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Abstract Let G be a finite group written additively and S a non-empty subset
of G. We say that S is e-ezhaustive if G = S + ...+ S (e times). The minimal
integer e > 0, if it exists, such that S is e-exhaustive, is called the exhaustion
number of the set S and is denoted by e(.S). The exhaustion numbers of various
subsets of finite abelian groups have been determined by the author [1]. In this
paper the exhaustion numbers of maximal sum-free sets of the cyclic groups of
prime power order are determined.
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Abstrak Biar GG suatu kumpulan terhingga yang ditulis secara penambahan
dan S suatu subset tak kosong bagi G. Kita katakan bahawa S adalah habisan-e
jika G=S5+...4 S (e kali). Integer minimal e > 0, jika ianya wujud, supaya S
adalah habisan-e dipanggil nombor habisan bagi set S dan ditandai sebagai e(S).
Nombor-nombor habisan bagi beberapa subset kumpulan-kumpulan abelan ter-
hingga telah ditentukan oleh penulis [1]. Dalam kertas ini, nombor habisan bagi
set-set bebas hasil tambah yang maksimal bagi kumpulan-kumpulan kitaran
vang berperingkat kuasa nombor perdana akan ditentukan.

Katakunci Nombor habisan, set bebas-hasil tambah, kumpulan kitaran

1 Introduction

Let G be a finite group written additively. For a non-empty subset S of G, we say that .S
is e-ezhaustive if G is covered by the sum of e copies of S, that is,

G=854+...+5 (e times).

For convenience, we shall use e - -S to denote S+ ...+ S (e times). The minimal integer
e > 0, if it exists, such that S is e-exhaustive, is called the ezhaustion number of the set .S
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and is denoted by e(.S). If such e > 0 does not exist, we say that the exhaustion number of
the set S is infinite and write e(S) = oco. If e(S) is finite, then we say that S is exhaustive
in G. Clearly if S is e-exhaustive, then it is also e¢’-exhaustive for any e’ > e. It is also clear
that if S is exhaustive in G then S ¢ H for any proper subgroup H of G.

The exhaustion numbers of various subsets of finite abelian groups have been determined
by the author in [1]. In this paper we shall determine the exhaustion numbers of maximal
sum-free sets of cyclic groups of prime power order. A sum-free set S of G is a non-empty
subset of G satisfying (S 4+ 5) NS = (). We say that S is a mazimal sum-free set if S is
sum-free and |S| > |T| for every sum-free set T in G. Various properties of sum-free sets
have been studied before (see for example [3]). We show in this paper that except for the
cyclic group Z/7, the maximal sum-free sets of cyclic groups of prime power order are either
not exhaustive or exhaustive with exhaustion number four. For the cyclic group Z/7, its
maximal sum-free sets have exhaustion number six.

We shall use the notation [x] to mean the smallest integer > x. As usual, the notation
[x] means the largest integer < z. It is not difficult to see that [x] = [z] + 1 if x is not an
integer.

2 Exhaustion Numbers of Subsets of Z/m, m > 2 Which
are in Arithmetic Progression

The main result in this section is Theorem 2.2 which has been obtained in [1]. For the sake
of convenience and since this result is used frequently in the next section, we shall reproduce
it here. We first prove the following lemma;:

Lemma 2.1 Let m and s be positive integers with s > 2. If s — 1 does not divide m — 1,

then
m < {m_—ll—‘ (s=1)+1<m+(s—2).

Proof: Since s — 1 does not divide m — 1, so [m_l—‘ = [m_l} + 1. Suppose first that
([’::11} + 1) (s—1)+1 < m. Then

[m_l](s—1)<m—s

s—1

and hence

[m—l] m—-—s m—1

- 1
s—1 <s—1 s—1 ’

which is not possible. Therefore ({%} + 1) (s=1)4+1>m.

Now suppose that ([T:ll} + 1) (s—1)+1>m+(s—1). Then

[?__f}(s—lmm—l
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and hence

m—1 m—1
> )
s—1] 7 s—1
which is not possible. Hence ([%}—i—l) (s=D+1<m+(s—-2).

Theorem 2.2 Let S C Z/m, m > 2 with |S| = s > 1. If S is in arithmetic progression
with difference d relatively prime to m, then

e(S) = M__H .

If S is in arithmetic progression with difference d not relatively prime to m, then e(S) = oc.

