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Abstract A system of vehicular traffic can be modeled in various ways, such as microscopic, 

macroscopic, and kinetic models. Microscopic models focus on the modeling of individual 

cars with their deterministic or stochastic interactions. On the other hand, with macroscopic 

models we can determine the relation between some observable values of a vehicular system, 

such as density and flux, which usually have the form of partial differential equations of 

conservation type. In kinetic models, the traffic is resembled as a system of interacting gas 

particles described by a distribution function with a time evolution. This mesoscopic model 

is formulated in a Boltzmann-like equation, based on corresponding gain and loss terms of 

microscopic interactions. These above mentioned modeling approaches have actually 

interrelations with one another, such that microsopic behaviour of vehicles will imply certain 

macroscopic state of the traffic system and, by using kinetic model, the detailed transition 

from microscopic to macroscopic state can be explained. This paper is intended to present a 

study on this interrelations between microscopic, macroscopic, and kinetic models based on 

the optimal velocity model. Some numerical simulation results are also presented. 
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1     Introduction  

 

There are three types of models which can be used to examine the dynamics of traffic flow, namely 

microscopic, macroscopic, and kinetic models [1,2]. A microscopic model focuses on individual cars and 

investigate their deterministic or stochastic interactions.  Macroscopic model, on the other hand, consists 

of equations of aggregate quantities like spatial density, average velocity, and velocity moments, which 

are similar to fluid-dynamic equations. Furthermore, kinetic model describes the statistical distribution of 

cars with respect to their locations and velocities. 

     Recently it was suggested that those different types of traffic models may belong to the same 

universality class, in the sense, that they share qualitatively similar properties. To mention few results are 

the study given in [3-11]. Based on the microscopic modeling using optimal velocity function studied in 

[3-5], some relations of microscopic and macroscopic modeling are discussed in [6-7]. Furthermore, some 

traffic models derived from a gas-kinetic model are discussed in various points of view [8-11]. These 

reports motivate a further study on mutual relationship between different types of traffic models. This 

paper is aimed to study the interrelations between microscopic, macroscopic, and kinetic models based on 

the optimal velocity model.  
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2     Microscopic Vehicular Traffic Model  
 

The discussion on microscopic model will be focused on the optimal velocity model. This model is of 

interest because of its ability to explain not only individual behavior of a vehicle, but also it’s connectivity 

to some macroscopic values such as traffic flow and density. The optimal velocity model given in [3] is 

described by the following equation of motion of car i  
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where  xi(t) is the position of the i-th car at time t, 1i i ix x x+∆ = −  is the headway of the i-th car to its 

predecessor 1ix + , ( )iV x∆ is the optimal velocity function on the headway ix∆ , and a is the sensitivity 

parameter.  With this model the behavior of a given car in a traffic system is described as follows.  A 

driver always adjusts the car velocity to approach the optimal velocity, which is determined by the 

observed headway.  Moreover, his movement will also be influenced by the sensitivity a, which describes 

a time lag τ for the car to reach the optimal velocity, such that τ = 1/a.  

     The basic properties of an optimal velocity function are as follows.  Is should be a monotonic 

increasing function.  Moreover, it should have an upper bound on maximal velocity, denoted by maxV , 

which could be determined by the traffic rule or by the technical limitations of the vehicle.  Generally, the 

graph of an optimal velocity function could take a form given in Figure 1. 

 

 
Figure 1 The general optimal velocity functions. 

 

According to these basic properties, the following typical function can be chosen [3] 
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where Vmax is the maximal velocity mentioned above and xc is a critical headway. 

 

 

3     Macroscopic Vehicular Traffic Model   

Macroscopic models of vehicular traffic according to [2] deal with macroscopic variables, such as density � � ���, ��, flux � � ���, ��, and average speed 	 � 	��, ��. Those variables are related by the simple 

identity � � 	�. A flux function can take a form as the following function in terms of density 
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where ��
�  is a maximum density and �����  is a critical density. A graph of flux is usually called a 

fundamental diagram, see Figure 2. 

 

 
Figure 2 Fundamental diagram of traffic flux with respect to density. 

 

     Conservation law can be expressed in first-order partial differential equation with respect to density 

and flux, which has the following form [2,6] 

 ��� ���, �� � ��� ���, �� � 0. 
 

     It is interesting to compare the dispersion relations of microscopic and macroscopic models. In a 

microscopic description, small perturbations with respect to the homogeneous state can be written as [6] 

 

� ��� � 	!��� � "�! � #� exp�'(" � )��. 
 

