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Abstract Logistic Regression (LR) is used to analyze the relationship between non-

metric dependent variable and metric or dichotomous independent variables. The overall 

test of relationship among the independent variables and groups defined by the dependent 

is based on the reduction in the likelihood values for a model which does not contain any 

independent variables and the model that contains the independent variables. This 

difference in likelihood follows a chi-square distribution, and is referred to as the model 

chi-square. The significance test for the final model chi-square (after the independent 

variables have been added) is our statistical evidence of the presence of a relationship 

between the dependent variable and the combination of the independent variables. In this 

study, a hazardous event such as accident has been analyzed using binary logistic 

regression. The presence of a relationship between the dependent variable and 

combination of independent variables is based on the statistical significance of the final 

chi-square model.  The result of the best model shows that number of Injuries/Fatalities, 

number of Chains and operation mode gives the significant contribution in predicting 

hazardous event on floating offshore units. 
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1     Introduction 
 

The Det Norske Veritas (DNV), on behalf of the UK Health & Safety Executive (HSE) is given the 

responsibility to obtain the accident statistics for offshore fixed and floating units on the UK 

Continental Shelf (UKCS) since 1999.The main objective of the project is to obtain complete statistics 

for accidents and incidents having occurred on offshore fixed and floating units engaged in oil and gas 

exploration and exploitation on the UKCS in the period 1990-2007, including numbers of accidents 

and incidents with corresponding frequencies per type of installation/rig.  The most recent project 

related to fixed and floating units, Accident Statistics for Offshore Units on the UKCS 1990 – 2006 

was completed in March 2008. As mention in [1], offshore oil and gas exploitation is a hazardous 

activity. Many safety and security incidents involving offshore installations around the world occurred 

lately. The Piper Alpha accident, open the eyes on the implementation of risk assessment model 

focussing on early hazard detection to minimize the chain of reaction toward fatalities, [2]. 

     Based on historical database, prediction on the hazardous event can be made, [3].  From this 

database, much can be learned for future risk management, on other offshore platforms as well as in 

other industrial sectors.  A better assessment of the risks involved before other accidents occur and 

should point to a variety of technical and organizational risk management measures. In [4], hazardous 

event is defined as a situation with a potential for causing harm to human safety, the environment, 

property or business.  It may be a physical situation (e.g. a shuttle tanker is a hazard because it may 

collide with the production installation), an activity (e.g. crane operations are a hazard because the 

load might drop) or a material (e.g. fuel oil is a hazard because it might catch fire).  In practice, the 

term “hazard” is often used for the combination of a physical situation with particular circumstances 
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that might lead to harm, e.g. a shuttle tanker collision, a dropped load or a fuel oil fire.  The essence of 

a hazard is that it has a potential for causing harm, regardless of how likely or unlikely such an 

occurrence might be. Floating units in this project are defined to comprise drilling, accommodation, 

and floating production and storage units. In addition, FPSO’s, FSU’s, and TLP’s are classified as 

“floating units” although they are classified as “fixed installations” by the HSE under the Safety Case 

Regulations. As accident is the most severe hazardous event, so this study will predict the accident 

occurrence besides the others events such as incident, near-missed and insignificant by using the 

logistic regression model.  

     Logistic regression (LR) allows one to predict a discrete outcome, from a set of variables that may 

be continuous, discrete, dichotomous, or a mix of any of these. The model is also known as 

polytomous or polychotomous logistic regression in the health sciences and as the discrete choice 

model in econometrics, [5]. Generally, the dependent or response variable (DV) is dichotomous, such 

as presence/absence or success/failure. Discriminant analysis is also used to predict group 

membership with only two groups. However, discriminant analysis can only be used with continuous 

independent variables. Thus, in instances where the independent variables (IV)’s are a categorical, or a 

mix of continuous and categorical, logistic regression is preferred. The maximum likelihood 

estimation (MLE) is the most widely-used general method of estimation procedures and is treated as a 

standard approach to parameter estimation and inference in statistics, [6]. 

 

 

1.1     The Model 
  

The DV in logistic regression is usually dichotomous, that is, the DV can take the value 1 with a 

probability of success π(W), or the value 0 with probability of failure 1- π(W). This type of variable is 

called a Bernoulli (or binary) variable. Although not as common and not discussed in this treatment, 

applications of logistic regression have also been extended to cases where the DV is of more than two 

cases, known as multinomial or polytomous ([7] use the term polychotomous).    

