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Abstract An approximate-analytical method known as Reduced Differential Transform
Method (RDTM) is proposed to approximate the Fractional Kolmogorov-Petrovskii-

Piskunov Equations. It is a powerful and convenient approximation analytical tool used
for linear and nonlinear equations related to various science, engineering and industrial

applications. Some illustrative examples are given to exemplify the competence of the
proposed scheme and provide precise solutions for nonlinear problems.In addition, a
comparison with the classical equation and Homotopy perturbation method illustrates

the competency of the technique. The results show that the proposed technique requires
minimum computational cost at rapid convergence. This method can be applied to other

partial differential equations of fractional order for the analysis of their solutions.
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1 Introduction

Partial differential equations have been considered an interesting topic among the researchers in
the analysis of nonlinear phenomena related to the study of fluid mechanics, thermodynamics,
heat transfer, Nano-hydro kinematics and others. In the past three decades, fractional
calculus has gained much attention in several fields of science and engineering. The fractional
order differential equations, specifically have a much broader spectrum of applications in
complex models involving visco elasticity, liquid flow, and biological sciences, damping laws,
diffusion processes and physical sciences [1–4]. However, an exact analytical solution to some
fractional partial differential equations can be impractical. Thus, finding its numerical approach
is productive. This issue has led to the establishments of several analytical approximate
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techniques in the analysis of fractional partial differential equations such as q-Homotopy
Analysis technique [5], Homotopy Perturbation Method [6], Adomian Decomposition Technique
[7], Variational Iteration Technique [8] and Reduced Differential Transform Method (RDTM).
RDTM was first suggested by Keskin in his thesis [9] and applied in the approximation analysis
of fractional partial differential equations [10] and [11]. Using this idea, numerous articles have
been written in order to explore and handle the physical models that emerge in science and
engineering [12-19].

In this study, we investigate one of the important types of reaction- diffusion equations
namely, Kolmogrov-Petrovskii-Piskunov (KPP) equations of fractional order. The linear and
nonlinear reaction-diffusion equations play active role in various models of reaction-diffusion,
mathematical biology, chemistry, and genetics. Initially, KPP equations is used in the genetics
model for the spread of an advantageous gene through a population. Later on, it has been
applied to a number of physical, biological and chemical models which contain some well-known
nonlinear equations in mathematical physics like the Newell-Whitehead equation, FitzHugh-
Nagumo equation, Huxley equation, Burgers- Huxley equation, the Fisher equation and Chaffee-
Infant equation as special cases.

This paper is organized as follows. In section 2, we outline basic definitions and preliminaries
of fractional calculus. In section 3, the key features of Fractional Reduced Differential Transform
Method (FRDTM) are explained. Sections 4 and 5 are devoted to the methodology and
implementation of the method on KPP equations respectively. Finally, section 6 discusses
the conclusions of this study.

2 Basic Theory of Fractional Calculus

There are several definitions related to fractional order α > 0 in the literature, such as Riemann-
Liouville, Jumarie, Caputo and Riesz, Grunwald- Letnikov, Weyl, Hadamard and Erdelyi-
Kober fractional derivatives [1-4]. Here, we revisit some fundamental definitions of the fractional
calculus, which we utilize in this study.

Definition 1 Assume any function ρ(x) in space Cµ where µ ∈ R and x >0. Also if a number
q exists where q ∈ R, q(> µ) such that ρ(x) = xqg(x), where g(x) ∈ C [0,∞), which can be
written as Cm

µ if F (m) ∈ Cµ, where m ∈ N.

Definition 2 For any function (integrable) ρ(x) ∈ Cµ, the Riemann-Liouville fractional
integral operator is defined as











Jα
t ρ(x) =

1

Γ(α)

∫ x

0

(x − t)α−1ρ(t)dt, where α > 0, x > 0,

J0
t ρ(x) = ρ(x).

Definition 3 The Caputo fractional order derivative is defined as

Dα
t ρ(x) = J r−α

t Dr
t ρ(x) =

1

Γ(r − α)

∫ x

0

(x− t)r−α−1ρ(r)(t)dt,

where, r − 1 < α ≤ r, r ∈ N, x > 0.
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Lemma 1 For the interval r − 1 < α ≤ r, r ∈ N and f ∈ Cr
µ ≥ −1, then











Dα
t Jα

t ρ(x) = ρ(x), if x > 0,

Jα
t Dα

t ρ(x) = ρ(x) −
r−1
∑

k=0

ρ(k)(0+)
xk

k!
, if r − 1 < α ≤ r.

Here we use Caputo fractional derivative because it includes the traditional initial and boundary
conditions in the formulation of the physical problems. For more details, see [1-4].

