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Abstract The availability of a complete hourly rainfall dataset is required for hydrological 

applications, statistical modeling and forecasting of precipitation. The issues of missing data 

are of serious concern in rainfall modelling due to the problem in computing the 

autocorrelation when gaps of missing data are encountered in the pooled data. The present 

paper discusses the applicability of three methods of handling missing hourly data when the 

Bartlett Lewis rectangular pulses model is utilized: zero substitution, single imputation and 

multiple imputations. The three methods are applied to the hourly rainfall data from the 

Bukit Bendera rain gauge station, which consists of a complete nine year rainfall series. The 

methods are tested with different percentages of randomly generated missing rainfall values. 

The performance of the methods is studied in terms of the mean absolute deviation errors 

that are found during different monsoon periods. The findings indicate that the best method 

to address missing data when applying the Bartlett Lewis rectangular pulses model is the 

single imputation method.  
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1     Introduction 
 

Missing values are a common problem faced during the analysis of time series data. A complete hourly 

rainfall dataset is required for many purposes, such as hydrological applications, statistical modelling and 

the forecasting of precipitation. Certain issues arise in modelling when missing data is encountered in the 

pooled data, particularly in the case of computing autocorrelations. There are several reasons for missing 

data. For example, hourly rainfall may be missing for a certain period of time because the rain gauge is 

not functioning. In addition, rainfall data may be treated as missing data where reporting errors, recording 

errors intermittent reporting are involved.  

     The hourly rainfall data have the characteristics of being highly spatial discontinuous and uncorrelated 

over time. The discrete nature of rainfall in time and space poses a unique problem for meteorologists and 

climatologists in comparison with more continuous variables, such as temperature and pressure. 

Therefore, most traditional approaches of infill are not suitable for hourly rainfall data. However, the 

estimation of hourly rainfall missing data remains a challenge that is rarely reported or addressed in extant 

literature.  

     The Malaysian National Network System (MNNS) uses three different methods for the collection of 

rainfall data. Most rainfall stations in Peninsular Malaysia apply these three methods concurrently, which 

inadvertently results in missing rainfall data. The missing data can be observed based in at least one of 

these recording methods at any given time. A significant difference in the data measurements collected 

from individual stations due to the use of different recording methods at the same time at individual 
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stations. Through a data exploration exercise, the discrepancy between one method of measurement and another 

are found to range between 0% - 100%, as mentioned by  [1], which  indicates the relative instability of the data.    

     The handling of missing data is an issue that is widely examined in extant literature regarding different 

daily rainfall data from various climates, but rarely for hourly rainfall data. Several methods exist for 

imputing missing rainfall data. The normal ratio method and the inverse distance weighting method are 

two commonly used methods, for example, [2] , [3] and [4]. Furthermore,  [1]  apply a model based on 

the combination of the artificial neural network (ANN) and the nearest neighbour imputation (NNeigh) 

techniques.   

     Tang  [5] demonstrates that the spatial correlations of hourly rainfall amount between two rainfall 

stations in Peninsular Malaysia vary from month to month. Thus, the NNeigh method is commonly 

applied in Peninsular, which involves replacing missing data for a particular hour with the observed value 

of the nearest station. Additionally, the method is used by [6] for predicting the values of missing hourly 

rainfall data. In addition, [7] use the Kriging method for the spatial prediction of hourly rainfall data. 

Although the empirical orthogonal function method is the most effective tool in dealing with spatially 

inhomogeneous climate fields, the method may yield unreasonable results when the field is highly non-

stationary, as in the case of hourly precipitation data [6]. The requirement of stationarity makes it a poor 

choice for the handling of missing hourly precipitation data [8]. 

     Methods of handling missing data are effective if one is aware of the types of missing data. The three 

types of missing data are missing completely at random (MCAR); missing at random (MAR); and not 

missing at random (NMAR). Malaysian hourly rainfall missing data are considered to fall into the 

category of MCAR, which means that a particular pattern of missing data is not dependent on the values 

that are missing and is not dependent on the observed data [9].  

     In Peninsular Malaysia, a limited number of rain gauge stations exist that complete hourly rainfall 

observations over long periods. The present study presents some imputation methods for estimating the 

missing hourly rainfall data. While a number of extant works consider the handling of daily missing 

rainfall data in Peninsular Malaysia, few consider the manner in which to handle hourly missing rainfall 

data. Three methods of handling missing data are considered in the present study: zero substitution, single 

imputation and multiple imputations. The objective of this study is to examine the effects of the different 

methods of filling in missing values on the estimated rainfall statistics produced by the Bartlett Lewis 

model and to determine which of the three methods for handling missing rainfall data is best for rainfall 

modelling.  

