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Abstract Cash is the driving power of all business and cash-flow statement is one of the 
major issues of institutions, especially in crisis. Optimal cash-flow plan of a company 
could be one of the most important indicators of that business's financial health and can 
be considered as its financial analysts' ability and skill. Linear optimization (LO) is one 
of the mathematical tools in modeling the cash-flow problem and its rich literature helps 
analysts to device the optimal one when the situation satisfies the requirements of the LO 
model. However, the situation is always due to variation and the optimal solution arisen 
from the LO model have to be analyzed according to measurable variation of input data. 
Sensitivity analysis and parametric programming is the tool to this analysis. Using the 
Simplex method to find a basic optimal solution and having multiple optimal solutions is 
one of the reasons that different solvers lead to different optimal solutions. In these 
situations, sensitivity analysis may produce confusing results. Moreover, there are 
different points of views to sensitivity analysis such as optimal basis invariancy, optimal 
partition invariancy, support set invariancy to name some examples. Here, we briefly 
review different approaches to sensitivity analysis in LO and a short term cash-flow 
problem of a dummy institution is modeled as an LO problem. It is shown that the 
problem has multiple optimal solutions which are degenerate, the situation that usually 
occurs in practice and causes of ambiguous and unclear results. The confusing results in 
analyzing the sensitivity of these solutions are highlighted in this example. Then, a 
strictly complementary optimal solution is provided and its useful interpretation in 
sensitivity analysis is mentioned in a nutshell. In the sequel, the concept of the results 
arising in different points of views to sensitivity analysis is analyzed. 
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1 Introduction 

 
Optimization plays a major role in finance nowadays. Appropriate decision making is of the most 
important criterion in surviving of all the finance and economic institutes and industrial organizations 
specially in crises.  
     Many problems in quantitative finance and risk management such as asset allocation, derivative 
pricing, value at risk modeling and model fitting, are now efficiently solved using state-of-the-art 
optimization techniques. Two of the closely related financial problems are the cash-flow and the asset 
pricing. In this study, we consider the cash-flow problem [1] and review different models, 
emphasizing the rich in theory and mature in methodology and implementation, the LO Model. 
Sensitivity analysis of obtained solutions based on ever-changing atmosphere of the world is not an 
option but is an obligation. Different aspects of sensitivity analysis and parametric programming have 
divert interpretations. Having rational understanding of the results leads to choose right practical and 
sustainable financial policies.  
     In this study, we consider different aspects of sensitivity analysis and parametric programming 
applied to a cash-flow problem that is formulated as an LO problem. The paper goes as follows. The 
next section introduce the cash-flow problem in a nutshell and review different possible mathematical 
models. In Section 3, LO problem is mentioned and the concern turns to different aspects of 
sensitivity analysis and parametric programming in LO. The LO model of cash-flow problem is 
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devised in Section 4, and privileges and drawbacks of the LO model are mentioned then. 
Interpretation of sensitivity analysis in this model is the main aim Section 5. Concluding remarks 
might help the researchers for further studies. 

 

 

