 ∪ {x1} ⊆ F } = ∩{F ∈ F(σ)|F0 ∪ {x2} ⊆ F } = σ(F0 ∪ {x2}).

We first suppose σ(F0 ∪ {x1}) = σ(F0 ∪ {x2}). Let F0 ∪ {x1} ⊆ F ′ ∈ F(σ), F0 ∪ {x2} ⊆
F ′′ ∈ F(σ). By (S2), σ(F0∪{x1}) ⊆ F ′, σ(F0∪{x2}) ⊆ F ′′, and so σ(F0∪{x1}) ⊆ F ′′, σ(F0∪
{x2}) ⊆ F ′. Hence F ′′ ∈ {F ∈ F(σ)|F0 ∪ {x1} ⊆ F } and F ′ ∈ {F ∈ F(σ)|F0 ∪ {x2} ⊆ F }.
Moreover {F ∈ F(σ)|F0 ∪ {x1} ⊆ F } = {F ∈ F(σ)|F0 ∪ {x2} ⊆ F }.

Namely, σ(F0 ∪ {x1}) = σ(F0 ∪ {x2}) if and only if {F ∈ F(σ)|F0 ∪ {x1} ⊆ F } = {F ∈
F(σ)|F0 ∪ {x2} ⊆ F }.

Secondly, we prove (F3)(ii).
We suppose σ(F0 ∪ {x1}) 6= σ(F0 ∪ {x2}).
By (S4), x2 /∈ σ(F0∪{x1}), x1 /∈ σ(F0∪{x2}). For y ∈ σ(F0∪{x1})∩σ(F0∪{x2})\F0 6= ∅,

one gets y ∈ σ(F0 ∪ {x1}) \ F0. In virtue of (S4), it follows x1 ∈ σ(F0 ∪ {y}). Similarly,
x2 ∈ σ(F0 ∪ {y}). Hence by (S1), (S2) and (S3), one gets σ(F0 ∪ {x1}), σ(F0 ∪ {x2}) ⊆
σ(F0 ∪ {y}), and further σ(F0 ∪ {x1}) ∩ σ(F0 ∪ {x2}) ⊆ σ(F0 ∪ {xi}) ⊆ σ(F0 ∪ {y}), (i =
1, 2). On the other hand, y ∈ σ(F0 ∪ {x1}) ∩ σ(F0 ∪ {x2}) and (S2) taken together hints
σ(F0 ∪ {y}) ⊆ σ(F0 ∪ {x1}) ∩ σ(F0 ∪ {x2}) ⊆ σ(F0 ∪ {x1}), σ(F0 ∪ {x2}).

Summing up the above two hands, one obtains σ(F0 ∪ {y}) = σ(F0 ∪ {x1}) ∩ σ(F0 ∪
{x2}) = σ(F0 ∪ {xi}) (i = 1, 2), a contradiction. That is to say, it should have F0 =
σ(F0 ∪ {x1}) ∩ σ(F0 ∪ {x2}), and so (F3) holds for (E,F(σ)).

Owing to (S5), it follows that (F4) holds for (E,F(σ)).
Consequently, M = (E,F(σ)) is a matroid with F(σ) as its closed sets.
Let σM be the closure operator of M . The following is to prove that σM is in fact σ.
For A ⊆ E, by Lemma 1, it leads to σM (A) =

⋂

A⊆F∈F(σ)

F . However, by the definition

of F(σ), σ(A) = ∩{B ∈ F(σ)|A ⊆ B}. Thus, σM(A) = σ(A). Namely σM = σ. 2

Based on Theorem 1 and Definition 1, in what follows, it is no different to say that
C ∈ CM(E) from C ∈ IM(E); and also, no different to say that F ∈ FM(E) from
(E,F) ∈ IM(E) or F ∈ IM(E).

