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Abstract Let G be a finite group and S be a subset of G, where S does not include

the identity of G and is inverse closed. A Cayley graph of a group G with respect to the

subset S is a graph, where its vertices are the elements of G and two vertices a and b

are connected if ab−1 is in the subset S. The energy of a Cayley graph is the sum of all

absolute values of the eigenvalues of its adjacency matrix. In this paper, we consider a

specific subset S = {b, ab, . . . , an−1b} for dihedral groups of order 2n, where n ≥ 3 and find

the Cayley graph with respect to the set. We also calculate the eigenvalues and compute

the energy of the respected Cayley graphs. Finally, the generalization of the energy of the

respected Cayley graphs is found.

Keywords Energy of graph; eigenvalues; adjacency matrix; Cayley graph; dihedral

groups.
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1 Introduction

There have been a grown of interests for many researchers to study on the energy of graph.
According to Woods [1], the study on the energy of general simple graphs was first defined by
Gutman in 1978 inspired from the Huckel Molecular Orbital (HMO) Theory proposed in 1930s.
The Huckel Molecular Orbital Theory has been used by chemists in approximating the energies
related with π-electron orbitals in conjugated hydrocarbon molecules.

In 2009, Li et al. [2] stated that in the early days, when computers were not widely available,
the calculation of the HMO total π-electron energy was a serious problem. In order to overcome
the difficulty, a variety of approaches have been offered to calculate the approximate calculation
of the π-electron energy. Within the HMO approximation, the total energy of the π-electrons,
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denoted by ε is obtained by summing distinct electron energies. In conjugated hydrocarbons,
the total number of π-electrons is equal to the number of vertices of the associated molecular
graph. After some considerations, they arrived at the definition of the energy, which is the sum
of the absolute values of the eigenvalues of the graph.

Many researchers have studied on the topic of energy of graphs. In 2004, Bapat and Pati [3]
have proved that the energy of a graph is never an odd integer. Meanwhile, the properties that
the energy of a graph is never the square root of an odd integer has been proven by Pirzada
and Gutman [4] in 2008. There are also a few other researchers who studied specifically on the
energy of unitary Cayley graphs (see [5], [6]).

Besides, there have also been many studies on the Cayley graphs for dihedral groups. In
2006, Wang and Xu [7] have considered the non-normal one-regular and 4-valent Cayley graphs
of dihedral groups while Kwak and Oh [8] have classified the 4-valent and 6-valent one regular
normal Cayley graphs of dihedral groups whose vertex stabilizers in Aut(Γ) are cyclic.

In addition, in 2008, Kwak et al. [9] have explored on the one-regular Cayley graphs on
dihedral groups of any prescribed valency. Kim et al. [10] also have studied on the Cayley
graphs of dihedral groups on the classification of p-valent regular Cayley graphs.

The theory of graph energy has been used by chemists in approximating the energies related
to π-electron orbitals in conjugated hydrocarbon. Besides its chemical applications, there are a
few applications in other field of science such as in graph entropies [11], modelling of properties
of proteins [12] and in the search for the genetic causes of Alzheimer disease [13].

The target of this study is to present the energy of the Cayley graphs associated to dihedral
groups for the subset S = {b, ab, . . . , an−1b}. The procedure consists of finding the elements,
vertices and edges for the Cayley graphs of the dihedral groups, finding their isomorphism,
building the adjacency matrix for the Cayley graph, finding the spectrum of the adjacency
matrix of the graphs and lastly calculating the energy of the graphs. Some properties and
general formula for the energy will also be presented at the end of the study.

2 Preliminaries

The followings are some definitions that are used in this work.

Definition 1 Dihedral Group [14]
If π(n) is a regular polygon with n vertices and center O, then the symmetry group

∑

(πn)
is called the dihedral groups with 2n elements, and it is denoted by D2n .

