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Abstract Proportional hazards model (PHM) is commonly used in survival analysis for 

estimating the effects of different covariates influencing the survival data. The hazard 

function in proportional hazards model (PHM) is commonly defined as a product of the 

baseline hazard function and a non-negative function of covariates. However, the hazard 

function may also be presented as the sum of the baseline hazard function and a non-

negative function of covariates. We propose the new additive and multiplicative Gamma 

Polygonal in the hazards function using OpenBugs Statistical Packages. Both models are 

an alternative to the existing additive and multiplicative models but the new additive 

Gamma polygonal intensity model is quite complex compared to the new multiplicative 

Gamma polygonal intensity model. The application for right-censored data from Bayesian 

perspective will be discussed and the Markov Chain Monte Carlo (MCMC) method will 

be used to compute the Bayesian estimator using Leukemia data and DSR data. The 

results obtained show that the propose model is as good as the existing models in 

analyzing paired survival data.  
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1     Introduction 
 

Statistical analysis in survival times, also known as survival analysis has been widely used recently in 

biomedical sciences and also in other areas of knowledge such as economics and social sciences. 

These statistical techniques is used in predicting the survival times and investigating the effects of risk 

factors. Survival distributions is typically characterized by their hazard functions which is the 

conditional density function at time t given survival up to time t. Many modeling techniques focus on 

the evaluation of a covariate effect.  

     General classes of semi-parametric hazards regression model for survival data are flexible and 

might yield more accurate prediction of an individual's survival process by including Cox 

proportional hazards model, the accelerated failure time model and the accelerated hazards model [1]. 

     Simple procedures and techniques which was developed with high efficiencies for making 

inference about the regression parameters under the additive risk model with an unspecified baseline 

hazard function resembled the method of partially likelihood-based for the proportional hazards 

model [2]. A new method was proposed to estimate the differential or relative probability of failure 

from one cause under two sets of covariate values over time using the semiparametric additive model 

for the prediction and comparison of cause-specific cumulative incidence functions for given values 

of the covariate [3]. 

     Semiparametric Bayesian analyses of proportional hazards model has become computationally 

feasible recently due to modern technology and advancement in computing techniques such as the 

Gibbs sampler and other MCMC methods. Gibbs Sampling is one of the new numerical algorithms 

and the best known Markov Chain Monte Carlo (MCMC) sampling which allow the obtaining of 

samples from posterior of interest. Arjas and Gasbarra proposed a common unknown hazard rate in 

which the hazard rate is modelled non-parametrically by considering a simple right censored data and 

the sample paths of the hazard rate were generated from the posterior distribution using Gibbs 

Sampler [4]. 
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     An overview of Bayesian semiparametric methods for the multiplicative risk model has been 

provided by Sinha and Dey [5]. One of the advantages is that both the baseline hazard and the 

regression coefficients are joined together and can be used accurately to compute the target posterior 

quantities using MCMC simulation techniques. A class of semiparametric informative prior 

distributions for the Cox model specified a non-parametric prior for the baseline hazard rate and a 

parametric prior for the regression coefficients via the development of Markov chain Monte Carlo 

(MCMC) techniques for sampling from the posterior distribution of the parameters [6]. The potential 

of Bayes methods for the analysis of survival data have been investigated using semiparametric 

models based on either the hazard or the intensity function. The nonparametric part of every model is 

assumed to be a realization of a stochastic process. The parametric part, which may include a 

regression parameter is assumed to have a prior distribution with possibly unknown hyperparameters. 

     An additive hazard model for the regression analysis of censored data is an alternative to Cox's 

proportional hazards model since it allows both the parameter and the covariate vectors to vary with 

time. The additive and multiplicative risk models in survival analysis provide frameworks that 

associate between risk factors, disease occurrence or death and the survival time. The survival time, T 

is subject to right censoring since at the end of the study, certain individuals might be survived. Even 

though the statistical analysis of additive risk models is harder than that of proportional hazards 

model, it describes the association between survival time and covariates in different aspect. The risks 

are assumed to be independent so that the additive model will appear to be in a natural way in 

competing the risk situations. 