2     Cash Flow Problem and Optimization Models 

 
In its simplest form, owing the actual cash in and out of the business, and being identified both their 
sources and uses to recognize cash-flow variation over a period is the subject of cash-flow analysis. 
Cash management, i.e. controlling the cash-flow, is vital to businesses of all sizes. Small businesses 
are especially vulnerable to cash-flow problems since they tend to operate with inadequate cash 
reserves or none at all, and worse, tend to miss the implications of a negative cash-flow until it's too 
late.  
     Cash-flow analysis could be described in several steps, which allow one to model it as an 
optimization problem. First list cash inflows (sources). The sources of cash may be limited to: new 
investment, new debt, sale of fixed assets and operating profits. Then, record cash outflows (uses) and 
identify when (by date) cash flows in or out. Timing is the next step; that is, cash inflows minus cash 
outflows. One of the main task is to identify the major consequences of cash as it currently flows and 
indicate the constraints; inflows or outflows, which cannot be changed. Considering these steps could 
lead to an appropriate optimization model. Finally establishing a plan for positive cash-flow is the 
goal of the problem. By solving the problem and doing sensitivity analysis, the inflows and outflows, 
which can be changed (rescheduled) without considerably influencing the optimality of the plan can 
be recognized. Observe that positive cash-flow can be considered as a measure of a company's 
financial health and much positive cash-flow the better. 
     There are some assumptions inherently accompanied with LO and its success in modelling refers 
to how closely relatively matches up with these assumptions. Linearity of the objective function and 
constraints are the two important ones. The other is proportionality assumption, which means that 
the contribution to the objective of any decision variable is proportional to the value of the decision 
variable. Similarly, the contribution of each variable to the left-hand side of each constraint is 
proportional to the value of the variable. Moreover, the additivity assumption asserts that the 
contribution of a variable to the objective and constraints is independent of the values of the other 
variables. The other assumption is the divisibility assumption, meaning that taking any fraction of any 
variable is permitted. The final assumption is the certainty assumption. In LO, no uncertainty is 
permitted on the input parameters. 
     It is obvious that for a cash-flow problem, satisfying all these assumption may not happen 
simultaneously. Losing the additivity or proportionality assumptions leads to a nonlinear 
programming model. If the divisibility assumption does not hold, then a technique called integer 
programming rather than LO is required. This technique takes orders of magnitude more time to find 
solutions but may be necessary to create realistic solutions. Problems with uncertain parameters can 
be addressed using stochastic programming or robust optimization approaches. 
     Though these weak points tempts one to avoid using the LO model, however the rich theory, 
existence of many efficient solvers and over all these, possibility of sensitivity analysis may persuade 
us to use it efficiently at least for a short term cash-flow problem. In this paper, we consider an 
example devised in [1], to describe different points of view to sensitivity analysis on this problem. 

 

 

3     LO and Different Aspects of Sensitivity Analysis 

 

Let us consider the LO problem in standard form as { }min , 0Tc x Ax b x= ≥ , where A  is a matrix 

of dimension m n×  and , ,c x b are of appropriate dimensions. Its dual can be defined as 

{ }max , 0T Tb y A y s c s+ = ≥ . Having feasible solution of primal and dual problems,  existence of 

optimal solutions is guaranteed. A primal-dual solution is denoted by ( )* * *, ,x y s that satisfies the 
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complementarity property ( )* * 0
T

x s = . When the given optimal solution is basic, the index set 

{ }1,2,...,n is partitioned to two sets ( ),B B Nπ =  where B and N are corresponding to the index set 

of the given basic and non-basic variables, respectively. This partition is referred to as basis optimal 

partition. Observe that degeneracy exists in almost every LO problem and when the problem has 
multiple (basic) optimal solutions, the basic optimal partition is not unique. 

     For a vector 0x ≥ , the support set of x  is denoted by { }( ) 0jx j xσ = > . If we are given an 

arbitrary primal optimal solution 
*x , there is another partition identified. For a given primal optimal 

solution 
*x , let a partition be defined and denoted by ( , )Pπ σ ς= , where  

*( )xσ σ= and 

{ } *1,2,..., \ ( )n xς σ= and be referred to as primal support set partition. Analogous partition could 

be defined when a dual optimal solution 
* *( , )y s  is given and { }*( ) 0js j sς σ= = > . In this case 

{ } *1,2,..., \ ( )n sσ ς= . This partition might be dented by ( , )Dπ σ ς= and referred to as dual 

support set partition. Observe that these two recent partitions are different with each other when the 
primal and dual optimal solutions are degenerate simultaneously. In this case, it is different from the 
basic optimal solution as well. Analogous to the basic optimal partition, these partitions are depends 
to the given optimal solutions and, consequently are not unique. 

     On the other hand, the primal-dual optimal solution 
* * *( , , )x y s  may satisfy the strictly 

complementary property, when 
* * 0x s+ > . By the Goldman-Tucker Theorem [6], the existence of 

strictly complementary optimal solutions is guaranteed if the primal and dual problems are feasible. 