Definition 2 Cayley Graph of a Group [15]
Let G be a finite group with identity 1. Let S be a subset of G satisfying 1 /∈ S and S = S−1;

that is, s ∈ S if and only if s−1 ∈ S. The Cayley graph Cay(G; S) on G with connection set S
is defined as follows:

• the vertices are the elements of G
• there is an edge joining g and h if and only if h = sg for some s ∈ S.

The set of all Cayley graphs on G is denoted by Cay(G, S), where S is the subset of G with a

certain valency, which is the order of S.
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Definition 3 Complete Bipartite Graph [16]
A graph Γ is called bipartite when its vertex set can be partitioned into two disjoint parts

X1, X2 such that all edges of Γ meet both X1 and X2. The graph is called complete bipartite if

all possible edges that join vertices from set X1 to set X2 are drawn.

Definition 4 Adjacency Matrix [17]
Let Γ be a graph with V (Γ) = {1, . . . , n} and E(Γ) = {e1, . . . , em}. The adjacency matrix of

Γ denoted by A(Γ) is the n×n matrix defined as follows. The rows and the columns of A(Γ) are

indexed by V (Γ). If i 6= j then the (i, j)−entry of A(Γ) is 0 for vertices i and j nonadjacent,

and the (i, j)−entry is 1 for i and j adjacent. The (i, i)−entry of A(Γ) is 0 for i = 1, . . . , n.

A(Γ) is often simply denoted by A.

Definition 5 Energy of Graph [17]
For any graph Γ, the energy of the graph is defined as ε(Γ) =

∑n

i=1 |λi|, where λ1, . . . , λn

are the eigenvalues of the adjacency matrix of Γ.

Proposition 1 Spectrum of Complete Bipartite Graph [16]
Consider the undirected complete bipartite graph Km,n. The spectrum of a complete bipartite

graph is {±√
mn, 0m+n−2}.

3 Main Results

In this section, our main results are specified in term of proposition, lemma and theorem.
Proposition 1 presents the generalization of the Cayley graphs of D2n with respect to the
generating set S = {b, ab, . . . , an−1b} while Lemma 1 states the eigenvalues of the generalized
Cayley graphs in Proposition 1. Then, the results on the energy of the Cayley graphs with
respect to the generating set of dihedral groups are presented in Theorem 1. The findings in
Proposition 1 and Lemma 1 will be used in proving Theorem 1.

Proposition 2 Let D2n be the dihedral groups of order 2n, where n ≥ 3 and S = {b, ab, . . . ,
an−1b} be the subset of D2n. The Cayley graphs of D2n with respect to the subset S,

Cay(D2n, {b, ab, . . . , an−1b})
are the complete bipartite graph Kn,n.

Proof Consider the dihedral groups D2n of order 2n and the Cayley graphs of D2n with
respect to the subset S = {b, ab, . . . , an−1b}, denoted as Cay(D2n, {b, ab, . . . , an−1b}). Note
that |S| = n. By the definition of Cayley graph, the vertices of Cay(D2n, {b, ab, . . . , an−1b})
are the elements of D2n and there is an edge joining vertices h and g if and only if hg−1 ∈ S.
Since the order of |S| = 1

2
|D2n|, this forms a complete bipartition of the vertex sets S =

{b, ab, . . . , an−1b} and D2n/S = {1, a, . . . , an−1}, where all vertices from the set S are connected
to all vertices from the set D2n/S. Therefore, since the sets S and D2n/S are of order n, then
Cay(D2n, {b, ab, . . . , an−1b}) = Kn,n. 2

Lemma 1 Let D2n be the dihedral groups of order 2n, where n ≥ 3 and S = {b, ab, . . . , an−1b}
be the subset of D2n. Therefore, the eigenvalues of Cay(D2n, {b, ab, . . . , an−1b}) = Kn,n are 0

with multiplicity 2n − 2 and ±n with multiplicity 1.
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Proof Consider the dihedral groups D2n of order 2n. By Proposition 2, The Cayley graphs of
D2n with respect to the subset S, Cay(D2n, {b, ab, . . . , an−1b}) are the complete bipartite graph
Kn,n. Since the adjacency spectrum of a complete bipartite graph Km,n is {±√

mn, 0m+n−2},
then Spec(Kn,n) =

{

±
√

n2, 02n−2
}

, which also can be written λ = 0 with multiplicity 2n − 2

and λ = ±n with multiplicity 1. 2

Theorem 1 Let D2n be the dihedral groups of order 2n, where n ≥ 3 and S = {b, ab, . . . ,
an−1b} be the subset of D2n. The energy of the Cayley graphs of D2n with respect to the subset S,

E(Cay(D2n, {b, ab, . . . , an−1b})) = 2n.