     The hazard function for the survival time T under the additive risk model takes the form 

 

0 0( ) ( ) ( )h t h t tω ′= +x x                                                        (1) 

 

while the hazard function for the survival time T under the multiplicative risk model takes the form 

 

( )0 0( ) ( ) exp ( )h t h t tβ ′=x x       (2) 

 

where 0ω  and 0β  are p-vectors of regression parameters. 

     Survival analysis has found widespread applications in medicine. It is well known that any clinical 

trial is an experiment carried out to gain knowledge about the relative benefits of two or more 

treatments. In this paper, we consider leukemia data in additive Gamma Polygonal where the effect of 

6-MP (6-Mercaptopurine) therapy for the duration of remissions induced by adrenal corticosteroids 

[7]. Patients in remission were assigned randomly to maintenance therapy with either 6-MP or 

placebo. A sequential experimental design was used in analysing remission times while the study was 

in progress. This resulted in the study being stopped after analysis of the remission times of 21 pairs 

of leukemia patients (42 patients). 

     In the multiplicative Gamma Polygonal model, both data Leukemia and Diabetic Retinopathy 

Study (DRS) [8] was used. The Diabetic Retinopathy Study was conducted by the National Eye 

Institute to test the laser treatment (laser photocoagulation) in delaying blindness among patients and 

examine how age at onset of diabetes can affect the eyes to become blind. One eye of each patient 

was selected at random to receive photocoagulation technique based on two different types of laser 

treatment (xenon and argon), and the other eye was observed with no treatment, which served as 

untreated controls. The event of interest for each eye was the time from initiation of treatment to the 

time when visual acuity dropped below 5/200 in two consecutive visits, called ‘blindness’. Censoring 

was caused by the death, drop out or end of the study. The only data available are from the 197 

patients defined as high-risk by DRS criteria. A subset of the data set of 197 high-risk diabetes 

patients was used to assess the effectiveness of the laser treatment in delaying severe vision loss, 

which is actually provided on Professor Therneau’s web page (see; 

http://mayoresearch.mayo.edu/mayo/research/biostat/therneau-book.cfm). 

     Specialized software packages called BUGS [9,10] are created for implementing MCMC-based 

analyses of full probability models. These packages will treat all unknowns as random variables. 



119 

 

2     Gamma Polygonal Hazards Model 
 

2.1     Additive Gamma Polygonal Hazards Model 

 

Let T be the survival time of an individual with a vector covariates x . Suppose T is a random variable 

and follows an additive Gamma-polygonal model if its hazard function takes the following form 

 

( ) ( )0 1( )h t h t h t= +x x  ,   for t > 0                                                       (3) 

 

where 0 ( )h t and ( )1h t x are the nonparametric and the parametric parts of the above model, 

respectively. 0 ( )h t  is the nonparametric part and supposed to be a nonnegative polygonal function. 

The polygonal will take the values 0, 1, , kτ τ τ… with the vertices that will be located at times 

0, 1, , ka a a… and it will becomes constant after time ka  
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     The hazard function, 1( )h t x  is a Gamma distribution hazard function with mean, /α γ  and 

variance, 
2/α γ . 
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     Both parameters α  and γ  are specific for each individual in the population and related to the 

covariates x through a probabilistic model. A hierarchical structure were considered in the model with 

the second level of hierarchy given as follows 

 

2| , log | ,N α

α
α γ ω σ

γ
 

′ 
 

x x∼  

2(log | , )N γ γγ γ µ σ∼ .                                                (6) 

 