This leads to a partition of the index set { }1,2,...,n  into two sets ℬ { }* 0,ii x= > and � { }* 0ii s= >

for an arbitrary primal-dual optimal solution 
* * *( , , )x y s . Observe that the index i  belongs to ℬ, 

when the corresponding variable ix  is positive in an optimal solution. Analogously, i  is included in 

�, when the corresponding dual slack variable is  is positive in a dual optimal solution. Identifying 

this partition is possible if the problem is solved by an interior point method [12]. This partition is 

simply referred to as optimal partition and denoted as π = (ℬ,�). Unlike other partitions, this 

partition is unique because of the convexity of the optimal solution sets. All the aforementioned 
partitions are identical with the optimal partition when the given primal and dual optimal solutions are 
non-degenerate. 
     There are different points of view towards sensitivity analysis and parametric programming 
depending on the type of the in-hand optimal solution. Let us consider the perturbed LO problem as 

{ }min ( )Tc c x Ax b bα β+ ∆ = + ∆ , for arbitrary perturbation vectors c∆ and b∆  of appropriate 

dimension and real parameters ,α β . We are interested to find the region for these parameters where 

special characteristics holds for a current optimal solution. There are different intervals corresponding 
and depending the given optimal solution. 
     Here we review some of them. 

• We may have a (degenerate or non-degenerate) primal basic optimal solution. Finding the 
region for parameters where the associate basis optimal partition remains optimal. As 
mentioned above, having different basic optimal solutions leads to different confusing 
intervals (e.g. [12]). A good reference to find details in this point of view for a uni-parametric 
case is [11]. 

• A strictly complementary optimal solution is in hand that leads to identify the optimal 

partition π . Finding the region where this partition remains invariant is the aim of this case. 

Recall that this interval is independent of the type of primal and dual optimal solutions. 
Finding this interval only needs to solve the following two problems: 

 �� = min��: �� − �∆� = �, �ℬ ≥ 0, �� = 0�, 

�� = max��: �� − �∆� = �, �ℬ ≥ 0, �� = 0�,  
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where � = (ℬ,�) is the known optimal partition. A good reference for a uni-parametric case 
could be [12]. 

• The goal is to identify the region for parameters, where only positive variables of the given 
optimal solution remains positive after any change on the parameters in this region. When we 
are interested to the primal optimal solution, identifying the invariancy interval of the primal 

support set partition Pπ  is intended [5] and the corresponding interval (�� , ��) can be 

identified by the following two axillary problems: 

�� = min��: ���� −�∆� = �, �� ≥ 0� 

�� = max��: ���� −�∆� = �, �� ≥ 0� 
 

where ( )P xσ= and x  is the given optimal solution. 

When the dual optimal solution is of the interest, finding the invariancy interval of the 

support set partition Dπ  is the aim. For more details in this case, we refer the interested reader 

to [4]. 
We restate that these intervals are identical when the problem has unique non-

degenerate primal-dual optimal solution. However, they are different when the solution is not 
a basic one, or when it is a degenerate basic optimal solution. Ignoring this fact may lead to 
confusing result (e.g. [7]). In this study, we highlight this misunderstanding in cash-flow 
problem, and to keep it easy to track, we only consider the uni-parametric case, when either 

α  or β  is nonzero. 

 
 

4     Linear Model for Cash-Flow Problem 

 
To illustrate the main idea of the paper we consider an example from [1]. 
 

Example: Consider a company has the following short-term financing problem: 

Month Jan Feb Mar Apr May Jun 

Net cash-flow -150 -100 200 -200 50 300 

 
Net cash-flow requirements are given in thousands of dollars. The company has the following 

sources of funds: 

• a line of credit of up to $100k at an interest rate of 1% per month; 

• in any one of the first three months, it can issue 90-day commercial paper bearing a total 
interest of 2% for the three-month period; 

• excess funds can be invested at an interest rate of 0.3% per month. 
 

