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Abstract Developing reliable estimates of streamflow prediction are crucial for water 

resources management and flood forecasting purposes. The objectives of this study are to 

identifying which the physiographical and hydrological characteristics affected in multiple 

linear regressions (MLR) model to estimated flood quantile at ungauged site. MLR model is 

applied to 70 catchments located in the province of Peninsular Malaysia. Three quantitative 

standard statistical indices such as mean absolute error (MAE), root mean square error 

(RMSE) and Nash-Sutcliffe coefficient of efficiency (CE) are employed to validate models. 

MLR model are built separately to estimate flood quantile for T=10 years and T=100 years. 

The results indicate that elevation, longest drainage path and slope were the best input for 

MLR model. 
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1     Introduction 
 

Accurate estimate of streamflow is important for many engineering project such as flood risk assessment 

projects, watershed planning and management of hydraulic structures projects such as; dams, roads and 

design urban drainage system [1, 2]. In order provide reliable estimate of streamflow, historical data at-

site of interest is needed for estimate. However, it often happen the historical data at-site of interest not 

always available. Although at-site of interest may have some available data but the data is not enough to 

describe the catchment flow because of the changes in watershed characteristics such as urbanization [3].  

The UK Flood Estimation Handbook (FEH) notes that “many flood estimation problems arise at 

ungauged sites which there are no flood peak data” [4].  Typically some site characteristics for the 

ungauged sites are known. Thus, regionalization is carried out to make estimates of flow statistics at 

ungauged sites using physiographic characteristics. In streamflow modeling and forecasting, it is 

hypothesized that incorporating the catchment characteristics variables would improve prediction 

accuracy and model reliability. The variables affecting the streamflow prediction include catchment 

characteristics (size, slope, shape and storage characteristics of the catchment), storm characteristics 

(intensity and duration of rainfall events), geomorphologic characteristics (topology, land use patterns, 

vegetation and soil types that affect the infiltration) and climatic characteristics (temperature, humidity 

and wind characteristics) [5,6].  

     The objective of research paper is to identify which characteristics or input for MLR model that the 

most effective in estimating flood quantile at ungauged site at Peninsular Malaysia. The five 

characteristics are rearranged to build 31 combination types of inputs for MLR model. MLR for modeling 

catchment characteristics against observed (flow) is the most commonly approached used in rainfall 

runoff modeling [7]. There are some previous researches used multiple linear regression and flood 

frequency analysis in forecasting flow when historical data not available. MLR is the most consistent 

method for estimating flood quantiles for unguauged sites [3, 8, 9]. The linear regression based methods 

of flood regionalization used to make estimates of flow for ungauged sites discussed by Vogel and Kroll 

[8], Tasker et al. [10] and Pandey and Nguyen [3]. One of the most widely used in regionalization 

technique is fitting a probability distribution to a flow series, or parameters to a flow duration curve, and 
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then relating the model parameters to physical catchment characteristics [11].  The performances of 

regression models in estimating the flood quantiles for ungaged sites have been assessed in Pandey and 

Nguyen [3] by applying jackknife procedure in simulating the ungauged sites. The jackknife procedures 

are required to simulate gauged station to represent ungauged site.      

 

 

2     Methodology 
 

2.1   MLR Based Method of Regionalization 

 

The performances of regression models in estimating the flood quantiles for ungaged sites have been 

assessed in Pandey and Nguyen [3] by applying jackknife procedure in simulating the ungauged sites. In 

order to estimates streamflows at ungauged sites, power form function such as: 

 

                                                             0210 ...21 εα ααα m

mT AAAQ =
             (1) 

   

is commonly used to build relation between streamflow and the catchment characteristics [12, 13, 14]. 

Here, 
mααα ,...,, 10
 are the model parameters, 

mAAA ,..., 21
 are the catchment characteristics, 0ε  is the 

multiplicative error term, m is the number of catchment characteristics and TQ  represents flood quantile 

of T-year return period. Eq. (1) can be solved using linear regressions by linearizing the power form 

model using a logarithmic transformation to the form. The linearized power form model becomes as 

follow: 

  

                                  0 1 1 2 2 0ln( ) ln( ) ln( ) ln( ) ... ( ) ln( )T n nQ A A Aα α α α ε= + + + + +
.                    (2)

 

 

Eq. 2 can be solved using MLR. MLR attempts to model the relationship between two or more 

explanatory variables and a response variable, by fitting a linear equation to the observed data [15].  The 

dependent variable y is given by 
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where are the explanatory variables, 
iβ are regression coefficient, and ε is the error that associated with 

the regression and assumed to be normally distributed with  expectation value zero and constant variance. 

