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Abstract In this paper, we discuss the state-of-the-art models in estimating, evalu-

ating, and selecting among non-linear mathematical models for obtaining the optimal

solution of the optimization problems which involve the nonlinear functions in their

constraints. We review theoretical and empirical issues including Newton’s method,

linear programming, quadratic programming, quadratically constrained programming,

parabola, circle and the relation between parabola and circle. Finally, we outline our
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1 Introduction

Optimization means selecting the best from a set of alternatives by using optimization
techniques according to well defined objective criteria. Mathematical methods are used
to choose the values of variables that give the maximum or minimum value of the objective
function.

Optimization methods are extremely important for management and design. The meth-
ods by themselves do not guarantee that the optimal alternative will be selected. To ensure
selection of the optimal alternative, it must be included in the set of available choice of
methods. The development of a set of the best apparent practical alternatives is the crucial
first step.

The objective function explains the essential characteristics of what is to be optimized.
The function combines the essential descriptive quantitative variables. The limits of the
values of variable for each alternative can be expressed as constraints on the range of values
that may be used by an optimal alternative. The maximum or minimum criteria are chosen
by the nature of the variables and objectives. As an example, costs are minimized, and
profits are maximized.

The alternatives may be described by continuous or discrete variables. Many situations
consist of choices between discrete courses of action. Discrete problems may be combina-
torial and large problems may become intractable. Continuous variables may be required
to describe situations that can produce a large number of alternatives by mixing various
proportions. These types of problems are tractable if the variables can be described by
continuous functions.

An optimization process selects values of independent variables which result in the max-
imum (or minimum) value of one or more dependent variable(s) of a value or measure of
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merit relationship. The relationship or objective function is usually written as f(x), where
f is a function of x.

The independent variables are usually subjected to a number of constraints in the form
of other relationships and the whole group is often written as g(x). Note that, in this context
g may be an array of functions, equations or inequalities.

The symbol x is a vector or array of independent variables which describes the process.
The optimum (or optima) are groups of values of x which satisfy the optimal conditions of
the objective function f and the constraints g.

The most frequently used methods for searching the optimum value of a mathematical
function are

(a) differential calculus

(b) search methods

(c) direct method

(d) mathematical (linear and nonlinear) programming

(e) classical matrix method

(f) calculus of variation

(g) Bellman’s dynamic programming

(h) Pontryagin’s maximum principle

Accounting systems tend to treat costs as fixed and variable, i.e. fixed costs are not
sensitive to the quantity of activity while variables are directly related. These definitions
lead to nonlinear unit costs and choosing an economic quantity by minimizing cost. Even if
the objective is to maximize profits and revenues are described by Quantity multiplied by
Price relationships, the costs remain non linear.

Quite often the essential problem can be made linear if the fixed costs essentially re-
main constant over the range of alternatives. The problem becomes one of optimizing the
differences.

Another notion is choosing the cost items that are fixed and ones that tend to increase
per unit. This is sometimes stated as Costs that vary inversely with quantity versus Costs
that vary directly with quantity.

There is a function for estimating inventory, order and production quantity problems.
The fixed cost is the amount to place an order, change tooling, bring in equipment for an
operation, etc. which is unrelated to quantity. The variable costs are those of storage,
interest on inventory, etc. which are related to the maximum amount held at any one.
The function assumes that inventory is averaged and that production and consumption
rates are uniform with working days. For problems that fit the restrictions of the linear
programming (LP) model MAXIMIZE or MINIMIZE use the simplex method to solve the
general LP problem.

In this paper, a new method so-called parabola-quadratic programming for solving the
special type nonlinear programming problem will be proposed. However this new method
can be extended or modified for solving the other types of problems. In order to understand
how this new method is proposed, we orderly arranged all the materials in several sections
as follows. In Section 2, we briefly provide an explanation about Newton’s method to be
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used in this paper. Linear programming and quadratic programming will be described in
Section 3 and Section 4 respectively. Section 5 contains one of the quadratic programming
problem where its constraints consist of quadratic function and a set of linear system. In
Section 6, we need to expose to the reader about the parabola in great detail, and this is
very useful in solving the problem which involves the conics. We continue the explanation
about the circle in Section 7. The relationship between parabola and circle is given in
Section 8. Our new method will be explained in Section 9 and some numerical results will
be displayed in Section 10 where its computation is done by using the algorithm given in
Section 11. Conclusion given in Section 12 will end our paper.