Following [1], we use the following decision variables: the amount ix  drawn from the line of 

credit in month i , the amount iy  of commercial paper issued in month i , the excess funds iz  in 

month i  and the companies wealth v  in June. 

Here we have three types of constraints: (i) cash inflow = cash outflow for each month, (ii) upper 

bounds on ix , and (iii) nonnegativity of the decision variables ix , iy  and iz . We remind that ix  is 

the balance on the credit line in month i , not the incremental borrowing in month i . Similarly, iz  

represents the overall excess funds in month i . For the detail of formulation we refer to [1]. The LO 

model of this problem in standard form is as follows; 
 

max      v  

1 1x y+            1 150z− =  

2 2x y+     1 1 21.01 1.003 100x z z− + − =  
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3 3x y+    2 2 31.01 1.003 200x z z− + − = −  

4 11.02x y−   3 3 41.01 1.003 200x z z− + − =  

5 21.02x y−   4 4 51.01 1.003 50x z z− + − = −  

    31.02y−     5 51.01 1.003 300x z v− + − = −  

 1 1 100x w+ =  

2 2 100x w+ =  

3 3 100x w+ =  

4 4 100x w+ =  

5 5 100x w+ =  

      
, , , 0.i i i ix y z w ≥  

 

Replacing 1 2 3, ,y y y with 6 7 8, ,x x x , respectively; 1 5,...,z z with 9 13,...,x x ; vwith 14x ; and 1 5,...,w w

with 15 19,...,x x , we only deal with the variable vector 
19x∈ℝ . Moreover, without loss of generality 

we can add nonnegativity of v  to the problem. To have the standard form, we replace the objective 

function withe minimization of the negative of 14v x= . In this way the matrix A  is of dimension 

11 19× and the index set is {1,…,19}. 

Solving this problem with the EXCEL solver leads to the following basic solution; 
 

1 3 4 5 0,x x x x= = = =   2 50.98,x =  

1 150,y =    2 49.02,y =   3 203.43y =    (1) 

1 2 4 5 0,z z z z= = = =    3 351.94,z =     92.50v =  

1 3 4 5 100,w w w w= = = =  2 49.02.w =  

 
It should be restated that there is another basic optimal solution as 

 

1 2 3 4 0,x x x x= = = =   5 52,x =  

1 150,y =    2 100,y =   3 151.94y =    (2) 

1 2 4 5 100,z z z z= = = =   3 351.94,z =     92.50v =  

1 2 3 4 100,w w w w= = = =  5 48,w =  

 
and consequently strictly optimal solution exists, say 
 

1 3 4 0,x x x= = =   2 18.07,x =   5 33.57x =  

1 150,y =    2 81.93,y =   3 170.19y =    (3) 

1 2 4 5 0,z z z z= = = =    3 351.94,z =     92.50v =  

1 3 4 100,w w w= = =   2 81.93,w =   5 66.43w = . 

  
Having multiple optimal solutions means that the problem is dual degenerate and a strictly 
optimal solution reveals the optimal partition � = (ℬ,�), where 

 
ℬ = {2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19} and � = {1, 3, 4, 9, 10, 12, 13}. 

 

The interpretation of the solution is easy. In all optimal solutions, the companies wealth v  in June 

will be $92,500. To achieve this goal, in the basic optimal solution (1) for example, the company will 
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issue $150,000 in commercial paper in January, $49,020 in February and $203,430 in March. In 
addition, it will draw $50,980 from its line of credit in February. Excess cash of $351,940 in March 
will be invested for just one month. Analogous interpretation can be considered for other optimal 
solutions. 