The sample estimate of the parameter vector  β , is given by 
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where X is the design matrix that contains the levels of explanatory variables: 
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n i the sample size and 

 

                                                                
( )1 2

T

nY y y y= …
         (6) 

 

is the vector of observations of the response variable. 

 

 

3     Experimental Design 
 

3.1   Data 

 
The annual maximum flow series from 88 stations obtained were used in this study. The data obtained 

from Department of Irrigation and Drainage, Ministry of Natural Resources and Environment, Malaysia. 

Fig. 1 shows the location of the study region. The stations include wide variety of basins region ranging 

from 16.3 km
2
 to 19,000 km

2
. The period of the flow series for different sites vary from 11 -50 years 

starting from 1959 – 2009. Two types of data, physiographical and hydrological data are used in this 

study. Five variables including four physiographical variables and one hydrological variable were 

implemented in this work. The four physiographical variables are catchment area (AREA), mean 

catchment slope (MCS), elevation (ELV) and longest drainage path (LDP). The hydrological variable is 

annual mean total rainfall (AMR). Probability distributions such as generalized extreme value (GEV), 

generalized pareto (GPA) and generalized logistic (GLO) distributions were fitted to the flow series using 

L-moments estimator (Hosking, 1990). The generalized extreme value (GEV) statistical model used in 

this study to estimate flood quantile for 10- and 100- years return period. This model was found suitable 

for flood patterns in Malaysia [16]. 

 

 
 

Figure 1 Map showing location of stream flow stations used in the study 

 

3.2     Evaluation Criteria 

 

3.2.1   Evaluation Criteria 
 

To assess the performance of each regional flood frequency analysis model, the following numerical 

indices are used: mean absolute error (MAE), root mean square error (RMSE), Nash-Sutcliffe coefficient 
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of efficiency (CE) and coefficient of determination
2( )r . The definitions of MAE, RMSE, CE and R are 

provided in Eq. (7) - (10). 

 

∑
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where iTQ ,  is the observed flows, iTQ ,
ˆ  is the predicted flows, iTQ , is the mean of the observed flows, 

,
ˆ

T iQ is the mean of the predicted flows  and n is the number of flow series that have been modeled. The 

MAE is related with the prediction bias whereas the RMSE is associated with the model error variance. 

Both of MAE and RMSE evaluate how closely the predictions match the observations by judging the best 

model based on the relatively small MAE and RMSE values. The coefficient of efficiency (CE) provides 

an indication of how good a model is at predicting values away from the mean. CE ranges from ∞− in 

the worst case to 1 (perfect fit). An efficiency of lower than zero indicates that the mean value of the 

observed flow would have been a better predictor than the model. Coefficient of determination can also 

be expressed as the squared ratio between the covariance and the multiplied standard deviations of 

observed and predicted values. The range of 
2r  lies between 0 and 1, and it describes how much of the 

observed dispersion is explained by the prediction. A value zero means no correlation at all whereas a 

value of 1 means that dispersion of the prediction is equal to that observation.  

 

3.2.2   MLR Implementation  
 

A jackknife multiple linear regression is simulated using MATLAB software. The observed flow data are 

expressed as a function of catchment area (km
2
), annual mean rainfall (mm), elevation (m), longest 

drainage path (m) and mean catchment slope (%). From Eq. (2) the observed flow and five explanatory 

variables are converted into the natural logarithm form. The model then is fitted by regular least squares 

procedures. 
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4     Results and Discussion 
 