2 Newton’s Method

Newton’s method (or Newton–Raphson method) [1] defined by

xn+1 = xn − f(xn)

f ′(xn)
(n = 0, 1, 2, . . . ), (1)

is perhaps the best known method for finding successively better approximations to the zeros
(or roots) of a real-valued function. Newton’s method can often converge remarkably
quickly, especially if the iteration (1) begins with x0 by “sufficiently near” the desired root.

3 Linear Programming

A linear programming (LP) problem [2] is one in which the objective and all of the con-
straints are linear functions of the decision variables.

Since all linear functions are convex, linear programming problems are intrinsically
easier to solve than general nonlinear (NLP) problems, which may be non-convex. In a
non-convex, NLP there may be more than one feasible region and the optimal solution
might be found at any point within any such region. In contrast, an LP has at most
one feasible region with “flat faces” (i.e. no curves) on its outer surface, and the optimal
solution will always be found at a vertex (corner point) on the surface where the constraints
intersect.

LP problems are usually solved using the Simplex method which originally developed
by Dantzig in 1948, and has been dramatically enhanced in the last decade, using advanced
methods from numerical linear algebra. This has made it possible to solve LP problems
with up to hundreds of thousands or millions of decision variables and constraints. An
alternative to the Simplex method, called the Interior Point or Newton-Barrier method,
was developed by Karmarkar in 1984. Also in the last decade, this method has been
dramatically enhanced with advanced linear algebra methods so that it is often competitive
with the Simplex method, especially on very large scale problems.

Primal and Dual Simplex Method

The standard Microsoft Excel Solver uses a basic implementation of the primal Simplex
method to solve LP problems. It is limited to 200 decision variables.The Premium Solver
uses an improved primal Simplex method with two-sided bounds on the variables. It
handles up to 1,000 decision variables. The Premium Solver Platform uses an extended
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LP/Quadratic version of this Simplex Solver to handle problems of up to 2,000 decision
variables. It optionally uses a dual Simplex method to solve LP subproblems in a mixed-
integer (MIP) problem. However, this Simplex algorithm does not exploit sparsity in the
model.

The Large-Scale LP Solver for the Premium Solver Platform uses a state-of-the-art
implementation of the primal and dual Simplex method, which fully exploits sparsity in the
LP model to save time and memory. It uses advanced strategies for matrix updating and
refactorization, multiple and partial pricing and pivoting, and overcoming degeneracy. This
Solver engine is available in three versions, handling up to 8,000, 32,000, or an unlimited
number of variables and constraints, subject to available time and memory.

The MOSEK Solver includes a state-of-the-art primal and dual Simplex method that also
exploits sparsity and uses advanced strategies for matrix updating and refactorization. It
handles problems of unlimited size, and has been tested on linear programming problems
of over a million decision variables.

The XPRESS Solver Engine uses a highly tuned, state-of-the-art implementation of the
primal and dual Simplex method, with its own advanced strategies for matrix updating and
refactorization, multiple and partial pricing and pivoting, and overcoming degeneracy. Its
dual Simplex method is probably the best in the world. The XPRESS Solver engine can
handle an unlimited number of variables and constraints, subject to available time and
memory.

4 Quadratic Programming

A quadratic programming (QP) is the problem [3] of optimizing (minimizing or maximizing)
a quadratic function of the decision variables, and subject to constraints which are all linear
functions of the variables.

A widely used QP problem is the Markowitz mean-variance portfolio optimization prob-
lem, where the quadratic objective is the portfolio variance (sum of the variances and
covariances of individual securities), and the linear constraints specify a lower bound for
portfolio return.

If x ∈ Rn, the n × n matrix Q is symmetric, and c is any n × 1 vector then QP is the
problem which minimize

f(x) =
1

2
xT Qx + cT x

subject to
Ax ≤ b, and Ex = d,

where the superscript “T” indicates the vector transpose.
QP problems, like LP problems, have only one feasible region with “flat faces” on its

surface (due to the linear constraints), but the optimal solution may be found anywhere
within the region or on its surface. The quadratic objective function may be convex which
makes the problem easy to solve or non-convex, which makes it very difficult to solve.