 

 

2     Stochastic Rainfall Modelling 
 

Stochastic rectangular pulses cluster rainfall models are frequently applied in the field of hydrology. For 

example, such models can be used to generate rainfall data across a range of timescales for the purpose of 

reservoir design, flood studies and design of sewerage systems. The Bartlett-Lewis model, which is a 

popular cluster Poisson model,  is based on stochastic cluster rainfall point processes models is found to 

accurately reproduce conventional rainfall statistics over a range of aggregation levels, normally between 

1h  and 1 day [10]. Many studies have considered such models for describing the rainfall patterns for a 

single site.  Rodriquez-Iturbe et al. [11], [12], [13], [14-16] and [17] apply the Bartlett-Lewis model in 

their respective research. The Bartlett Lewis model is successful in describing the rainfall processes for a 

wide range of temporal scales in a variety of countries, such as the UK, the USA and Australia. 

 

 

2.1     Modified Bartlett Lewis Model (MBL) 

 
The modified Bartlett Lewis (MBL) model assumes that storms arrive following a Poisson process with 

rate λ . Within each storm, rectangular cells arrive following another Poisson process with rate β . The 



55 

 

duration of the storm is distributed according to an exponential distribution with parameter γ . The depth 

of a cell is assumed to follow an exponential distribution with parameter 1/ xµ  and the cell duration η  is 

distributed following a gamma distribution with shape parameter α  and scale parameter ν . Both β  and 

γ  are scaled with respect to the cell duration to obtain the dimensionless parameters /κ β η=  and 

/φ γ η= .  The MBL is thus defined by six parameters ( , , , , , )xλ µ α ν κ φ  as depicted in the schematic 

provided in Figure 1. The equations of the MBL model are presented within numerous extant studies [11]. 

The equations relate the statistical properties of the rainfall process in discrete time throughout the entire 

time domain to the model parameters and serve as the basis for model fitting. 

 
 

2.2     Model Fitting 
 

In the absence of any more sophisticated techniques for parameter estimation, the Nelder-Mead 

optimization algorithm is applied to minimize the objective function, which is as follows:  
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where 1 2( ) ( ( ), ( ),..., ( ))ky T y T y T y=T  is a vector of summary statistics computed based on the data y

, 1 2( ) ( ( ), ( ),..., ( ))kτ τ θ τ θ τ θ=θ  denotes a vector of the fitted value of T  under the model and iw  is a 

collection of positive weights to avoid bias due to the differing orders of magnitudes of observed values 

of statistics involved which are assumed as 1 / ( ( ))iV ar T y , where ( ( ))iV ar T y  represents the thi

diagonal elements of the covariance matrix of the summary statistics.  The sample moments used to 

determine model parameters are 1-hour mean, 24-hour mean, 1-hour variance, 24-hours variance, 1-hour 

lag-1 autocorrelation  and 1-hour probability of  wet. 

 

 

2.2.1     The Nelder-Mead Algorithm  

 

The Nelder-Mead algorithm is one of the most well-known algorithms  [18] is widely used for parameter 

estimation and for problems with discontinuous functions which occur frequently in statistics and 

mathematical experiments. The popularity of the algorithm stems from its simplicity and ease of 

application. The algorithm is designed to resolve the classical unconstrained optimization problem of 

minimizing a given nonlinear function. Spendley et al. [19] introduce the basic formulation of the 

Figure 1 Explanatory sketch of the Bartlett-Lewis rectangular pulses model 
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algorithm, which is based on tracking ideal operating conditions by evaluating the output of a system at a 

set of points; forming a simplex in the parameter space; and continuously forming new simplices by 

reflecting a point in the hyperspace of the other points. The concept is later acknowledged by [18]  as an 

optimized mathematical formulas. The formulation and the configuration of the Nelder-Mead algorithm is 

presented in greater detail in extant literature, such as [18] and [20]. 

 

 

3     Rainfall Data 
 
The hourly data used in the present analysis are obtained from the Bukit Bendera rain gauge station in 

Peninsular Malaysia, which is situated at 5.42 �N and 100 .27 � E as shown in Figure 2. Bukit Bendera is 

selected as a representative climatic data station due to the availability of a complete hourly rainfall data 

over a larger period of time when compared against other rain gauge stations. Rainfall varies seasonally at 

the Bukit Bendera station due to the occurrence of the monsoon winds. The seasonal variation is primarily 

influenced by the southwest monsoon season, which occurs between May and August, and the northeast 

monsoon season, which occurs between November and February. During the northeast monsoon season, 

many areas on the east coast of Peninsular Malaysia are expected to receive heavy rainfall. On the other 

hand, areas on the west coast that are sheltered by the mountain ranges are more or less free from the 

influence of the north east monsoon season. In addition, the transition period between the monsoons, i.e. 