The objective of this paper is to investigate the effects of variables towards the performance of multiple 

linear regressions in estimating the flood quantiles for ungauged sites. To this end, effort is focused on 

selecting best input variables for MLR in order MLR to perform a good estimation. As stated earlier, 

there are five variables using in this study. The five variables are area 1( )x , elevation 2( )x , longest 

drainage path 3( )x , mean catchment slope 4( )x  and annual mean total rainfall 5( )x . The performance of 

each model depend on it prediction quantiles. The prediction quantiles compared in the real domain and 

not the logarithm transformation [3]. The data set split into two sets of data which are training and testing 

data sets. The training data set is used to fit the model and obtain the model parameters while the testing 

data set used to evaluate the performance of the model. In this study jackknife procedure was 

implemented for simulating the ungauged sites. Jacknife procedure required to move one site form the 

data set and the parameters models are estimated using the remaining site in data set. This process is 

repeated until all sites are removed at least once [3].  

 

 

 
 

 
Figure 2 Observed and best predicted streamflow by MLR models of stations in Peninsular Malaysia for 10 year 

and 100 year return periods 
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Table 1 Performance MLR using different variables obtained from the jackknife procedure for T=10-year. 

 

Variables implement in 

model 

 

 T = 10-year 

 RMSE MAE CE R 

1x  
 

1002.2000 457.0000 0.5168 0.7225 

2x   
1536.2000 678.2000 -0.1354 0.0358 

3x   
898.2000 438.9000 0.6118 0.7684 

4x   
1426.8000 626.2000 0.0206 0.1795 

5x   
1539.9000 669.6000 -0.1408 0.0391 

1 2,x x   
944.9000 442.3000 0.5704 0.6567 

1 3,x x   
797.9000 388.4000 0.6937 0.7672 

1 4,x x   
1005.4000 460.6000 0.5137 0.7171 

1 5,x x   
1055.7000 469.4000 0.4638 0.6564 

2 3,x x   
836.5000 407.9000 0.6633 0.8086 

2 4,x x   
1425.9000 629.8000 0.0218 0.1660 

2 5,x x   
1539.0000 671.8000 -0.1396 0.0245 

3 4,x x   
883.3000 440.2000 0.6246 0.7832 

3 5,x x   
955.6000 453.2000 0.5606 0.7225 

4 5,x x   
1441.5000 628.7000 0.0003 0.1215 

1 2 3, ,x x x   
818.6000 395.6000 0.6776 0.7401 

1 2 4, ,x x x   
948.8000 446.4000 0.5669 0.6496 

1 2 5, ,x x x   
995.3000 456.3000 0.5233 0.6131 

2 3 4, ,x x x   
746.2000 383.1000 0.7321 0.8697 

2 3 5, ,x x x   
905.7000 422.9000 0.6054 0.7604 

3 4 5, ,x x x   
940.2000 454.6000 0.5747 0.7408 

1 3 4, ,x x x   
1872.9000 1028.7000 -0.6877 0.0283 

1 3 5, ,x x x   
866.1000 405.8000 0.6391 0.7189 

2 4 5, ,x x x   
1441.9000 633.0000 -0.0003 0.7408 

3 4 5, ,x x x   
866.1000 405.8000 0.6391 0.1133 

1 2 3 4, , ,x x x x   
758.5000 386.5000 0.7232 0.7889 

1 2 3 5, , ,x x x x   
879.5000 411.9000 0.6278 0.6972 

2 3 4 5, , ,x x x x   
819.1000 399.2000 0.6772 0.8350 

1 3 4 5, , ,x x x x   
816.2000 398.2000 0.6795 0.7560 

1 2 4 5, , ,x x x x   
999.3000 460.5000 0.5196 0.6050 

1 2 3 4 5, , , ,x x x x x   
820.3000 401.7000 0.6763 0.7538 
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Table 2 Performance MLR using different variables obtained from the jackknife procedure for T=100-year. 