     The logarithm of the mean, log( /α γ ) is modeled as a Normal distribution with mean ω′x  as a 

linear combination of the covariates and variance 
2

ωσ , while the logarithm of parameter γ  is also 

modeled as a Normal distribution with mean 
2

γµ  and variance 
2

γσ , ω , 
2

ωσ , γµ  and 
2

γσ  are the 

hyperparameters and an unknown constant common to all individuals in the population. In other 

words, the mean and the shape of the Gamma distribution in the expression (5) are independent and 

log-Normally distributed. The log-Normal distribution is used in those hyperparameters since it is 

easier to work with it and spread enough for this level of the hierarchy. 
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2.2     Multiplicative Gamma Polygonal Hazards Model 

 

Let T be a random variable for the survival time of an individual with vector covariates x. Suppose T 

is a random variable and follows a multiplicative Gamma-polygonal model if its hazard function has 

the following form 

 

0( | ) ( ) exp( )h t h t β ′=x x ,    for t > 0 

where 0 ( )h t  is an unknown baseline hazard function which supposed to be the nonparametric and a 

nonnegative polygonal function as in expression (4). Ayman and Anis [11] proposed this approach by 

changing the baseline hazard function to a polygonal function using OpenBUGS Statistical Packages. 

 

 

3     Inference Procedure 
 

In survival data, the counting process analysis is usually based on the modeling of the intensity 

function. The counting process, ( )iN t  can be observed for subjects i = 1, 2, … , n, that count the 

number of failures which have occurred up to time t. The counting process increments ( )idN t  in the 

time interval [t,t+dt) are assumed to be independent Poisson random variables with means, ( )iI t dt , 

where  

 

( ) Poisson( ( ) )i idN t I t dt∼                                                      (7) 

 

     The new failure rate is then seen to be interval and defined as 

 

( ) ( ) ( | ) ( ) ( | )i i i i iI t dt Y t t Y t d tλ= = Λx x                                     (8) 

 

where ( )iY t  is an observed process and take the value 1 or 0 according to whether or not subject i is 

observed at time t. Using ideas from Beamonte and Bermúdez [12], the proposed additive intensity 

model is given by 

 

0 1( ) ( )( ( ) ( | ) )i i iI t dt Y t d t d t dt= Λ + Λ x                                    (9) 

 

where the nonparametric part, 0 ( )d tΛ  is a nonnegative polygonal function and can be written as 

expression (3) while the parametric part, 1( )d tΛ  is a Gamma distribution and dt is the different 

between two times in the time interval, [t, t + dt). 

     The multiplicative intensity model which was adopted by Cox's model is given by 

 

( ) ( ) ( )0 exp ( )i i iI t dt Y t d tβ= Λx                                              (10) 

 

where ( )0d tΛ is the increment or jump in the integrated baseline hazard function occurring during 

the time interval [t, t + dt). 

     Therefore, the proposed of a new baseline hazard function for the multiplicative intensity model 

which has the combination of both parametric and nonparametric distributions has the form 

 

( ) ( ) ( ) ( )1 2 exp ( ) [  ]i i iI t dt Y t d t d tβ= Λ + Λx                      (11) 
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where 1( )d tΛ  is the non-parametric part which takes the form of polygonal function [11] while 

2 ( )d tΛ  is the parametric part which takes the form of Gamma distribution, modified by Ismail et al 

[13]. 

 

 

3.1     Prior Distribution 

 

The prior for the vector τ  can be specified as an autocorrelated first order process and takes the form 

as 

 

1 exp(i iτ τ −= ��)   
 i = 1, 2, … , k 

where ��, ��, … , ��  are independent and Normally distributed with mean zero and variance 	

� , a 

parameter that has a conjugate analysis. 

 

0 0( | , )Ga a bτ ττ τ∼  

 

	

� 
 
~�(log	(1/	


�)|�
 , �
 ). 
 