     If we denote the dual variable by jt , j = 1,…,11, the unique dual optimal solution is,  

 

1 1.03729t = −   2 1.03020t = −   3 1.02000t = −   4 1.01695t = −  

5 1.01000t = −   6 1t = −    7 11... 0t t= = =  

 

These values are known as shadow prices. The nonzero dual slack variables are 1 0.00321s = , 

3 0.00712s = , 4 0.00315s = , 9 0.00400s = , 10 0.00714s = , 12 0.00392s =  and 13 0.007s = , 

which are in complementarity with (all) primal optimal solutions. These values are known as reduced 
costs. Shadow prices and reduced costs play important rules in sensitivity analysis and the 
interpretations. 
     Most of solvers have tremendous information on sensitivity analysis and they have useful 
explanation on the problem in question such as allowable increase and decrease for the Right-Hand-
Side (RHS) of each individual constraint and objective function coefficient of individual decision 
variable (e.g. [1]). However, there are a little published explanations when the variation of input data, 
say the RHS of the constraints occurs simultaneously. This can be categorized as parametric 
programming. In the next section we consider such cases and mention some financial description of 
the parametric programming. 

 
 

5     Description of Parametric Programming in LO Model 

 
To realize a concrete case, consider there is an option offered to the company as follows: 
 

Option 1. Reduce the net cash-flows in months January, February and April by the rate of 2, 1 and 2 
respectively, and pay back them equivalently in months March, May and June with the fixed interest 
rates % 1.75 percent in these months. 

 
     In this way the perturbation vector of the RHS of constraints could be 

 

(2,1, 1.0175,2, 1.0175, 1.0175,0,0,0,0,0)Tb∆ = − − − , 

 

and we are interested to identify the range for the parameter value β , in the following cases. 

(1) The basic optimal solution (1) is given and finding the basis invariancy interval for                  
this solution is aimed. Simple calculation reveals that this range is [-49.14, 44.996]                 
and the range of variation for objective value is from 193.512 to 0. It means that less negative 
cash-flow in months January, February and April is allowed, i.e., accepting this option 
increases the final companys wealth $ 193.512 at the end of this 6-month period. 

(1) When (2) is the known basic optimal solution, the basis invariancy interval is [-50.473,  
44.996]. It has analogous interpretation as the other basic optimal solution. Observe that this 
interval is different from the obtained interval for the basic optimal solution (1). In this case, 
the objective function value starts from $ 196,251 and decreases to $ 0 when the parameter 
goes to the right end of the interval. 

(2) When a strictly complementary primal optimal solution say (3) is given (and  consequently 
the optimal partition π  is known), and we are interested in finding the optimal partition 

invariancy interval. In this case, the interval is (-62.915, 44.996) and the objective function 
value decreases from 221,828 to 0 when the parameter value increases. The important issue 
here is that, the invariancy interval of the optimal partition is greater than of the basis 
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invariancy interval in both basic optimal solutions (1) and (2). Moreover, this interval is an 
open one [12], while the two others are closed. 

 

Remark: For all parameter values in these interval specially the largest one, the dual optimal solution 
(i.e., the shadow prices) is valid. There are useful interpretations are mentioned in [1]. 
     One of the interpretation of the results of sensitivity analysis is the information arises from shadow 
prices. We mention one of this information from [1] and make the analysis deeper. 
 
Option 2. Assume that the negative net cash-flow in January is due to the purchase of a machine 

worth $150,000. The vendor allows the payment to be made in June at an interest rate of 3% for the 
five-month period. Would the companys wealth increase or decrease by using this option? What if the 
interest rate for the 5-month period was 4%? 

 
     Since the shadow price of the January constraint is 1.0373, reducing cash requirements in January 
by $1 increases the wealth in June by $1.0373. In other words, the break-even interest rate for the 
five-month period is 3.73%. So, if the vendor charges less than this amount, we should accept, but if 
he/she charges more, we should not. For the exact interest value 3.73%, acceptance or rejection of the 
proposal has identical result. 
     We restate that this analysis is valid when the amount of change in the RHS of the corresponding 
constraint is within the allowable decrease. Observe that for this analysis the perturbed vector is 