 

Variables implement in 

model 

 

 T = 100-year 

 RMSE MAE CE R 

1x  
 

1549.7000 735.8000 0.4665 0.6588 

2x   
2257.1000 1022.5000 -0.1317 0.0416 

3x   
1466.7000 726.2000 0.5221 0.6914 

4x   
2094.8000 944.4000 0.0251 0.1851 

5x   
2260.8000 1008.1000 -0.1355 0.0236 

1 2,x x   
1509.1000 723.1000 0.4941 0.5765 

1 3,x x   
1339.9000 663.2000 0.6012 0.6974 

1 4,x x   
1555.6000 741.8000 0.4624 0.6553 

1 5,x x   
1599.0000 754.0000 0.4320 0.6234 

2 3,x x   
1384.3000 689.9000 0.5743 0.7485 

2 4,x x   
2095.9000 948.5000 0.0241 0.1667 

2 5,x x   
2259.3000 1012.5000 -0.1339 0.0140 

3 4,x x   
1455.3000 729.9000 0.5295 0.6960 

3 5,x x   
1521.2000 746.4000 0.4860 0.6655 

4 5,x x   
2110.3000 943.4000 0.0107 0.1383 

1 2 3, ,x x x   
1388.4000 677.9000 0.5718 0.6462 

1 2 4, ,x x x   
1517.2000 730.6000 0.4886 0.5687 

1 2 5, ,x x x   
1554.0000 743.5000 0.4635 0.5537 

2 3 4, ,x x x   
1287.3000 662.7000 0.6318 0.8012 

2 3 5, ,x x x   
1443.7000 710.3000 0.5370 0.7292 

3 4 5, ,x x x   
1509.4000 749.1000 0.4939 0.6724 

1 3 4, ,x x x   
1302.5000 656.6000 0.6231 0.7056 

1 3 5, ,x x x   
1399.6000 686.8000 0.5649 0.6724 

2 4 5, ,x x x   
2113.0000 948.9000 0.0081 0.1255 

3 4 5, ,x x x   
1509.4000 749.1000 0.4939 0.6724 

1 2 3 4, , ,x x x x   
1338.0000 667.9000 0.6023 0.6770 

1 2 3 5, , ,x x x x   
1438.0000 699.2000 0.5406 0.6256 

2 3 4 5, , ,x x x x   
1347.8000 681.7000 0.5965 0.7928 

1 3 4 5, , ,x x x x   
1357.1000 678.9000 0.5909 0.6880 

1 2 4 5, , ,x x x x   
1561.1000 751.1000 0.4586 0.5461 

1 2 3 4 5, , , ,x x x x x   
1396.0000 705.6000 0.5671 0.6561 

 



 

 

74 

 

 

Table 1 and Table 2 showed the performance of MLR using different combination variables as input for 

MLR. The assessment of the performance MLR are based on RMSE, MAE, CE and 
2r . From Table 1 for 

T=10-year, the best MLR performance is when using elevation, longest drainage path and mean 

catchment as input for MLR. The RMSE, MAE, CE and 
2r  obtained are 746.2000, 383.1000, 0.7321 and 

0.8697. The RMSE and MAE are the smallest compare to others and the CE and 
2r close to 1. From 

Table 1 also, there are several variables when implement in MLR the prediction produce a negative value 

of CE. The negative value of CE indicated the mean of the observed are better than prediction. From 

Table 2 for T=100-year, the best MLR performance is also the same with T=10 year, and that is elevation, 

longest drainage path and mean catchment slope as input for MLR. The RMSE, MAE, CE and 
2r  are 

1443.7000, 710.3000, 0.5370 and 0.7292. The RMSE is the smallest but for MAE it was the second 

smallest. For CE and 
2r  it was the most closed to 1 compare to others. In overall, a conclusion can be 

reached such that the variables affect the performance of MLR in estimating flood qunatiles at ungauged 

sites. The best input for MLR through this study is combination of three variables that are elevation, 

longest drainage path and mean catchment slope.  

 

 

5     Conclusions 
 

There are many physiographical and hydrological characteristics exist at ungauged site that used in 

estimating flood quantile. Although there are a lot of characteristics can be used, not all of the 

characteristics are useful for estimating the flood quantiles at ungauged sites. In this study, five 

physiographical and hydrological characteristics were implemented. From five variables, total 31 

combinations of variables used as input for MLR model. From the result obtained the suitable 

characteristics used as input for MLR model are elevation, longest drainage path and mean catchment. 

This characteristic is suitable only estimating flood quantile for ungauged site located at Peninsular 

Malaysia only.  Although there are exist other catchments characteristics but from this study there are 

only some catchment characteristics is suitable use as input to estimate flood quantile.     
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