     A prior distribution for the hyperparameters 
2 2, , ,ω γ γω σ µ σ  and 

2

ασ  has to be specified in order to 

do the Bayesian analysis for Gamma polygonal additive hazard model. We need to assume an 

independence priori between 
2 2, ( , ), ( , )ω γ γτ ω σ µ σ and 

2

ασ  . In this paper, we use hyperparameters 

2

jωσ  for each one of parameter jω  for j = 1, 2, … , p and the expressions are as follows 

 
2 2~ (1/ | , )Ga a bα α α ασ σ  

 
2 2 2| ~ ( | , )N mγ γ γ γ γ γµ σ µ σ ν  

 
2 2~ (1/ | , )Ga a bγ γ γ γσ σ  

 
2 2 2| ~ ( | , )

j j j jj jN mω ω ω ωω σ ω σ ν  

 
2 2~ (1/ | , )

j j j jGa a bω ω ω ωσ σ  

 

     These 
2

jωσ  is introduced in the proposed additive gamma polygonal model and will use the usual 

Inverse Gamma conjugate priors for the hyperparameters. Since we proposed a new multiplicative 

intensity model in this paper, we also introduced β  to have a Log-Normal distribution with mean 1 

and variance 
2

βσ   instead of having Normal distribution. A new hyperparameter, 
2

βσ   will also be 

introduced in the model and will use the usual Inverse Gamma conjugate priors. The expressions are 

 
2 2| ~ (log | , )Nβ β ββ σ β µ σ  

 
2 2~ (1/ | , )Ga m sβ β β βσ σ . 
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3.2     Posterior Distribution 

 

The posterior distribution will become complicated although the simple prior has been chosen and this 

problem is common to almost every model in populations. The posterior complete conditional for the 

hyperparameters 
2( , )γ γµ σ  is proportional to 

 

2 2 2 2

1

(log | , ) ( | , ) (1/ | , )
n

i

i

N N m Ga a bγ γ γ γ γ γ γ γ γγ µ σ µ σ ν σ
=

 
 
 
∏ . 

 

     In a similar way, the posterior complete conditional distribution for 
2( , )ωω σ is proportional to 

 

2 2 2 2 2

1

log | , [ ( | , ) (1/ | , )] (1/ | , )
n

i

N N m Ga a b Ga a bα ω ω ω ω ω ω α α α

α
ω σ ω σ ν σ σ

γ=

  
′  

  
∏ x . 

 

Finally, the complete posterior conditional for τ is proportional to 

 

2

0 1 0

1 1

( | )[ ( | , , )] (log | log , ) (1/ | ,i

n n

i i i i i i

i i

S t h t N Ga a b
δ

ε τ ττ τ α γ τ τ σ τ−
= =

  
  

  
∏ ∏ . 

 

 

4     Results and Discussion 
 

The aim of this paper is to introduced additive gamma polygonal hazards model with Bayesian 

approach using BUGS software program. We did not use prior information about the hyperparameters 

in this paper but using a member of the family introduced in Section 3.1 and 3.2 with reasonable 

variances, as prior distribution. The following priors were set for the additive model: mγ = 0, 
2

γν  = 1, 

aα  = 1, bα  = 1, aγ  = 1, 1bγ = , 0jmω = , 
2 1

jων = , 1
j

aω = , 1
j

bω = , 0.01aτ = , 0.01bτ =  and 

�
 = 1, �
 = 1000
 
, and we set the following priors for the multiplicative model: 1mβ = , 1sβ = . 

 

 
Table 1 Summaries of parameter estimation for additive gamma polygonal 

 Mean β  Std Dev 
MC 

Error 

2.5% 

CI 
Median 

97.5% 

CI 

 

Log 

Likelihood 

Unique  

failure time 

0β  -2.709 0.4477 0.009705 -3.5040 -2.750 -1.666 
-100.6 

1β  1.590 0.5767 0.009942 0.5482 1.554 2.802 

Portions  

of time 

0β  -3.324 0.3383 0.006554 -4.0750 -3.304 -2.719 
-111.9 

1β  1.404 0.5488 0.008476 0.3757 1.389 2.531 

 

      

     Table 1 shows the summaries of parameter estimation for additive Gamma polygonal hazards 

model including the log-likelihood for two different types of time intervals. The time intervals are the 

unique failure time which is observed from a non-censoring observations of survival time and the 

portions of time which is chosen as disjoint intervals to be vertices at time points in the time interval. 