If Q is a positive semidefinite matrix, then f(x) is a convex function [4, 5]. In
this case the quadratic program has a global minimizer if there exists at least one vector x
satisfying the constraints and f(x) is bounded below on the feasible region. If the matrix Q
is positive definite matrix, then this global minimizer is unique. Portfolio optimization
problems are usually of this type. If Q is zero, then the problem becomes a linear program.



Solving a Paraboloidally Constrained Quadratic Programming 91

From optimization theory, a necessary condition for a point x to be a global minimizer is
for it to satisfy the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions are
also sufficient when f(x) is convex.

If there are only equality constraints, then the QP can be solved by a linear system.
Otherwise, a variety of methods for solving the QP are commonly used, including interior
point, active set, exploration, and conjugate gradient methods.

Convex quadratic programming is a special case of the more general field of convex
optimization.

Dual Programming

The dual of a QP is also a QP. To see that let us focus on the case where c = 0 and Q is
positive definite. We write the Lagrangian

L(x, λ) =
1

2
xT Qx + λT (Ax − b).

To calculate the dual function g(λ), defined as

g(λ) = inf lim
x

L(x, λ),

we find the infimum of L, using

∇xL(x, λ) = 0, x∗ = −Q−1AT λ,

the dual function is

g(λ) = −1

2
λT AQ−1AT λ − bT λ

hence the dual of the QP is to maximize

−1

2
λT AQ−1AT λ − bT λ

subject to

λ ≥ 0.

Complexity

For positive definite Q, the ellipsoid method solves the problem in polynomial time.
If, on the other hand, Q is negative definite, then the problem is NP-hard [5, 6]. In
fact, even if Q has only one negative eigenvalue, the problem is NP-hard [5,7]. If the
objective function is purely quadratic, negative semidefinite and has fixed rank, then the
problem can be solved in polynomial time [8].

5 Quadratically Constrained Quadratic Programming

In mathematics, a quadratically constrained quadratic programming (QCQP) is the problem
of optimizing a quadratic objective function of the decision variables, and subject to
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constraints which are quadratic and linear functions of the variables [9]. The problem is to
minimize

1

2
xT P0x + qT

0 x

subject to

xT Pix + qT
i x + ri ≤ 0 for i = 1, ..., m,

Ax = b,

where P0, . . .Pn are n × n matrices and x ∈ Rn is the optimization variable. If P1,
. . .Pn are all zero, then the constraints are in fact linear and the problem is a quadratic
programming.

Hardness

Solving the general case is an NP-hard problem. To see this, note that the two constraints
x1(x1 − 1) ≤ 0 and x1(x1− 1) ≥ 0 are equivalent to the constraint x1(x1 − 1) = 0, which
is in turn equivalent to the constraint x1 ∈ {0, 1}. Hence, any 0-1 integer programming
(in which all variables have to be either 0 or 1) can be formulated as a quadratically
constrained quadratic programming. But 0–1 integer programming is NP-hard, so QCQP
is also NP-hard.

Example 1 Max Cut is a problem in graph theory, which is NP-hard. Given a graph,
the problem is to divide the vertices in two sets, so that as many edges as possible go from
one set to the other. Max Cut can be easily formulated as a QCQP, which allows obtaining
good lower bounds using SDP realization of the dual.

Special Cases

There are two main relaxations of QCQP: using semidefinite programming (SDP), and
using the reformulation-linearization technique (RLT).

Semidefinite Programming

When P0, . . . Pn are all positive-definite matrices, the problem is convex and can be
readily solved using exploration method, as done with semidefinite programming.

6 Parabola

A parabola [10–15] is the set of all points in the plane equidistant from a given line L (the
conic section directrix) and a given point F (the focus) not on the line as shown in
Figure 1 and Figure 2. The focal parameter (that is, the distance between the directrix
and focus) is therefore given by p = 2a, where a is the distance from the vertex to the
directrix or focus. The surface of revolution obtained by rotating a parabola about its
axis of symmetry is called a paraboloid. Gregory and Newton considered the catacaustic
properties of a parabola that bring parallel rays of light to a focus (MacTutor Archive), as
illustrated in Figure 3.
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Figure 1: Dimension

Figure 2: Set of Points

Figure 3: Upward Parabola
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For a parabola opening to the upward (u-parabola) with vertex at (0,0), the equation
in Cartesian coordinates is

√

(y − a)2 + x2 = y + a ⇒ x2 = 4ay ⇒ y =
1

4a
x2.