the inter-monsoon period, occurs between the months of March to April and September to October. The 

hourly data are collected from the database of Malaysian Meteorological Service (MMS) and contain 

observations of the period between 1977 and 1986. One important feature of rainfall data in Malaysia 

must be considered when imputing missing values. The nature of rainfall of Malaysia results in a high 

percentage of dry hours and, consequently, a large percentage of the hourly rainfall values are 0. This 

feature of the data needs to be taken into account when imputing missing values. Figure 3, below, shows a 

histogram of the Bukit Bendera hourly rainfall measurements of the same four months of all nine years 

examined, during both of the aforementioned monsoon seasons and both inter-monsoon periods. The 

plots indicate a large proportion of zeros, as well as high proportion of the lowest depths of the number of 

rainfall hours for the months considered.  

 

 

 
Figure.3 Hourly rainfall data for different months  

at Bukit Bendera station 

 

Figure.2 geographical location of  Bukit Bendera station 
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4     Missing Data Methods 
 

4.1     Zero Substitution Method (ZS) 

 

The zero substitution (ZS) approach is an ad hoc method for handling missing data in which the missing 

data are replaced with the zero values. The zero value is assumed to be the best estimate for any 

observation with a missing value. The limitation of the method is that it fails to take into account the 

monsoon periods and dry months, causing overestimation and underestimation of the rainfall amounts for 

the dry months and monsoon periods, respectively. 

 

 

4.2     Hot-Deck Method 

 

Several methods involving the imputation of missing data involve single imputation. A common single 

imputation method often utilized by researchers is the Hot-Deck method, which involves replacing each 

missing value with a randomly drawn value from the set of data values found within the same month [21]. 

Although this method is simple to employ, the drawback is that the variance estimates are  almost always 

reduced [22] and [23] and do not reflect the uncertainty due to imputation. In the present approach, the 

imputation method utilized simulates the missing data by statistical distribution, which is assumed to be 

exponential based upon [24] and [25]. The method is referred to as a single imputation method (SI).  

 

 

4.2.1     Single Imputation method (SI)  

 
The first step of the single imputation method (SI) involves generating the occurrence of missing data for 

wet and dry hours. To determine if a particular  hour is wet or dry, a uniform distribution on the interval 

[0,1]  is generated for a random variable, say r , and compared to the probability of wet (Pwet) of that 

particular month. If r is less than Pwet, then the hour is a dry hour. Otherwise, the hour is classified as a 

wet hour. Finally, the imputed values for the missing hours are drawn from a distribution which is 

assumed to be an exponential distribution with a rate λwhich is equal to 1/ Mn where Mn is the mean 

amount of wet hours for that particular month.  

 

 

4.2.2     Multiple Imputation Method (MI) 

 
The multiple imputation method (MI) involves replacing each missing value with an average based on 

more than one simulated value [26-27]. The method applied in the present study differs from previous 

studies because the multiple imputation method involves repeating the SI method 10 times in two 

principal phases. The first phase consists of two steps. The first step involves imputing the missing values 

using single imputation method. The second step involves determining the estimated statistics through the 

use of the parameters obtained during the first imputation.  

     Similarly, the second phase consists of two steps, jointly referred to as a stage. The first step involves 

performing a second single imputation and estimating the parameters. The estimated parameter from the 

second imputation is averaged with the estimated parameter resulting from the first single imputation and 

applied when determining the estimated statistics based on the derived model. The averaging and 

application of the estimated parameter from the first and second imputation is referred to as Stage 1. 

Subsequent stages incorporate the estimated parameter of an additional single imputation, which is 

averaged alongside the estimated parameters included in the previous stage and applied in the derived 

model. The process is repeated nine times, resulting in the parameter estimates of ten separate single 

imputations being averaged and applied to the derived model at the ninth stage.  
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5     Performing the Imputation Method  
 
The data at the Bukit Bendera target station are assumed to be missing data up to a certain percent for the 

purpose of testing the performance of the different methods on the model fitting. The missing hourly data 

for the majority of stations in Peninsular Malaysia is found to be less than or equal to than 10%. However, 

to investigate the consistency of the results with the model fitting results, the analysis examines three 

different percentages of missing data: 5%, 10% and 15%. The accuracy of the model is assessed using 

goodness of fit statistics involving the mean, variance, autocorrelation and probability of wet hours. The 

performance of the imputation methods for deriving the estimated statistics of the model are compared 

with the observed statistics of the complete data using the mean absolute error (MAE) criterion, which is 

as follows: 
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where i estX − stands for the value of the thi estimated statistics, i obsX − is the corresponding observed 

value and m is the number of statistics evaluated.  