Both types of time intervals gave different results for the parameter estimation because the difference 

of time between two time points in the unique failure time interval is not equal compared to the 

portions of time that have the equality of differences between two time points. We can say that the 
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additive Gamma polygonal hazards model is better using the unique failure time than that of portions 

of time by comparing the log-likelihood. 

 

 

    
(a) Densities plots using unique failure of time  (b) Density plots using portions of time 

 

    
(c)  History plots using portions of time   (d) History plots using portions of time 

 

 

Figure 1 OpenBUGS plots associated to the coefficient of the covariates. 

 

 

     The generated observations of the trace plots are more convincing in terms of convergence for all 

generated values within a parallel zone and the densities provide a graphical representation of the 

posterior densities estimate for the parameter estimation, as shown in Figure 1. The convergence of 

Gibbs Sampler can be checked using the ideas of parallel multiple chains and the recommended use of 

chains are from two to five. The choice of hyperparameters and initial values in the analysis are not 

too sensitive to the estimation of the parameters but the use of the same starting values for each chain 

indicating different results and sometimes do not reach stability to indicate the convergence. To 

generate the Gibbs posterior samples, we choose three parallel chains with different starting values 

and were carried out simultaneously. 100,000 iterations are performed for each chain after 5000 

iterations for burn-in to obtain convergence to the posterior distribution, and one out of each value is 

used to reduce the autocorrelation of the chain. The situation occurs because of the complexity of the 

model and to avoid the system run down. The convergence of the chains can be monitored via the 

Brooks-Gelman-Rubin (BGR) convergence-diagnostic, when the line converged to one for stability 

then the convergence is attained. 

     Using the same data, the analysis towards four different types of the baseline hazard function in 

Cox Regression is carried out. Three parallel chains with different starting values are also used and 

they are carried out simultaneously. 100,000 iterations are performed for each chain after 5000 

iterations for burn-in to obtain convergence to the posterior distribution, and one out of every 10th 

values is used to reduce the autocorrelation of the chain. The convergence of the chains can be 

monitored via the Brooks-Gelman-Rubin (BGR) convergence-diagnostic graph. 

     Table 2 shows the summary of parameter estimation for Cox Regression using different types of 

baseline hazard functions. The parameter estimation for all types are quite similar including the log-

likelihood and deviance information criterion, (DIC) as shown in Table 3. 
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Table 2 Summaries of parameter estimation for Cox Regression with different baseline hazard functions 

 Mean 

β  
Std Dev MC Error 2.5% CI Median 97.5% CI 

Gamma process 1.545 0.4189 0.001847 0.7571 1.533 2.402 

Modified Gamma 1.538 0.4121 0.002079 0.7611 1.525 2.385 

Polygonal 1.520 0.4143 0.002920 0.7378 1.508 2.370 

Gamma 

Polygonal 
1.576 0.4026 0.003602 0.8055 1.566 2.399 

 

 
Table 3 Summaries of Log-likelihood and Deviance Information Criterion 

 Log-

Likelihood 
DIC 

Gamma Process  -106.35 232.6 

Modified 

Gamma  
-102.40 209.2 

Polygonal  -101.75 211.2 

Gamma 

Polygonal  
-102.15 208.3 

 

Both Figure 2(i) and (ii) shows the posterior densities and trace plots for 300,000 iterations of each of 

three generated samples. The BGR convergence diagnostic graphs in Figure 2(iii) show the line 

converged to one for stability indicating the convergence of the algorithm. The convergence of the 

parameters has been achieved since auto-correlations become low only after considering a lag equal to 

50 indicating good convergence of the parameter space with a reasonably small number of iterations. 