The quantity 4a is known as the latus rectum. If the vertex is at (x0, y0) instead of (0,0),
the equation of the u-parabola is (x − x0)

2 = 4a(y − y0).
By putting k = 1/4a, the equation of the u-parabola is given by

(y − y0) = k(x − x0)
2, (k > 0).

Three points uniquely determine one parabola with directrix parallel to the x-axis and one
with directrix parallel to the y-axis as seen in Figure 6. If these parabolas pass through the
three points (see Figure 6) (x1, y1), (x2, y2), and (x3, y3), they are given by equations
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∣

∣

∣

∣

∣
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In polar coordinates as shown in Figure 4 and Figure 6, the equation of a parabola
with parameter a and center (0,0) is given by

r = − 2a

1 + cos θ
.

The equivalence with the Cartesian form can be seen by setting up a coordinate system
(xs, ys) = (x, y − a) and plugging in r =

√

x2
s + y2

s and θ = tan−1(xs/ys) to obtain

y =
1

4a
x2,

which is the parabola equation. The parabola can be written parametrically as

y = at2, x = 2at or y =
t2

4a
, x = t.

A parabola may be generated as the envelope of two concurrent line segments by con-
necting opposite points on the two lines [16] as drawn in Figure 7 and Figure 8.

In the following discussion, we will consider the u-parabola defined by y = kx2, (k > 0).
Due to their simplicity, we do not provide any proof for the theorems given.

Theorem 1 (Figure 9)
The tangent to the graph of y = kx2 at the point P1(x1, kx2

1) has the equation

y − kx2
1 = 2kx1(x − x1), or y = kx1(2x − x1)

which intersects the y-axis, the x-axis, and the directrix at the points

A(0,−kx2
1), B(

x1

2
, 0), and C

(

x1

2
− 1

8k2x1

,
−1

4k

)

respectively, provided for the last point, x1 6= 0.
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Figure 4: Polar Coordinates

Figure 5: Concentric Parabolas
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Figure 6: Uniquely Determined

Figure 7: Envelope Parabola

Figure 8: Envelope Parabola
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Figure 9: Property of Tangent to the Parabola

Theorem 2 (Figure 10)
The normal to the graph of y = kx2 at the point P1(x1, kx2

1) when x1 6= 0, has the
equation

y − kx2
1 = − 1

2kx1

(x − x1) (x1 6= 0)

which intersects the y-axis, the x-axis, and the directrix at the points

A∗(0,
1

2k
+ kx2

1), B∗(x1 + 2k2x3
1, 0), and C∗

(

3x1

2
+ 2k2x3

1,−
1

4k

)

respectively.

Figure 10: Property of Normal to the Parabola



98 Ismail Mohd

Theorem 3 (Figure 11)

The coordinates of the intersection R1 of the y-axis and the line through two points
P1 (x1, y1) and P2 (x2, y2) which lie on y = kx2 can be put in the form R1 (0,−kx1x2) .

Figure 11: Intersection of Segment Line with y-axis

Theorem 4 (Figure 12)

The coordinates of the intersection Q of the tangents to the parabola y = kx2 at two
points P1 (x1, y1) and P2 (x2, y2) can be put in the form Q((x1 + x2)/2, kx1x2) .

Figure 12: Intersection of Two Tangents of the Parabola

Theorem 5 (Figure 13)

Let P1(x1, y1) and P2(x2, y2) lie on y = kx2. Let Q be the intersection of the tangents
at P1 and P2. Let R be the intersection of the line P1P2 and the axis of the parabola. Then
P, the mid-point of the segment QR lies on the line tangent to the parabola at the vertex.
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Figure 13: Intersection between Vertex Line, Tangent and Line Segment of the Parabola

Theorem 6 (Figure 14)
Let W be the intersection of the tangents to the parabola y = kx2at P1(x1, y1) which

is not the vertex V(0,0). Then the line from the focus F to W is perpendicular to the line
WP1.