 

 

6     Results and Discussion 
 
Three methods of imputing missing hourly rainfall data are compared in terms of mean absolute error and 

the results are presented in Table 1. The SI method is found to dominate the ZS and MI methods for 

datasets where up to 10% of the data are missing. However, the MI method results demonstrate better 

levels of MAE from stage 1 to stage 9 for all missing data; and the estimates generally do not improve 

beyond stage 2, indicating that more than two repetitions of the same stage do not improve the estimated 

statistics. The results of 5% missing data are selected for comparing the estimated statistics, based upon 

the MBL model, with the corresponding observed statistics. Figures 4 to 7 demonstrate the observed and 

estimated statistics which are based on the mean, variance, lag-1 autocorrelation and probability of wet 

for both 1-hour rainfall data and 24-hour rainfall data. The results indicate that the single imputation 

method outperforms the other two methods as it produces a close agreement between the estimated and 

the observed statistics for all statistics with exception to the lag-1 autocorrelation. All of the methods fail 

to provide a precise estimate of the lag-1 autocorrelation. 

 

7     Conclusion 

Three different imputation methods are proposed in the present paper: the zero substitution (ZS) method; 

the single imputation (SI) method; and the multiple imputation (MI) method. The performance of the 

methods is examined in relation to the analysis of rainfall data from the Bukit Bendera rain gauge station. 

The investigation of the three imputation methods is assessed based on the mean absolute error (MAE) 

between the estimated and observed statistics derived from the Bartlett Lewis model. The methods are 

tested with different percentages of randomly generated missing rainfall values. The single imputation 

(SI) method is found to perform better in all months considered. 
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Table1 Comparison of imputation methods based on MAE with various percentages of missing values for the same 

month of different years 

                                                                     November 
 

September 

Method 5% 10% 15% 
 

5% 10% 15% 

Zero Substitution 4.12 15.15 13.30 
 

4.38 8.33 17.99 

Single imputation 2.74 12.25 7.38 
 

2.87 5.50 13.29 

Multiple imputation 4.85 11.97 9.09 
 

8.64 5.33 11.84 

        
Values of MAE for stages 

       
stage1 5.21 12.42 11.33 

 
10.50 5.33 19.07 

stage 2 4.85 12.20 9.23 
 

8.64 8.73 18.48 

stage 3 14.21 13.11 9.43 
 

11.99 15.52 17.12 

stage 4 13.25 12.84 10.06 
 

12.30 17.44 18.79 

stage 5 13.82 13.05 9.09 
 

10.91 17.31 18.25 

stage 6 14.56 11.99 9.73 
 

11.36 18.79 18.37 

stage 7 13.06 11.97 9.84 
 

11.63 18.05 13.91 

stage 8 13.33 12.15 12.19 
 

11.92 17.69 11.89 

stage 9 12.73 12.35 10.06 
 

11.31 17.72 11.84 

        
                                                                 June 

 
                    March 

Method 5% 10% 15% 
 

5% 10% 15% 

Zero Substitution 4.13 12.76 19.72 
 

13.62 13.34 8.26 

Single imputation 1.66 7.53 12.41 
 

7.92 8.60 22.87 

Multiple imputation 4.83 8.10 9.83 
 

16.66 9.46 8.09 

        
Values of MAE for stages 

       
stage1 7.83 8.10 10.49 

 
16.66 13.56 8.09 

stage 2 7.52 8.98 10.24 
 

41.34 10.49 10.89 

stage 3 7.84 8.97 9.92 
 

41.88 11.12 9.10 

stage 4 5.95 9.00 9.83 
 

42.84 12.16 9.53 

stage 5 4.83 11.81 11.62 
 

42.16 10.08 10.33 

stage 6 5.45 10.68 11.66 
 

41.69 9.46 8.89 

stage 7 5.40 9.75 11.14 
 

41.78 10.98 10.47 

stage 8 9.48 10.61 12.18 
 

41.07 11.61 10.85 

stage 9 10.27 10.20 11.46 
 

38.21 12.44 11.31 
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Figure 4 Comparison of the estimated statistics for three different imputation methods for November at Bukit 

Bendera station 
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Figure 5 Comparison of the estimated statistics for three different imputation methods for September at Bukit 

Bendera station 
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Figure 6 Comparison of the estimated statistics for three different imputation methods for June at Bukit 

Bendera station 
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Figure 7 Comparison of the fitted statistics for three different imputation methods for March at Bukit 

Bendera station 
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