     The IV’s in logistic regression can take any form. That is, logistic regression makes no assumption 

about the distribution of the IV’s. They do not have to be normally distributed, linearly related or of 

equal variance within each group. The relationship between the IV’s and DV is not a linear function in 

logistic regression; instead, the logistic regression function is used, which is the logit transformation 

of π(W):    

     From the general form of Multiple Linear Regression model: 

 

uWWWY kk +Ω++Ω+Ω+Ω= ⋯22110                               (1) 

 

Hence, the logistic model has the following general format: 

 

                      (2) 

 

 

 

where, Wj = j-th independent variable (single/dummy/interaction/generated/transformed),  

Ω0 = constant term, Ωj = j-th coefficient of j-th independent variable Wj , k = number of independent 

variables, (k+1) = number of parameters in the model, Y = dependent variable and u = error term, for 

j=1, 2, 3, …, k. An alternative form of the logistic regression equation is: 
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2     Materials and Methods 
 

2.1     Data Collection 

 

A total of 4205 samples were collected for accidents having occurred on floating offshore units 

engaged in the oil and gas activities on the UKCS in the period 1980-2007. Floating units in this 

project were defined as comprising semi-submersibles, jackups, ships and tension-leg platforms 

engaged in drilling, accommodation, production and storage. Det Norske Veritas AS was contracted 

to undertake the work. This published dataset, together with the complete report, have been 

downloaded from the websites of Oil & Gas UK and HSE, http://www.oilandgasuk.co.uk/ and 

http://www.hse.gov.uk/research/rrhtm/index.htm 

respectively.  

 

 

2.2     Model Building Procedure 

 

STEP 1: All Possible Models 

The number of all possible models, N can be calculated by using the formula: 

 

( )∑
=

=
q

j

q
jCN

1

                                                                 (5) 

 

Where N is the number of possible models generated and q is the number of independent variables 

excluded the dummy variable and j = 1,2,…, q. 

 

 

STEP 2: Selected Models 

Multicollinearity is the intercorrelation of IV. The higher correlation coefficient will increase the 

standard error of the beta coefficients and produce assessment of the unique role of each independent 

resulting in difficult or impossible output. Multicollinearity exist if |Correlation Coefficient| > 0.95. 

Zainodin-Noraini multicollinearity remedial procedures had been applied and details are explained in 

[8] and [9].  

     Next, the coefficient test should be carried out as an elimination procedure of insignificant variable. 

To justify the removal of the insignificant variable, Wald Test ([10]) should be applied to the possible 

models upon the completion of all the elimination procedure of insignificant variables.  

 

 

STEP 3: Best Models 

Identification of the best model should be based on Modified Eight Selection Criteria (M8SC). The 

objective is to determine a model with the lowest value of a criterion statistic. Voglevag [11] 

suggested that instead of minimizing the value of SSE, modification on 8SC should be made by 

maximizing likelihood by replacing it with the Deviance statistic value. The calculation of the 

criterion statistics will be based on the deviance statistics value, number of estimated parameters 

including constant term (k+1) and the sample size (n). The deviance statistics value can be calculated 

as follow: 
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Table 1 Modified Eight Selection Criteria (M8SC) for best model identification 

AIC: 

 

 

RICE: FPE: 

 

 

SCHWARZ: 

GCV: 

 

SGMASQ: HQ: 

 

 

SHIBATA: 

 

The Akaike Information Criterion (AIC), [12] and Finite Prediction Error (FPE), [13] are developed 

by Akaike. The Generalised Cross Validation (GCV) is developed by [14] while the HQ criterion is 

suggested by [15]. The RICE criterion is discussed by [16] and the SCHWARZ criterion is discussed 

by [17]. The SGMASQ is developed by [10] and the SHIBATA criterion is suggested by [18]. 

 

 

STEP 4: Model’s Goodness of Fits 

The following phase is to check the validation of the best model. There are two tests on the model’s 

goodness of fits. The two tests that have been suggested by [19] are Pearson and Deviance Chi-Square 

Goodness of Fits tests.  

 

   

3    Statistical Analysis 
 

3.1 Models Generated 

 

In the development of the LR models for this datasets, Event Category would be the dependent 

variable (DV) noted by Y, whereas Injury/Fatality (X1) and No. of Chain (X2) would be the 

independent variables (IV). As shown in Table 2, Unit Type (D1) and Operation Mode (D2) were 

included as independent dummy variables included in the models. Dummy variables were executed 

during the calculation of the possible models but included after in the models before next model 

building procedure was carried out. All possible models in this study when q = 2 (excluded the 4 

dummies) is ( ) ( ) 32
2

2
1 =+= CCN , as shown in Table 3. 