Remark 1

Aigner in [19, p.52] and [19, p.256] give the same definition of a matroid which allows infi-
nite sets as follows: “A matroid M(S) is a set S together with a closure A → A such that
for all p, q ∈ S, A ⊆ S : (i) p /∈ A, p ∈ A ∪ q ⇒ q ∈ A ∪ p ; (ii) ∃B ⊆ A, |B| < ∞ with
B = A.” We believe that this is a definition of an infinite matroid. By Theorem 1 and Mao
[10, Theorem 1], we could prove the equivalence between Definition 1 and the definition of
Aigner. This also stressed the truth of expression about infinite matroids given by Oxley
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[2]: there is no single class of structures that one calls infinite matroids. Rather, various
authors with differing motivations have studied a variety of classes of finite matroid-like
structures on infinite sets. The precise relationship between particular classes is still not
known. In this paper, we highlight the links between posets and closure operators of ma-
troids. Because we indicate the links between two definitions of infinite matroids which we
carry out a duty provided by different researches with differing motivations. This analysis
also hints an important significance of Theorem 1. The other significance of Theorem 1 will
show in the next section.

3 Posets of Closure Operators

On the same ground set E, this section will carry out the three objectives raised in Section 1.
We define a binary relation �, and further �, on IM(E) as follows.

Definition 4 Let σ1, σ2, σ ∈ IM(E).

σ1 � σ2 ⇔ σ1(A) ⊆ σ2(A) for any A ⊆ E.

σ1 � σ2 ⇔ σ1 � σ2, σ1 6= σ2 and σ1 � σ � σ2 implies σ1 = σ or σ = σ2.

Since ⊆ is an obvious partially order, this evidently implies that the relation � is a partial
order on IM(E) and � is the covering relation of �. Thus, it is enough to consider the
properties about �.

Next we discuss some properties about (IM(E),�) in the following two Lemmas.

Lemma 3 Let (E,F1), (E,F2) ∈ IM(E) with σ1, σ2 as its closure operator respectively.
Then σ1 � σ2 ⇔ F2 ⊆ F1.

Proof

(⇒)

For A ∈ F2, by Lemma 1, it follows A ⊆ σ1(A) ⊆ σ2(A) = A, and so A = σ1(A),
namely A ∈ F1. Hence F2 ⊆ F1.

(⇐)

For A ⊆ E,

σ1(A) =
⋂

A⊆F∈F1

F = (
⋂

A⊆F∈F2

F )∩ (
⋂

A⊆F∈F1\F2

F ) = σ2(A)∩ (
⋂

A⊆F∈F1\F2

F ) ⊆ σ2(A)

implies σ1 � σ2.2

Lemma 4 If X is a maximal element of F1 \ F2 and B = F1 \ {X} where F1,F2 ∈
MF (E),F2 ⊆ F1. Then B ∈ MF (E).
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Proof First, it is to prove that {B ∈ F2|X ⊆ B} = {B ∈ B|X ⊆ B}.
Because X ∈ F1 \ F2 and F2 ⊆ F1 together induces F2 ⊆ B. Hence, one has {B ∈

F2|X ⊆ B} ⊆ {B ∈ B|X ⊆ B}. Conversely, assume X ⊆ B ∈ B. In view of the
definition of B, one has B 6= X, and so X ⊂ B. The maximality of X hints B /∈ F1 \ F2.
However, B ∈ B and F2 ⊆ F1 taken together shows B ∈ F2. Thus one obtains that
{B ∈ B|X ⊆ B} ⊆ {B ∈ F2|X ⊆ B}. Hence {B ∈ F2|X ⊆ B} = {B ∈ B|X ⊆ B}.

Furthermore, ∩{B ∈ B|X ⊆ B} = ∩{B ∈ F2|X ⊆ B} ∈ F2 because of F2 ∈ MF (E)
and Lemma 2. Hence X 6= ∩{B ∈ B|X ⊆ B}. Besides F1 ∈ MF (E) holds. Thus using
Lemma 2, one gets B ∈ MF (E). 2

Notice 1 From the proof in Lemma 4, we see that by Lemma 2, CB ∈ CO(E) corresponding
to B. Then evidently, CB satisfies (S1)-(S3). If F1 ∈ IM(E), then obviously CB satisfies
(S5) because B ⊆ F1 and Definition 1. Hence, one can say that, in order to determine if
B ∈ IM(E), it only needs to check that (S4) is satisfied or not by CB.