Proof: Let S ={a,a+d, a+2d, ..., a+ (s — 1)d} where d is relatively prime to m. By
induction, it can be shown that for any positive integer k, the first term in the (multi)set
k--S is ka while the last term is ka + k(s — 1)d. Suppose first that s — 1 divides m — 1 and
let e = TT_f Then

-1
e(s—1)d+d= (m—l) (s—=1)d+d=md=0 (modm)
and it follows that
(ea+e(s—1)d)+d=ea (mod m),

that is, the difference between the first and last terms of e - -S is d. Since d is relatively
prime to m, so we must have that e - -S = Z/m. Note that

(e—1a+id# (e—1)a+jd (mod m)

foranyi, j =0,1, ..., (e—1)(s—1) (= m—s). Otherwise, there exist i, j € {0, 1, ..., m—s}
such that (i —j)d =0 (mod m). Since d is relatively prime to m, soi —j =0 (mod m).
But this is impossible since m — s < m. We also note that

(e—1)(s—1)d+d = (m—s)d+d
(m— (s —1))d
Z 0 (modm).

Therefore ((e — 1)a 4+ (e — 1)(s — 1)d) +d # (e — 1)a (mod m). It thus follows that
(e—1)--S # Z/m and hence e(S) = e = 2=1.

Now suppose that s — 1 does not divide m — 1. Let e = [’::11} + 1. Then by Lemma 2.1

eat+e(s—1)d+d = ea—i—({m_ll] —i—l) (s—=1)d+d
5 —
ea+ (m+i)d

= ea+id (mod m)

for some i =0, 1, ..., s — 2. We thus have that either the difference between the first and
last terms of e--S is d (this happens if ¢ = 0) or the last term in (the multiset) e--S coincides
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with one of its earlier terms (this happens if i € {1, ..., s — 2}). In either case, since d is
relatively prime to m it must follow that e - -S = Z/m. Note that

(e—1)(s—1)= {m—_ll] (s—l)<<m_1>(s—1)—m—1<m.

s—1

Therefore
(e—1a+id# (e—1)a+jd (mod m)

forany i,j=0,1,..., (e —1)(s—1). Since

(e—1a+(e—1)(s—1)d+d < (e—1)a+(m—-1)d+d
= (e—1)a+md,

so(e—1a+(e—1)(s—1)d+d#(e—1)a (mod m). It follows that (e —1)--S # Z/m
and hence e(S) = e = [’”T_ll] + 1.

Finally, suppose that m and d are not relatively prime. Let n be the smallest positive
integer such that nd =0 (mod m). Then (da+ (n—1)d)+d =da (mod m) and we thus
have that

d--S = {da,da+d,da+2d,...,da+ (n—1)d}
{da, d(a+1),d(a+2),...,dla+n—1)}.

That is, d - -S is the subgroup of Z/m of order n and we can write
d--S={0,d,2d, ..., (n—1)d}.

It follows that
(kd)--S=1{0,d,2d, ..., (n—1)d}

for any positive integer k. Hence S cannot be exhaustive.

3 Exhaustion Numbers of Maximal Sum-free Sets of
Cyclic Groups

In this section we show that except for the cyclic group Z/7, the maximal sum-free sets of

cyclic groups of prime power order are either not exhaustive or exhaustive with exhaustion

number four. For the cyclic group Z/7, its maximal sum-free sets have exhaustion number
six.

3.1 The Case p=3

Proposition 3.1 The mazimal sum-free sets of the cyclic group Z/3™ (n > 1) are either
not exhaustive or exhaustive with exhaustion number 4.
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Proof: Tt is not difficult to see that Z/3 has 3 sum-free sets (that is, {0}, {1} and {2}) and
that these sets are not exhaustive. Now consider n > 2 and let S be a maximal sum-free
set of Z/3™. From [2, Theorem 4] it can be worked out that S is automorphic to one of the
following forms:

() {3i+1]i=0,1,...,3" 1 -1}
(i) {3" 14+ (3j+1)i|i=0,1,...,3" 1 -1}, j=0,1,...,3" 1 —1;

(iii) {7.3" '+ (3" 24+Bk+1)i)|i=0,1,...,3"2-1;j=0,1,2},k=0,1,...,3" 2~
1 (n > 3).

If S is automorphic to a maximal sum-free set of the form (i), then it is in arithmetic
progression with difference 3. By Theorem 2.2, it follows readily that e(S) = co. Suppose
that S takes the form (ii). Then S is in arithmetic progression with difference 3j + 1 which
is clearly relatively prime to 3. The number of elements s in S is 3”~'. Note that

-1 3"-1 2
s—1 3n-1—-1 7 317

Hence 3™ — 1 is divisible by 3"~! — 1 if and only if n = 2. We thus have by Theorem 2.2
that
3n—1 2
e(S) {371_1 — J + { + T 1] +

if n # 2. If n = 2 then by Theorem 2.2 again,

32 -1

e(8) =371

=4.