Figure 14: Normal to the Parabola Passes the Focus of Parabola

Theorem 7 (Figure 15)
Let P1(x1, y1) be a point on a parabola y = kx2 which is not the vertex V. Then the

tangent to the parabola at P1 meets the directrix and the line through the focus F parallel to
the directrix at two points Q and R respectively that are equidistant from F.

Theorem 8 (Figure 16)
Let x1 > 0. Then (a) the line through P1(x1, kx2

1) parallel to the parabola axis intersects
the directrix at the point D1(x1,−1/4k), (b) the tangent to the parabola at P1(x1, kx2

1) inter-
sects the parabola axis at the point Q1(0,−kx2

1), (c) the quadrilateral Q1D1P1F is a rhombus
(an equilateral parallelogram), and (d) the diagonals of this rhombus are perpendicular to
each other at point (x1/2, 0).
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Figure 15: Property of Normal, Tangent and Directrix of the Parabola

Figure 16: Rhombus
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Theorem 9 (Figure 17)

Let define a focal chord of a parabola be a line segment which contains the focus and
has its ends at points on the parabola. Supposing that x2 < 0 < x1. Then the two points
P1(x1, kx2

1) and P2(x2, kx2
2) on the graph of y = kx2 are end points of a focal chord if

and only if (2kx1)(2kx2) = −1 and hence if and only if the tangents to the parabola at
P1(x1, kx2

1) and P2(x2, kx2
2) are perpendicular.

Figure 17: Focal Line and Two Tangents of the Parabola

Theorem 10 Two different tangents to a parabola intersect on the directrix if and only if
the tangents are perpendicular and hence if and only if the points of tangency are ends of a
focal chord.

7 Circle

Concept

This section is about the shape and mathematical concept of circle as shown in Figure 18,
Figure 19 and Figure 20 ([17]).

Figure 18: Concept of a Circle
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Circles are simple shapes of Euclidean geometry consisting of those points in a
plane which are at a constant distance, called the radius, from a fixed point, called
the centre. A chord of a circle is a line segment whose both endpoints lie on the circle.
A diameter is a chord passing through the center. The length of a diameter is twice
the radius. A diameter is the largest chord in a circle. Circles are simple closed curves
which divide the plane into an interior and an exterior. The circumference of a circle
is the perimeter of the circle, and the interior of the circle is called a disk. An arc is
any connected part of a circle. A circle is a special ellipse in which the two foci are
coincident. Circles are conic sections attained when a right circular cone is intersected
with a plane perpendicular to the axis of the cone.

Figure 19: Definition of Tangent

Figure 20: Definition of Segment

8 Parabola-Circle Relationship

Theorem 11 Let k >0 and a >0.

(i) if f(a) is the y coordinate of the centre of the circle tangent to the graph of y = kx2

at the points for which x = a and x = -a, then

f(a) = ka2 +
1

2k
,

(ii) if (g(a),h(a)) is the centre of the circle which is tangent to the graph of y = kx2at the
point (a, ka2) and which contains (or passes through) the origin, then

g(a) = −k2a3 and h(a) =
3

2
ka2 +

1

2k
.
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Theorem 12
Let several circles which have centres on the positive y-axis and be tangent to the x-axis

at the origin. Suppose that for k >0 we have a parabola having the equation y = kx2. The
circle with centre at (0,a) and radius a intersects the parabola only at the origin if and only
if a ≤ 1/2k.

By Theorem 12, the biggest one of those circles which lies completely on or inside the
parabola has a radius equal to the distance from the focus to the directrix of the parabola.

We can locate the set S which contains a point P (x, y) if and only if the point is
equidistant from the x axis and the circle with centre at the origin and radius a. We can
observe that S contains some points inside the circle as well as some points on and some
points outside the circle. Whether a point P (x, y) lies inside or on or outside the circle, it
will be in the set S if and only if

∣

∣

∣

√

x2 + y2 − a
∣

∣

∣
= |y| (2)

and hence if
√

x2 + y2 = a ± y. (3)

If (3) holds, then

x2 + y2 = a2 ± 2ay + y2 (4)

and hence either

y = −a

2
+

x2

2a
(5)

or

y =
a

2
− x2

2a
. (6)

It can be shown that if (5) or (6) holds, then (2) holds. It follows that S is the sum (or
union) of two parabolas of which one has the equation (5) and the other has the equation
(6). Each parabola has its focus at the origin, and the directrices are the tangents to the
circle that are parallel to the x-axis. The parabolas intertsect the x-axis where the circle
does.