The discussion above leads to the following theorem.

Theorem 2 Let E be a finite set, C, D ∈ CM(E) and C � D. Then there exists C �
σ1 � σ2 � . . . � σα = D being a chain of (IM(E),�).

Proof Let (E,FC), (E,FD) ∈ IM(E) with C, D as its closure operator respectively. It is
easy to know FC ,FD ∈ MF (E). Let X be any maximal element of FC \FD. By the above
analysis, one has B = FC \ {X} ∈ MF (E).

If there exists a maximal element of FC \ FD satisfying B1 = FC \ {X1} ∈ IM(E),
then C � σ1 where σ1 is the closure operator of (E,B1). Otherwise, repeated application
of the above process, one yields that Bk = FC \ {X1, X2, . . . , Xk} ∈ IM(E) where FC \
{Xi1 , Xi2 , . . . , Xij

} /∈ IM(E), i1, i2, . . . , ij ∈ {1, 2, . . . , k − 1}, j < k and Xt is a maximal
element of FC \ ({X1, X2, . . . , Xt−1} ∪ FD), t = 2, . . . , k. Evidently, C � σk where σk is
the closure operator of (E,Bk).

This process is efficient and clear because |FC \ FD| ≤ |E| < ∞, C � D, Lemma 3 and
Lemma 4.2

Using Theorem 2, we provide a sketch to determine the structure of (IM(E),�) when
|E| < ∞.

By Definition 1 or the definition of a finite matroid in [12, 13], M0 = (E,F0 = P(E))
and MM = (E,FM = {{E}}) belong to IM(E). Let σ0, σM be the closure operator of
M0, MM respectively. In virtue of Theorem 2, there exists at least one chain σ0 � σ1 �
. . . � σn = σM connected σ0 with σM .

In addition, for any M = (E,F) ∈ IM(E) with σ as its closure operator, according
to the definition of the relation �, Lemma 3 and Theorem 2, there exist two chains σ0 �
σ1 � . . . � σn = σ and σ � σ11 � σ21 � . . . � σm1 = σM . It is easy to see that
σ0 � σ1 � . . . � σn � σ11 � σ21 � . . . � σm1 = σM is a maximal chain between σ0 and
σM . This states that every matroid in IM(E) is contained in a maximal chain from σ0 to
σM . Hence by the language of graph theory, the diagram of (IM(E),�) is connected and
the diagram of (IM(E),�) is a spanning tree of (IM(E),�).
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Combining the above process with Korte and Vygen [17, pp.26-29] presented the Breadth-
First Search algorithm, we believe that the whole members of IM(E) can be found.

At the beginning of this paper, we say that we will present two posets relative to IM(E)
when E is finite. Now, we see that the above sketch is a method to provide a poset relative
to IM(E) if |E| < ∞. Next, we will give another method to discover a poset relative to
IM(E).

Higuchi [18] presents a way to finding all the lattices of closure operators by the Moore
families. Considering Theorem 1 and the relation between the Moore families and closure
operators of matroids, similar to the method of Higuchi in [18], we provide an idea to search
out all the members of the new poset which is consisted by IM(E). For this purpose, when
E is finite, we define a binary relation < of P(E) as a linear extension of ⊂ when the
extension is well ordered and for A,B ⊆ P(E),A l B, i.e. B covers A, if and only if there
exists X ∈ P(E) such that

(i) A = B \ {X};

(ii) X is the minimum element of (P(E) \ A, <);

(iii) X 6= ∩{A ∈ A|X ⊆ A}.

We will discuss some properties about the new binary relation.

Lemma 5 Let A ⊆ P(E) and (P(E), <) be well ordered. Then (E,A) ∈ IM(E) ⇒ AlB
for some (E,B) ∈ IM(E).

Proof Let (E,A) ∈ IM(E) with σA as its closure operator. If A = P(E), then P(E)\A =
∅, and further, (E,P(E)) /∈ IM(E) provided |E| ≮ ∞. Thus supposing A 6= P(E).