 
Table 2 Data and variable summary 

VARIABLE 

TYPE 

VARIABLE 

NOTATION 

VARIABLE 

INFORMATION 

DATA TYPE 

Dependent 

Variable 

Y Event Category Binary 

1 = Accident, 0 = Others 

Independent 

Variables 

X1 No. of Injuries/Fatalities Discrete 

X2 No. of Chains Discrete 

D1 Unit Type Binary 

1 = Semi-Submersible, 0 = Others 

D2 Operation Mode Binary 

1 =  Drilling, 0 = Others 

 

 
Table 3 Summary of all possible models 

NO. OF 

VARIABLE 

SINGLE MODEL’S 

NAME 

VARIABLES IN THE MODEL 

1 2 M1 Y,X1,D1,D2 

M2 Y,X2, D1,D2 

2 1 M3 Y,X1,X2,D1,D2 

  

Pearson Correlation analysis verifies that Y has a positive correlation with all four IV’s. There is no 

existence of multicollinearity between IV’s. Thus, no elimination should be made among the 

independent variables.    
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     Next, the coefficient test should be carried out as an elimination procedure of insignificant 

variable by using the backward elimination as shown by [20]. In this paper, model M1 is selected for 

the illustration purpose. For M2, the final model named as M1.0.3, with zero variable removed due to 

multicollinearity and four insignificant variables eliminated.  

 

 

3.2 Modified Eight Criteria of Model Selection (M8SC)  

  

From 3 possible models generated during the stage of this analysis, all three models have been 

selected with different G
2
 value and number of model parameters. The best model was then chosen 

from the selected models by using the M8SC based on the majority of least values as shown in Table 

4. The best model selected is M3.0.1.   

 
Table 4 Values of Eight Selection Criteria (8SC) for selected models 

Selected 

Model 

m = 

k+1 

G2 AIC RICE FPE SCHWARZ GCV SGMASQ HQ SHIBATA 

M1.0.1 3 2511.806 49.926 50.236 49.932 53.913 50.075 47.393 52.071 49.659 

M2.0.1 3 2474.558 49.186 49.491 49.191 53.113 49.333 46.689 51.299 48.923 

M3.0.1 4 2196.307 45.243 45.756 45.254 50.122 45.486 42.237 47.853 44.823 

 

 

3.3 Best Model Verification 

 

To evaluate the adjustment of the best model, Deviance Goodness of fits tests have been carried out in 

this phase. The test is carried out based on the residual obtained in the best model M3.0.1. The sum of 

square of deviance statistics = G
2
 is 2196.307 and 

2
criticalχ  is 

2
4201;95.0χ = 4051.374. Since the G

2
 

value is less than
2
criticalχ , the decision is to accept null hypothesis where the best model M3.0.1 is an 

appropriate model.  From here, the conclusion of best model can be made. Thus, best model M3.0.1 is 

 

(7)                                                 559.0759.1858.1262.5ˆ
221 DXXY −++−=  

 

where X1 is the number of Injuries/Fatalities, X2 is the number of Chains and D2 is the operation mode. 

The result for number of Injuries/Fatalities and number of Chains are consistent with the occurrence 

of accident. The coefficient of D2 gives the negative values. As the D2 is the dummy variable, the 

result shows that the most of the accident happens not because of the drilling activities.  

 

 

4 Conclusion 
 

The Malaysia oil and gas industries expanded tremendously since its early days of the 1900s with 

capabilities in the exploration and production of oil. There are about 200 platforms at present operated 

by various operators in Malaysia. It is crucial to create the awareness among the decision makers, 

managers, technical professionals in Malaysia oil and gas industries about the requirement to have a 

complete database on the risk assessment on offshore platforms. As corporations have become more 

familiar with risk assessment database, this database can be used by applying statistical analysis to 

improve their decision-making processes. The process of model building involves a search for the best 

way to specify a relationship between a dependent variable and a set of independent variables. The 

dummy variable technique enables multiple logistic regressions to handle categorical independent 

variables. For the comparison of this analysis, future work on multiple logistic regressions with 

variable interaction should be carried out.  
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