     The multiplicative model is tested again using DRS Eye data for all models except OGPrior since 

there is an error running the model on DRS Eye data. The true purpose of this analysis is to prove that 

the propose model is a suitable model in analysing all types of paired survival data. Therefore 

OGPrior model has been excluded in the analysis using DRS Eye data. The results are tabulated in 

Table 4 which shows the summary of parameter estimation for Cox Regression using different types 

of baseline hazard functions. The parameter estimation for all types are quite similar including the 

log-likelihood and deviance information criterion, (DIC) as shown in Table 5. Three parallel chains 

with different starting values are used and run simultaneously. 100,000 iterations are performed for 

each chain after its 50,000 iterations for burn-in to attain convergence to the posterior distribution. 

One out of each value is used to reduce the autocorrelation of the chain due to the large data. Both 

Figure 3(i) and (ii) show the posterior densities and trace plots for 300,000 iterations of each of three 

generated samples. The BGR convergence diagnostic graphs in Figure 3(iii) show the convergence of 

the chains which the line converged to one for stability. 

 

 

    
(i) Density plots 

 

    
 

(ii) History plots 
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(iii) BGR diagnostic graphs 

 
(a) Gamma                       (b) Modified Gamma                 (c) Polygonal                              (d) Gamma 

Polygonal 

 

Figure 2 Estimated predictive density and history plots associated to the coefficient of the covariate using 

different types of baseline hazard functions. 

 

 

Table 4 Summaries of parameter estimation for Cox Regression with different baseline hazard functions 

 Mean 

β  

Std Dev MC Error 2.5% CI Median 97.5% CI 

Modified 

Gamma  

-0.8000 0.1690 9.466E-4 -1.136 -0.7976 -0.4729 

Polygonal  -0.7768  0.1691  0.001527  -1.112  -0.7761  -0.4497 

Gamma 

Polygonal  

-0.7845  0.1702  0.001742  -1.122  -0.7833  -0.4559 

 
 

Table 5 Summaries of Log-likelihood and Deviance Information Criterion 

 Log-

Likelihood  

DIC 

Modified 

Gamma  

-808.5  1641.0 

Polygonal  -785.0  1616.0 

Gamma 

Polygonal  

-787.0  1615.0 

 

 

 

(i) Density plots 

 

 

   
(ii) History plots 
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(iii) BGR diagnostic graphs 

 
(a) Modified Gamma    (b) Polygonal    (c) Gamma Polygonal 

 

Figure 3 Estimated predictive density and history plots associated to the coefficient of the covariate using 

different types of baseline hazard functions. 

 

     Based on the results from the analysis of DRS Eye data, a conclusion can be made that the propose 

model is also a suitable model to analyse paired survival data. This proves that the proposed model is 

also an appropriate model compared to existing models in the analysis of paired survival data. Thus, it 

makes the propose model as good as the existing models and can be used to analyse any types of 

paired survival data. 

 

 

5     Conclusion 
 

Bayesian inference has several advantages particularly in the flexibility of model-building for 

complex data over the frequentist approaches. The Bayesian approach enables us to make exact 

inference for any sample size based on the posterior distribution. OpenBUGS is a tool for analysing 

survival data in a Bayesian framework using Markov Chain Monte Carlo (MCMC) and provides the 

summary of inferences and convergence in a table and graph. 

     Additive and multiplicative Gamma Polygonal models using Bayesian approach were proposed to 

fit more flexible survival models for non-informative censored data. Bayesian models can be 

compared using the deviance information criterion (DIC), which are posterior distributions obtained 

using MCMC. DIC has been implemented as a tool in the BUGS software package. The results 

obtained show that the proposed model is as good as the existing models and can be used to analyse 

any paired survival data such as Leukemia and DRS Eye data. 
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