     While, on the other hand, small perturbations in the macroscopic description can be written as [6] 

 ���, �� � �! � #� exp�'*� � +��	��, �� � 	! � #	 exp�'*� � +�� . 
 

4     Kinetic Vehicular Traffic Model  

According to [9], a simple kinetic model of traffic system can be illustrated as follows. Consider a 

vehicular traffic system on a road with its elements are moving vehicles. Let there are three types of 

vehicles, which are defined as follows. 

 

Type-0:  slow moving vehicles, for example heavy trucks, which travel with velocity u; 

Type-1:  faster vehicles, but for some reason have to move with velocity u; for example cars   

             behind trucks but there is no opportunity to pass the trucks; 

Type-2:  faster moving vehicles with velocity v > u. 

 

     Let further that each type of vehicles has a distribution function ( , )if x t , which is defined as probability 

that there are certain number of vehicles at position x and at time t which are moving at certain velocity. 
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In order to simplify the situation, without loss of generality, let there is a constant number of type-0 

vehicles. If there is no interaction between vehicles, then the vehicles move freely according its velocities, 

so that the time evolutions of type-1 and type-2 vehicles follow the Liouville transport equations [9]  
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     The interactions between vehicles are defined so that collisions between vehicles are avoided. 

Therefore, if a fast moving vehicle is approaching a slower moving vehicle, then it must decelerate or 

brake in order to avoid collision. But, on the other hand, if there is enough space on a multilane road, then 

it can pass the slower moving vehicle ahead. In the case of simpler model, these interactions are defined 

on the right hand side of the above transport equation (3) as follows. 

 

i. The rate of type-2 vehicles, which have to brake, is proportional to the number of slower moving 

vehicles, i.e. proportional to f0 + f1. Therefore, the right hand side of (3) becomes 
 

( ) 210 fff +α . 

 

ii. The probability of type-1 vehicles to pass the vehicles ahead will be bigger, so that the 

acceleration is also bigger, when the traffic density is lower. The interaction term in the model can 

be defined as 
 

( ) 1max fρρβ − , 

        

       with 0 1 2( ) ( ) ( )x f f x f xρ = + + and constant maximum density maxρ . 

 

As a result, the proposed simple kinetic model for the vehicular traffic system has the following form : 
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The domain of the equations has the following constraints: 

 

max210,0 ρ≤++≥ ffff i . 

 

     The aim of organizing a traffic system has usually concerns about how to regulate the vehicles, such 

that an optimal number of vehicles can pass through a certain segment of street. In that case, based on the 

model that has been developed, the aim can be reduced to determining how many faster moving vehicles 

can pass through a certain street, given there are a certain number of trucks present on the same street. 

Furthermore, for the sake of simplification, let the traffic system is in a homogeneous case, i.e. the 

interaction among vehicles is defined to be constant. Therefore, the equations (4) give 

 

 ( ) ( ) .01max210 =−−+ ffff ρρβα  (5) 

Let max 1ρ =  and 
α

γ
β

= , then equation (3) will give the density of type-2 vehicles as a function of type-1 
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vehicles as follows 
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As a result, the mean velocity has the form 
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Since the velocity of traffic flow is defined as  

 

 21 vfufV += , 

 

therefore, the resulting value of traffic flow velocity is  
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This explains that the traffic flow is mostly influenced by the slow moving vehicles in the system. 

 

 

5     Simulation Results  

Simulation study has been carried out to implement the microscopic, as well as kinetic models of 

vehicular traffic. Simulation on microscopic model gives the average velocity of the cars in the system on 

various values of density parameter ρ , and the result given in [10] is presented in Figure 3. Finally, the 

result of traffic flow velocity on simple kinetic model simulation is given in Figure 4 [11].  

 
Figure 3 Microscopic model simulation of average velocity on various density ρ. 
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Figure 4 Simulated traffic flow velocity using simple kinetic model. 

     Fig 3 shows that on a low density, the average velocity of individual car tend to be high, compared to 

the opposite case that high density will imply low velocity. This explains quite well the real traffic 

situation. Moreover, Fig 4 shows a simple kinetic model simulation on traffic flow velocity as a function 

of distribution of slow moving vehicles. This result explains that there is a certain level of slow moving 

vehicles that will give a maximal velocity of the traffic flow. Afterwards, the higher probability that 

slower moving vehicles present on the street, the lower traffic velocity will be. 

 

 

6 Concluding Remarks 

This paper shows that vehicular traffic system can be modeled quite well using microscopic, macroscopic, 

as well as kinetic model.  The simulation results can also well explain the real situation of vehicular traffic. 
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