9 Parabola-Quadratic Programming

In this paper, we would like to consider a programming so-called parabola-quadratic pro-
gramming (PQP) which minimize

(x − p)
2

+ (y − q)
2

subject to

y −
(

αx2 + βx + γ
)

≥ 0,

where x, y, α, β, γ ∈ R and the optimization variables x and y are nonnegative. If α is zero,
then the constraints are in fact linear and the problem is a quadratic programming.
Figure 21, Figure 22 and Figure 23 show some of the configurations of PQP.
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Figure 21: Outside Parabola

Figure 22: Inside Parabola
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Figure 23: Intersection

10 Solution of the PQP Problem

In this section, we provide some examples how to solve the PQP problem.

Example 2

Suppose that we want to minimize

(x − p)2 + (y − q)2

subject to

y − x2 ≥ 0 and x, y ≥ 0.

Any point on the parabola y = x2 for x ≥ 0 has a chance to be a solution and this will
depend on p and q. If (0.5, 0.25) is its solution, then by using

(0.5 − p)
2

+ (0.25− q)
2

= q2

and the tangent at (0.5, 0.25), we will obtain

(p, q) =
((

1 +
√

2
)

/4,
(

2 −
√

2
)

/4
)

the centre of the circle. By further computation, we definitely have the line

y =
(√

2 − 1
)

x −
√

2 − 1

4

which passes the point (p, q) and the intersection point of the tangent at (0.5, 0.25)and
x-axis.
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Example 3

Analogous to Example 2, the solution of the general parabola-quadratic programming
(PQP) which minimizes

(x − p)2 + (y − q)2

subject to

y − kx2 ≥ 0 (k > 0) and x, y ≥ 0,

is given by
(

x1, kx2
1

)

if and only if

p =
x1

2

(

1 +
√

1 + 4k2x2
1

)

and q = kx2
1 +

1

4k

(

1 −
√

1 + 4k2x2
1

)

.

Furthermore, the line which passes the centre of the circle and the intersection point of
x-axis and the tangent at

(

x1, kx2
1

)

, is given by

y =
1

2kx1

(

√

1 + 4k2x2
1 − 1

)

(

x − x1

2

)

.

Example 4 The solution of the general parabola-quadratic programming (PQP) which
minimizes

(x − p)2 + (y − q)2

subject to

y − kx2 ≥ 0 (k > 0) and x, y ≥ 0

without knowing the line containing the centre of the objective function, can be obtained
by solving the equation

2k2ξ3 − (2kq − 1) ξ − p = 0 (7)

using Newton’s method where the equation (7) is derived through pythagoras property
among the points

(

ξ, kξ2
)

, (p, q), and (ξ/2, 0).

11 Algorithm of the PQP Problem

Suppose that we would like to minimize

(x − p)2 + (y − q)2

subject to standard form

y − kx2 ≥ 0, (k > 0) and x, y ≥ 0.

The brief algorithm for solving the PQP problem is as follows.
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Algorithm PQP

Data : p, q, k, max ∈ R. f (ξ) = 2k2ξ3 − (2kq − 1) ξ − p
1. i = 0
2. while i < max do

2.1. fξi = f (ξi)

2.2. fdξi = f ′ (ξi)

2.3. ξi+1 = ξi − fξi

fdξi

2.4. if ξi+1 follows the Newton stopping criterium

then

2.4.1. if ξi satisfies p = ξi

2

(

1 +
√

1 + 4k2ξ2
i

)

and q = kξ2
i + 1

4k

(

1−
√

1 + 4k2ξ2
i

)

do

2.4.1.1. stop

else

2.4.2. i = i + 1

3. return.

12 Conclusion

We have shown that both parabola and circle or more generally quadratic have some re-
lationship features which can be exploited for obtaining the solution(s) of the economic
problems of the parabola-quadratic programming.

Although we can find this relationship precisely, we still use the approximated method
(in this paper Newton’s method) to obtain the solution, and therefore in order to obtain
more precise result we need to seek the best criterium for stopping the routine in Newton’s
method.

Our method can be extended to the problem with more than one constraint and we
prefer to explain in another paper.
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