3 Fractional Reduced Differential Transform Method (FRDTM)

Taking a two variable function w̆(x, t), where w̆ is k−times constantly differentiable function
with respect to variable t and x. The function w̆(x, t) is written as w̆(x, t) = f(x).g(t), which
can be signified as [20]

w̆(x, t) =

(

∞
∑

i=0

F (i)xi

)(

∞
∑

j=0

G(j)tj

)

=

(

∞
∑

k=0

W̆ k(x)tk

)

(1)

Here the function w̆(x, t) is differentiable and analytic, thus the t−dimensional form of the
function is

W̆k(x) =
1

Γ(αk + 1)

(

∂αk

∂tαk
w̆(x, t)

)

t=t
0

(2)

The function w̆(x, t) signifies the novel function and W̆k(x) denotes the transformed function
of the proposed method. However, inverse transform of W̆k(x) is specified by

w̆(x, t) =
∞
∑

k=0

W̆k(x)(t− t0)
αk (3)

Since from equations (2) and (3), one can assume

w̆(x, t) =
∞
∑

k=0

1

Γ(αk + 1)

(

∂αk

∂tαk
w̆(x, t)

)

t=t
0

(t − t0)
αk (4)

Thus at t0 = 0, equation (4) can be written as

w̆(x, t) =
∞
∑

k=0

1

Γ(αk + 1)

(

∂αk

∂tαk
w̆(x, t)

)

t=0

tαk. (5)

Selected basic operations and proofs can be found in [9, 21-24]. Table 1 lists the basic
operations of FRDTM. In the table, Γ denotes the gamma function where Γ(m + 1) =
m Γ(m), m > 0.
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Table 1: Basic Operations of FRDTM

Functional form Transformed form

w̆(x, t) 1

Γ(αk + 1)

(

∂αk

∂tαk
w̆(x, t)

)

t=0

γw̆(x, t)± βv̆(x, t) γW̆k(x) ± βV̆k(x) where γ and β are constants

w̆(x, t)v̆(x, t)
k
∑

i=0

W̆j(x)V̆k−i(x)

w̆(x, t)v̆(x, t)ŭ(x, t)
k
∑

i=0

i
∑

j=0

W̆j(x)V̆j(x)Ŭk−i(x)

∂nk

∂tnk
w̆(x, t)

Γ(αk + nα + 1)

Γ(αk + 1)
W̆k+n(x)

∂n

∂xn
w̆(x, t)

∂n

∂xn
W̆ (x)

xmtnw̆(x, t) xmW̆k−n(x)

xmtn xmδ(kα − n), where δ(kα − n) =

{

1 αk = n

0 αk 6= n

}

4 Methodology

To demonstrate how the FRDTM works, we consider the general form of fractional non-linear
non-homogeneous partial differential equation.

L (w̆ (x, t)) + < (w̆ (x, t)) + N (w̆ (x, t)) = L (p (x, t)) (6)

subject to the initial concentrations

w̆ (x, 0) = f(x), w̆t (x, 0) = g(x). (7)

Here L = Dα
t , < denotes the linear differential operator, p (x, t) is the non-homogeneous source

term, whereas N signifies the generalized nonlinear operator.
Using Table 1 and equation (6), we obtain the following

Γ (αk + α + 1)

Γ (αk + 1)
W̆k+1 (x) = Pk (x) − <

(

W̆k (x)
)

− N
(

W̆k (x)
)

, (8)

where W̆k (x) , Pk (x) ,<
(

W̆k (x)
)

and N
(

W̆k (x)
)

are the transformed forms of the functions

L (w̆ (x, t)) , L (p (x, t)) ,< (w̆ (x, t)) and N (w̆ (x, t)), respectively. From equation (7), we obtain

W̆0 (x) = f(x) ; W̆1 (x) = g(x) (9)
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For successive iterations, we substitute equation (9) into equation (8) to find the iterative values

of W̆k (x). Lastly, we employ inverse transformation on all the values of
{

W̆k (x)
}n

k=0
, to get

w̆ (x, t) =

n
∑

k=0

W̆k (x) tαk. (10)

Moreover, the exact solution is given by w̆ (x, t) = lim
n→∞

w̆n (x, t).

5 Numerical Applications

In this section, two examples of KPP equations are considered to validate the efficiency and
applicability of FRDTM.

Example 1 Consider the linear time - fractional KPP equation

∂αw̆ (x, t)

∂tα
=

∂2w̆ (x, t)

∂x2
− w̆ (x, t) x > 0, t > 0, 0 < α ≤ 1 (11)

subject to initial condition
w̆ (x, 0) = e−x + x, x ∈ R (12)

Now, applying FRDTM to equation (11) and (12), we get

W̆k+1 (x) =
Γ(αk + 1)

Γ(αk + α + 1)

(

∂2W̆k

∂x2
− W̆k

)

, (13)

W̆0(x) = e−x + x. (14)

After substituting equation (14) into equation (13), the given recursive values of W̆k are obtained
successively:

W̆1 (x) = −
x

Γ (α + 1)
, (15)

W̆2 (x) =
x

Γ (2α + 1)
, (16)

W̆3 (x) = −
x

Γ (3α + 1)
. (17)

If we proceed in this manner, the inverse differential transform of
{

W̆k (x)
}

∞

k=0
is as follows

w̆ (x, t) =
∞
∑

k=0

W̆k(x)tαk = W̆0 (x) + W̆1 (x) tα + W̆2 (x) t2α + W̆3 (x) t3α + · · · . (18)

Thus, we have the solution of equation (11) in a series form for α = 1

w̆ (x, t) = e−x + x

(

1 − t +
t2

2!
−

t3

3!
+

t4

4!
− · · ·

)

. (19)
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Hence,
w̆ (x, t) = e−x + xe−t. (20)

Table 2 shows the results obtained by FRDTM for two values of α. We use different values
of t and x = 0.5. Also, exact solution for α = 1 is given which shows thatas the number of
iterations increases, the accuracy improves and approaches to the exact solution. However, as
t approaches to 0 the error is reducing and if t>1, the error will be increasing.