Proof Consider the dihedral groups D2n of order 2n. By Proposition 2 and Lemma 1,
the Cayley graphs of D2n with respect to the subset S, Cay(D2n, {b, ab, . . . , an−1b}) are the
complete bipartite graph Kn,n with eigenvalues λ = 0 with multiplicity 2n−2 and λ = ±n with
multiplicity 1. Therefore, the energy of the Cayley graphs of D2n with respect to the subset S,

E(Cay(D2n, {b, ab, . . . , an−1b})) = (2n − 2)|0| + |n| + | − n| = 2n. 2

The computation of the energy of Cayley graph with respect to the generating set S =
{b, ab, a2b} of dihedral groups of order 6, D6 is as shown in the following example.

Example

Let D6 be the dihedral groups of order 6, where D6 = 〈a, b|a3 = b2 = 1, bab = a−1〉 and
S = {b, ab, a2b} be the subset of D6. The Cayley graph of D6 with respect to the subset
S, Cay(D6, {b, ab, a2b}) are the complete bipartite graph K3,3. The eigenvalues of

Cay(D6, {b, ab, a2b})

are 0 with multiplicity 4 and ±3 with multiplicity 1. Then, the energy of the Cayley graphs of
D6 with respect to the subset S, E(Cay(D6, {b, ab, a2b})) is 6.

Proof Consider the dihedral groups of order 6, D6 = 〈a, b|a3 = b2 = 1, bab = a−1〉 and S =
{b, ab, a2b} be the subset of D6. Then, by Definition 2, the vertex x is connected to sx, where
s ∈ S.

1 − b since b.1 = b a − a2b since ba = a−1b−1 = a2b
1 − ab since ab.1 = ab a − b since aba = a3b = b
1 − a2b since a2b.1 = a2b a − ab since a2ba = a4b = ab
a2 − ab since ba2 = a2ba = a4b = ab b− 1 since b2 = 1
a2 − a2b since aba2 = ba = a2b b− a since ab2 = a
a2 − b since a2ba2 = aba = a3b = b b− a2 since a2b2 = a2

ab− a2 since bab = a−1 = a2 a2b − a since ba2b = a2bab = a4b2 = a
ab− 1 since abab = a3 = 1 a2b − a2 since aba2b = a2

ab− a since a2bab = a4 = a a2b − 1 since a2ba2b = a3 = 1

The connected elements form the Cay(D6, {b, ab, a2b}) = K3,3 as illustrated in Figure 1.
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Figure 1: Cay(D6, {b, ab, a2b}) = K3,3

By the definition of adjacency matrix,

A (Cay (D6, {b, ab, a2b})) =










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



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

















.

From the adjacency matrix, the characteristic polynomials found is f(λ) = λ6 − 9λ4, which
gives the eigenvalues λ = 0 with multiplicity 4 and λ = ±3 with multiplicity 1. By using
the generalization of spectrum of a complete bipartite graph, the eigenvalues can be found as
Spec(Kn,n) = {±

√
n2, 02n−2} = {±

√
32, 02(3)−2} = {±3, 04}. Therefore,

E(Cay(D2n, {b, ab, a2b})) = 4|0| + 1|3| + 1| − 3| = 6. 2

4 Conclusion

For conclusion, it has been found that the energy of the Cayley graphs of the dihedral groups
of order 2n, where n ≥ 3 with respect to the subset S = {b, ab, . . . , an−1b} are 2n.
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