Let X be the minimum element of (P(E)\A, <) and B = A∪{X}. Then E ∈ A implies
E ∈ B. Taking Ai ∈ B (i ∈ I). If X /∈ {Ai}i∈I , then

⋂

i∈I

Ai ∈ A because of (E,A) ∈ IM(E)

and Lemma 1. Further,
⋂

i∈I

Ai ∈ B holds. If X ∈ {Ai}i∈I . Assuming A 63
⋂

i∈I

Ai 6= X. Then

one has X ⊃
⋂

i∈I

Ai ∈ P(E) \ A, a contradiction with the minimum of X in (P(E) \ A, <).

Thus there is the correct of
⋂

i∈I

Ai ∈ A, or
⋂

i∈I

Ai = X. No matter which case happens,
⋂

i∈I

Ai ∈ B is right. Thus, B ∈ MF (E) is true. By Lemma 2, X 6= ∩{A ∈ A|X ⊆ A} is real.

Let CB ∈ CO(E) be the closure operator on E corresponding to B using Lemma 2.
Obviously, CB satisfies (S1)-(S3).

Let B ∈ B, x, y ∈ E \ B and y ∈ CB(B ∪ x).
If CB(B ∪x) 6= X. Then CB(B ∪x) ∈ A is true. This follows CB(B ∪x) = σA(B ∪x) where
σA is the closure operator of (E,A). Using Lemma 1, x ∈ σA(B ∪ y) ∈ A holds. Therefore,
it obtains x ∈ σA(B ∪ y) = CB(B ∪ y) ∈ B.
If CB(B ∪ x) = X. Since X = CB(B ∪ x) = ∩{A ∈ B|B ∪ x ⊆ A} = ∩{A ∈ A|B ∪ x ⊆
A}∩{X} = σA(B∪x)∩{X} ⊂ σA(B∪x) is correct by X 6= ∩{A ∈ A|X ⊆ A}. Additionally,
x, y ∈ X, B ⊂ B∪x ⊆ CB(B∪x) and y ∈ CB(B∪x) taken together induces B∪x, B∪y ⊆ X.
Suppose B ∪ x ⊂ X. Considering with B ∪ x ⊂ X ⊂ σA(B ∪ x), one has B ∪ x ∈ P(E) \A.
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Thus B ∪ x ⊂ X follows a contradiction with the minimum of X in (P(E) \ A, <). Hence
it should get B ∪ x = X. However x, y ∈ E \B and B ∪ y ⊆ CB(B ∪ x) = X = B ∪ x taken
together implies x = y. Therefore it earns x ∈ CB(B ∪ y) = CB(B ∪ x) = X.

Summing up the above, it follows that (S4) holds for CB. Furthermore, considering
Notice 1, we obtain (E,B) ∈ IM(E), and so A l B. 2

Theorem 3 Let |E| < ∞ and A ⊆ P(E). Then (E,A) ∈ IM(E) implies A = P(E) or
A l B for some (E,B) ∈ IM(E).

Proof Based on Definition 2, (P(E), <) is well ordered. Considering with Lemma 5, the
need is straightforward.2

Consequently, when |E| < ∞, there exists a chain A = A0 l A1 l . . . l An = P(E) if
A ∈ IM(E). Moreover, such a chain, if it exists, is unique for a fixed linear extension.

Therefore, according to the knowledge of graph theory and combinatorial algorithms
Korte and Vygen [17], one knows that the diagrams of (IM(E), l) is a spanning tree of the
diagram of (IM(E),⊂). Hence using the Depth-First Search algorithm shown in Korte and
Vygen [17, pp.26-29]), one will find out all the members of IM(E) because the diagram of
(IM(E), l) is a tree.

Comparing the two methods given here to search out all the finite matroids defined on
the same finite set given by Mao [11], we see that the methods here are different from the
way of Mao [11]. The methods here are much more direct perceptive because the method
had combined some views and algorithms of graph theory.
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