Table 2: Results of FRDTM for Different Values of α

x t α = 0.5 α = 1.0 α = 1.0 Error

0.5

FRDTM FRDTM Exact
0.1 0.9687240876 1.058949410 1.058949369 4.1E−08
0.2 0.9305756408 1.015897326 1.015896036 1.29E−06
0.3 0.9082074260 0.9769494100 0.9769397701 9.6399E−06
0.4 0.8945525506 0.9417306600 0.9416906827 3.99773E−05
0.5 0.8871076194 0.9099160766 0.9097959895 0.000120087
0.6 0.8847035389 0.8812306600 0.8809364777 0.000294182
0.7 0.8867128478 0.8554494100 0.8548233116 0.000626098
0.8 0.8927700203 0.8323973266 0.8311951417 0.001202185
0.9 0.9026510841 0.8119494100 0.8098154895 0.00213392
1.0 0.9162146869 0.7940306600 0.7904703803 0.00356028

Example 2 Consider the non-linear time-space fractional KPP equation

∂αw̆ (x, t)

∂tα
−

∂2βw̆ (x, t)

∂x2β
+ 2w̆3 = 0, t > 0, α > 0, β ≤ 1 (21)

with the initial condition
w̆ (x, 0) = x2. (22)

The following recurrence relation is obtained by applying FRDTM to equation (21)

W̆k+1 (x) =
Γ (αk + 1)

Γ (αk + α + 1)

(

∂2βW̆k

∂x2β
− 2

k
∑

i=0

i
∑

j=0

W̆i−jW̆jW̆k−i

)

. (23)

Now, applying FRDTM to the initial condition (22), we get

W̆0(x) = x2. (24)

Upon substituting the above equation (24) in equation (23), the given recursive values of W̆k

are obtained successively:

W̆1(x) =

2

((

1

Γ (3 − 2β)

)

x2−2β

)

− 2x6

Γ (α + 1)
, (25)
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W̆2 (x) =
1

Γ (2α + 1)








Γ (α + 1)









2

(

1

Γ (3 − 2β)

(

Γ (3 − 2β)

Γ (3 − 4β)

))

x2−4β − 1440

((

1

Γ(7 − 2β

)

x6−2β

)

Γ (α + 1)

















−
5

Γ (2α + 1)









Γ (α + 1)









2

((

1

Γ (3 − 2β)

)

x2−2β

)

− 2x6

Γ (α + 1)









(

x4
)









.... (26)

and so on.
If we proceed in this manner, the inverse differential transform of

{

W̆k (x)
}

∞

k=0
is as follows

w̆ (x, t) =

∞
∑

k=0

W̆k(x)tαk = W̆0 (x) + W̆1 (x) tα + W̆2 (x) t2α + W̆3 (x) t3α + · · · . (27)

The same solution are also obtained by Gupreel [5] using Homotopy Pertubation Method
(HPM).

Table 3 shows the result obtained by FRDTM and compared with HPM for different values
of α. We use different values of t and x = β = 0.5. The results show that FRDTM requires
less computation. Since it gives an approximate series solution in just few iterations without
making polynomials as in HPM [5].

Table 3: Comparison of FRDTM with HPM for α = 0.5 and 1.0

x t α = 0.5 α = 0.5 α = 1.0 α = 1.0

0.5

HPM FRDTM HPM RDTM
0.1 0.5956740474 0.7218459223 0.3468750 0.3531835938
0.2 0.7388569261 0.9912006759 0.4437500 0.4689843750
0.3 0.8487250131 1.227240638 0.5406250 0.5974023438
0.4 0.9413480949 1.446035594 0.6375000 0.7384375000
0.5 1.022950668 1.653810042 0.7343750 0.8920898438
0.6 1.096725034 1.853756283 0.8312500 1.058359375
0.7 1.164567564 2.047770688 0.9281250 1.237246094
0.8 1.227713852 2.237088851 1.0250000 1.428750000
0.9 1.287022142 2.422569016 1.1218750 1.632871094
1.0 1.343117318 2.604836067 1.2187500 1.849609375

6 Conclusion

Numerical examination of fractional KPP equations have been successfully studied in this
paper. The proposed technique is effective in obtaining the solutions of linear and non-linear
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time–space fractional differential equations. The results obtained can be compared with the
classical solution of the problem for α = 1 and with HPM [25]. This shows that Fractional
Reduced differential transform method (FRDTM) is efficient with low computational cost and
converge faster when compared with HPM. Since FRDTM provides series form solution in less
iterations instead of making polynomials as in HPM [25].
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