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Abstract This paper deals with application of spatial prediction techniques (universal 

kriging and cokriging) to predict unmeasured locations in mining field such as mineral 

ores. However, the combination of the kriging and cokriging as many predictive 

techniques is still an active research area to obtain   an adequate prediction model. The 

aim is to obtain solution of spatial prediction using multivariate. We experiment primary 

and secondary variables of the two techniques to create a prediction model that correlated 

covariance functions. Practically, we apply the model on real data samples of (120) of 

Copper and Nickel metals that is taken from the Korf property. We are able to minimize 

the error rates and satisfy the weights constraints comparing with Gaussian and Power 

models.  
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1     Introduction 
 

Statistics study which relies on regionalized variables is called geostatiatics. According to this term, 

spatial data are collected at known sites in two dimensions in the plane, or three dimensions in space. 

The theory of spatial statistics is based on the theory of regionalized random spatial variables, and 

from the real spatial data which are obtained from areas of rainfall data, disease data, air pollution, 

ground water, natural vegetation, mineral ores, or mining engineering. These data form a model of 

varying trends under some predicted assumptions of geostatistics. Mining engineer, Krige, was the 

first to create the prediction of gold in mines, and that was in South Africa. 

This field was later developed by the French mathematical scientist Georges Matheron, [1]; it was 

called ‘kriging’ of prediction method, and it was based on the master thesis of krige, and kriging is 

one of the best linear unbiased estimators used to estimate value in unobserved sites in this field of 

study. During the application of spatial statistics, various information of primary and secondary data 

going to be predicted. The difference between any two points of observations by the vector (h) is 

called the variogram function; this function is used as a term to describe the model of spatial 

continuity distribution. Where the variogram function, covariance, and correlogram are the most 

common model of spatial modeling; the variogram function are also used [2, 3, 4, 5, 6, 7]. Other 

researchers used kriging techniques [5, 8, 9, 10, 11, 12].  

The methods of interpolation such as kriging and cokriging are used and provided good results [13, 

14, 15]. These methods are applied with a real data  in a soil, showing  that co- kriging is used as 

secondary variables, many studies also deal with spatial prediction and parameters of forecasting of 

multivariate [13, 16, 17]. cokriging takes many benefits of spatial multivariate, to evaluate and 

estimate value unmeasured locations [6, 7, 18, 19]. Study of spatial relationships and theory of 

geology application give important to solve problems in spatial prediction in mining field, 

environmental sciences, meteorology, structural engineering and hydrology. In this work, real data 

with locations in south western British Columbia were applied [20]. 
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2      Material and Methods 
 

In this research, geostatistics techniques such as universal kriging and co-kriging have been applied in 

mining field using programming in Matlab language. The performance techniques are evaluated for 

four types of mineral ores in the study field. 

 

 
2.1   Regionalized Variables 
 

Any variable distributed in the place or in the space called a spatially variable. This variable describes 

certain phenomenon (such as degree of metal depth). Where spatial variable differs from normal 

variable because any spatial variable contains value of observation and coordinates represent the 

location on the surface or underground of earth or outside (in the space such as: Gas pollution). Let

( )z s  Represent the spatial variable, and ( )s is location in Euclid space where p
s D R∈ ⊆ , p=1, 2, 3. 

 

 

2.2   Variogram Function  

 

Variogram function is used to describe the mathematical models, which are key factors in the process 

of spatial prediction. It is defined as follows: 
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where ( )2 hγ  is variogram function, ( ) ( ),i iz s h z s+  are values of observations separated by 

distance h with locations ( )is  , ( )i
s h+  and ( )n h  are the total number of pairs of observations. 

Whenever the lag h between the observations is increasing then the covariance became large until it is 

stabled i.e. when ( )h a= this called the range. After that the covariance fades which means that the 

phenomenon is very small.  

 

 

2.3   Second Order Stationarity  

 

Random function is called Second order stationarity if and only if 

 

( )( ) ( ) ( ) ( ), cov ,E z s c h z s h z hµ  = = +   (2)
 

 

defined for all values of s, h, where covariance function is: 

 

( ) ( ) ( )cov ,c h z s h z h = +   and ( ) ( ) 2var 0z s c σ  = =   

 

The relationship between the variogram function and the covariance function for second order 

stationary and isotropy variable can be written as [4]: 

 

( ) ( ) ( )0h c c hγ = −
 

 

where )0( c  variance and covariance )(hc  is positive, while the cross-variogram is defined as: 
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The cross-variogram can be negative, while the variogram function must always be positive [5]. 