(1,0,0,0,0,0,0,0,0,0,0)Tb∆ = . For this perturbation vector, if the given optimal solution is (1) the 

basis invariancy interval is [-89.172,150]. However, if the in hand optimal solution is (2), this interval 
reduces to [-89.172,149.411]. It seems that the aforementioned analysis is not valid in the later case. 
However, the optimal partition invariancy interval for this perturbation is identical with interior of the 
basis partition invariancy interval (-89.172,150). Thus we can ensure the management on his decision. 
     Example is revisited: We saw that in this example the primal problem has multiple optimal 
solutions those are not degenerate. Let us change the model modestly as follows. “The credit line up 
to $50k at an interest rate of 1% per month is available only at February.” With this option, only the 
constraints of upper bound for variables changes accordingly. In this way the problem has degenerate 
optimal solution: 

1 3 4 5 0,x x x x= = = =   2 50x =  

1 150,y =    2 50y =   3 203.438y =   (4) 

1 2 5 0,z z z= = =   3 352.938,z =   4 0.997z =  

1 2 3 4 5 0w w w w w= = = = =   92.493v =  

 
Observe that in this optimal solution, we only have 7 positive variables, while a basic solution needs 
to have 11 in this example. Therefore, 4 other variables among zero ones must be chosen to extend 
these positive variables to a basic one. This means that there are many finitely corresponding basis'. 
Let us again consider the Option 1. In this case, there might be different basis optimal partition 
invariancy intervals. For example, when one let corresponding basis' to basic optimal solutions (1) 
and (2), strangely the optimal basis invariancy for these two ones is (- ,∞ ∞ ). However, the primal 

support set invariancy interval of this solution is (-50,94.994), that is clearly an open interval [5]. 
     Moreover, there is a primal strictly complementary optimal solution, say, 

 

1 3 4 5 0,x x x x= = = =  2 50x =  

1 150.356,y =   2 49.643y = ,  3 203.438y = ,    (5) 

2 5 0,z z= =    1 0.356z =    3 352.938,z =     4 0.634z = , 

1 2 3 4 5 0w w w w w= = = = = , 92.493v = . 

 
It is clear the the optimal partition for this problem is: � = (ℬ,�), where 
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ℬ = {2, 6, 7, 8, 9, 11, 12, 14} and � = {1, 3, 4, 5, 10, 13, 15, 16, 17, 18, 19}. 
 
Observe that this optimal solution is not basic again and not surprisingly, the optimal partition 
invariancy interval is exactly identical with the primal support set invariancy interval. 
     There is an interesting interpretation for the support set invariancy interval. Recall that in primal 
support set invariancy, we want to keep positivity of positive variables in the given optimal solution, 
while the parameter varies in the interval. In the optimal solution (4), the company will issue 
$150,000 in commercial paper in January, $50,000 in February and $203,438 in March. In addition, it 
will draw $50,000 (the maximum possible) from its line of credit in February. Excess cash of 
$352,938 and $997 in March and April will be invested, respectively. 
     If the company wants to keep this policy along with Option 1, i.e., investing in two months March 
and April whatever possible, issuing commercial paper in January, February and March in addition to 
drawing from the credit line in February, allowable change of the parameter is only the interval (-50, 
94.994) but not the whole real line as obtained for the two corresponding basic optimal solutions. 
     There is another finding. For the variation of the parameter in this interval, there is no change in 
reduce costs and shadow prices. Because the dual optimal solution is invariant in the optimal partition 
invariancy interval [12]. Thus similar analysis to the Option 2 can be carried out again. 

 
 

6     Conclusion 

 
It is obvious that the inherent uncertainty is not the thing that can be answered only by the LO. 
However, its rich theory in sensitivity analysis and parametric programming have many things to say 
to economists. In this study, we only interpreted the parametric programming results when the RHS is 
perturbed. Analogous analysis can be carried out for the case when the objective function is perturbed 
[12]. Uni-parametric case can be considered when the parameter presents in both the objective 
function and the RHS of constraints [2]. Moreover Multi-parametric programming in LO has been 
studied by many authors (e.g., [3, 8, 9]) with different points of views. Developing of multi-
parametric analysis of LO could be a tool to tackle some of the difficulties in many financial problems 
whose can be modelled as an LO problem. Interpretation of the result may clear some facts in cash-
flow problem as well as other financial problems which can be formulate as an LO. 
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