Finally, suppose that S is automorphic to a maximal sum-free set of the form (iii). Then
we can write S as the disjoint union of Sy, So and S3 where

S, = {(r—1).3""1+3"2 (r—1).3"" 1+ 3" 2 4 3k + 1),
i (r=1)3" 3 L B+ D32 1)), r=1,2,3.

Clearly, each S, is in arithmetic progression with difference 3k + 1. Note that

4--8, = {4(r—1).3""1 4432 4(r —1).3" 1 43" 2 3k + 1),
L A(r—=1)3" 43" 43" T - )Bh+ 1)), r =1, 2, 3.

Since 4(3" 2 —1) = (3+1)(3"2—1) =371 4372 _ 4 50 [4--8,| = 3" 1 4372 —4+1 =
3n=l 43772 — 3. It is straightforward to check that |4--S;N4--S;| = 3""% — 3 for every
i,7=1,2,3(i+#j)and that 4--S1N4--SoN4--S5 = (). Therefore |4--S1U4--S3U4--S3| = 3™
and it follows that 4--S =4--S;U4--SyU4--S3 =7Z/3". By some straightforward (but
tedious) calculation, it can be shown that 3 - -S # Z/3™. Therefore e(S) = 4. O
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3.2 The Case p=2 (mod 3)

Proposition 3.2 The mazimal sum-free sets of the cyclic group Z/p™ wherep =2 (mod 3)
and n > 1 are all exhaustive with erhaustion number 4.

Proof: We may write p = 3k + 2 for some k € Z. Let S be a maximal sum-free set of Z/p™.
Then by [2, Theorem 2] we may take

S={ip+(k+5)|i=0,1,....p" " =1;5=1,..., k+1}.

First suppose that n = 1. In this case, S is in arithmetic progression with difference 1 and

s =S| =k + 1. Note that
p—1 3k+1 _ 1
o1 kTR
Clearly, 3k+1 is divisible by k if and only if £ = 1, that is, p = 5. We thus have by Theorem
2.2 that

E+1
e(S)—{3 + }4—1_34—1_4
if p=#£5 and
e(S):3(1)1—i-1:4
if p=>5.

Now suppose that n > 2. Since S is not in arithmetic progression we cannot make use
of Theorem 2.2. It is however straightforward to show that

3-8 = {ip+jli=0,1,...,p" ' =1;5=1,...,3k+1}
# ZL/p"
but
4--8 = {ip+(k+j)]i=0,1,....,p" ' =1;j=2,...,p+1}
Z/p".

Hence e(S) = 4 as asserted.

3.3 The Case p=1 (mod 3)

Proposition 3.3 The mazimal sum-free sets of the cyclic group Z/p™ wherep =1 (mod 3)
and n > 1 with (p, n) # (7, 1) are all exhaustive with ezhaustion number 4. If (p, n) =
(7, 1), then the mazimal sum-free sets of 7/7 have exhaustion number 6.

Proof: We may write p™ = 3k + 1 for some k € Z. Let S be a maximal sum-free set of
Z/p™. Then by [4, Theorem 2|, S is automorphic to one of the following forms:

() {k, k+1,...,2k—1};
(i) {k+1,k+2, ..., 2k}
(ifl) {k, k+2,k+3,...,2k—1,2k+1}.
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First suppose that S is automorphic to the form (i) or (ii). Then S is in arithmetic
progression with difference 1 and s = |S| = k. Note that

pr—1 3k 3
s—1 _k—1_3+k—1'

Hence 3k is divisible by & — 1 if and only if kK = 2 or 4, that is, p = 7 or 13. We thus have
by Theorem 2.2 that

e(S) = {k3—_k1]+1—3—|—1—4
ifp#£7,13,
6(5)2%2%26
if p=7 and
6(8)2%2%24
if p=13.

Now suppose that S is automorphic to the form (iii). Taking note that 3k +1 = 0
(mod p™), we have

3--S={3k,3k+2,3k+3,...,3k+ 3k} £Z/p".
Consider the 4k + 3 elements
4k, 4k + 2, 4k + 3,. .., 4k + (4k + 2), 4k + (4dk + 4).

Since 4k + 3 > p™, it is easy to see that 4 - -S must be Z/p™. Hence e(S) = 4. O
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