 

 

2.4   kriging  

 

Kriging technique is the supposed spatial association between the points known as the spatial 

variability in the Structural Created estimated values. Usually, universal kriging includes the equation 

of the trend surface in the prediction process. 
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Pα  is the 
thP  coefficient and pf  is the 

thP  basic function, that describes the trend of the model 

( ) ( ) ( )z s s e sµ= + , then the predictor of Z is defined as: 
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with the constraint; 
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where this constraint ensures the principle of unbiasedness; 

 

( ) ( )*

oE z s sµ  =   
 

then the model Z(s) becomes: 

 

( ) ( ) ( )z s F S e sα′= +
 

 

kriging is found by minimizing the variance [2]: 
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2.5   cokriging 

 

Both techniques of universal kriging and cokriging required unbiasedness or minimum error. And by 

using Lagrange multipliers the system is solved. In different researches (e.g. [2], [10] and [19]), 

cokriging technique is used, which is based on the primary and secondary variables. For a primary 

variable P and a single secondary variable S, the following covariance matrix must be positive 

definite. cokriging technique requires two conditions which are: 
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Estimated at any node 
*Z  is defined by: 
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where 
*Z estimator is value at any weights; i j,α β

 are weighting factors of universal cokriging. 

 

Drift 
( )scokm

 can be written as:  
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Generally, 
( )scokm

can be expressed as polynomial, with linear drift (l=2) is assumed, then the 

cokriging estimation variance 
2

cokσ  can be written as
 
[14]: 
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2.6   Model Evaluation 

 

Mean absolute error denoted by the (ME) according the equation (10), which was a measure of the 

sum of absolute residue and the mean square error (MSE) refer to equation (11), which is the square 

of the total of square, and the root mean squares error is denoted by (RMSE) according the equation 

(12). Small mean absolute error values indicating a model with few errors have been measured 

accurately [17]. While the values of kriged reduced mean square error is denoted by KRMSE, refer to 

equation (13), showings more accurately the prediction on the point .These models are calculated by: 
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where N is the number of data points, and (KRMSE) are chosen as criteria for the final model 

geostatistical interpolation by using variance of kriging and cokriging [10]. 
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3 Results and Discussion 
 

The spatial data which are used in this paper contains (120) samples, for two sets of mineral ores 

(Copper and Nickel). Each metal has (60) values of metals with real (x, y) locations from the Korf 

Property in south western British Columbia, approximately 120 kilometres east of Vancouver [20]. 

The results in this paper, show that both of the proposed kriging and cokriging techniques as well as 

the parameters of variogram function used rely on comparison of errors. Table 1 shows the results of 

experimental variogram function was applied according equation (1) for all directions of (60) samples 

data and copper metal (Cu). Where h is lag or distance between the observations, ɣ(h,θ) is variogram 

function with angle (θ) and θ= (0, 90, 45, 135). We also show that (0, 90) have the same lag while 

(45,135) have another lags. 

 

 
Table 1 The results of variogram function for Cu 

 

 

 

 

 

 

 

 

Figure (1) below gives the results of the variogram function in all directions (0, 90, 45 and 135). 

We noted these curves between lag (h) on x-axis and vriogram function (gamma(h)) on y-axis have  

similar behaviors in all directions for copper metal (Cu) of (60) samples. 

 

 
Figure 1 Variogram function for (Cu) 

 

Consequently, Table 2 shows the results of experimental variogram function according equation 

(1.1) for all directions of angles (0, 90, 45, and 135) of (60) samples for Nickel metal where lag h is 

the distance between the observations, the second and the third columns gave the variogram function 

with theta 0,and 90 ( have the same lag). Similarly, we obtained the variogram functions in fifth and 

the sixth columns  

 
 

Lag (h) ɣ(h,0) ɣ(h,90) Lag (h) ɣ(h,45) ɣ(h,135) 

1 0.3179 0.0211 1.414 0.5329 0.3119 

2 0.4717 0.0273 2.828 0.9257 0.4629 

3 0.8009 0.0388 4.243 1.6943 0.7533 

4 1.4289 0.0488 5.657 3.3500 1.2478 

5 2.7694 0.0602 7.071 0.5329 2.2546 
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Table 2 The results of variogram function for Ni 

 

 

 

 

 

 

 

 

Figure (2) shows four curves of all directions (0, 90, 45, and 135) for the second metal (Ni) in all 

directions of variogram functions where the x-axis represent the lag h and the y-axis represent the 

variogram functions according the results that are obtained in Table 2.  

 

 
 

Figure 2 The variogram function for (Ni) 

 

Figure (3a) illustrates the average of variogram function for copper metal (Cu) with two directions 

(0, 90, blue curve) and (45, 135, red curve).  While Figure (3b) demonstrates the average of variogram 

function for Nickel metal (Ni) with two directions (0, 90 blue curves) and (45, 135 red curve). 

 

 

 

 

 

 

 

 

 

 

Lag (h) ɣ(h,0) ɣ(h,90) Lag (h) ɣ(h,45) ɣ(h,135) 

1 0.0524 0.0231 1.414 0.0594 0.0356 

2 0.1192 0.0293 2.828 0.1381 0.1023 

3 0.2289 0.0311 4.243 0.2957 0.1888 

4 0.3333 0.0375 5.657 0.4281 0.2561 

5 0.4260 0.0502 7.071 0.5642 0.2298 
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Figure 3 (a) The average of variogram function for Cu and (b) The average of variogram function for Ni 

 

The curves of the first metal (Cu) shown in Figure (3a) are the best fitted of power model that is 

defined as: 

 

( ) a

oh c hγ = , 0< h < 2  (14) 

 

While the curves of the second metal (Ni) refer to Figure (3b) are the best fitted of Gaussian model 

that is defined as: 

 

( )
2

1 exp , 0o

h
h c h

a
γ

  −
= −  

  
≻  (15) 

 

In Table (3) we note the parameters of variogram function for the data of copper metal, these data 

has no sill or range. In other words, we cannot clearly identify of sill or range and nugget effect is 

=0.1695 for copper in angle (0,90) and nugget effect is =0.3363for copper in angle (45,135) the 

curves of this metal nearest to power model refer to equation (1.14), while the Gaussian model 

equation (1.15) was chosen of nickel metal because the curves of all directions for variogram function 

are similar of Gaussian model with all parameters of sill (0.2381)l, nugget effect (0.03775) and range 

(4) in angle (0,90), while in angle (45,135) sill =0.3970 , nugget effect = 0.04752  and the range 

=5.657.  

 
Table 3 The parameters of variogram function for the fundamental directions 

Metal Direction Nugget effect Sill Range 

Copper 
�

0[ =θ
,

]90�=θ  0.1695 --- --- 

 
�45[ =θ

, ]135
o=θ  0.3363 --- --- 

Nickel 
�

0[ =θ
,

]90�=θ  0.03775 0.2381 4 

 
�45[ =θ

,
]135o=θ  0.04752 0.3970 5.657 

 

The estimated values of each metal with the models of covariance function are shown in Table 4 

below, and the error in the prediction insignificant, and we used to variance estimator kriging. In 

addition that, the minimum error in prediction, also the weights are satisfied the conditions and 

computed under minimum variance which makes the mean prediction error minimum.  
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Table 4 The comparison between both techniques kriging and cokriging for four mineral ores 

 

 

 

 

 

 

 

 

 

 

 

The cross validation results in Table 5 below, contain mean error, mean square error, root of mean 

square error, and kriged reduced mean square error refer to equations (10, 11, 12, and 13) 

respectively. In this table, we show there is a small difference between the results of both kriging and 

cokriging techniques. Although the results of both techniques close to 1, but still, the second 

technique (cokriging) is better than the first technique (kriging). 

 
 

Table 4 The cross validation results 

Medel ME MSE RMSE KRMSE 

kriging 
Cokrigin

g 

Power -0.3143 1.2204 1.1047 0.7999 0.8976 

Gaussian -0.1857 2.5578 1.5993 0.8984 1.0146 

 

 

5     Conclusion 
 

This study shows that kriging techniques can be used for the best prediction of mining field. There are 

many benefits over universal kriging and cokriging techniques with the small variations in forecasting 

process. Each combination of both techniques is added to the spatial interpolation as auxiliary 

variables. The behaviour of each metal has different curve than the others. The models of covariance 

function are shown with their features by using the variogram and cross-variogram functions where 

the power model is clearly for the copper metal, while the Guassian model represents the data of 

nickel metal. The differences between both techniques were little. The results of this paper show that 

cokriging technique has better performance than universal kriging as the variance of the prediction 

error is minimized and satisfies the weights. 
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