Matematika, 1999, Jilid 15, bil. 1, hlm. 57–63 ©Jabatan Matematik, UTM.

Exhaustion Numbers of Maximal Sum-free Sets of Certain Cyclic Groups

A. Y. M. Chin

Institute of Mathematical Sciences University of Malaya 50603 Kuala Lumpur, Malaysia

Abstract Let G be a finite group written additively and S a non-empty subset of G. We say that S is *e-exhaustive* if $G = S + \ldots + S$ (*e* times). The minimal integer e > 0, if it exists, such that S is *e*-exhaustive, is called the *exhaustion* number of the set S and is denoted by e(S). The exhaustion numbers of various subsets of finite abelian groups have been determined by the author [1]. In this paper the exhaustion numbers of maximal sum-free sets of the cyclic groups of prime power order are determined.

Keywords Exhaustion number, sum-free set, cyclic group

Abstrak Biar G suatu kumpulan terhingga yang ditulis secara penambahan dan S suatu subset tak kosong bagi G. Kita katakan bahawa S adalah habisan-e jika $G = S + \ldots + S$ (e kali). Integer minimal e > 0, jika ianya wujud, supaya S adalah habisan-e dipanggil nombor habisan bagi set S dan ditandai sebagai e(S). Nombor-nombor habisan bagi beberapa subset kumpulan-kumpulan abelan terhingga telah ditentukan oleh penulis [1]. Dalam kertas ini, nombor habisan bagi set-set bebas hasil tambah yang maksimal bagi kumpulan-kumpulan kitaran yang berperingkat kuasa nombor perdana akan ditentukan.

Katakunci Nombor habisan, set bebas-hasil tambah, kumpulan kitaran

1 Introduction

Let G be a finite group written additively. For a non-empty subset S of G, we say that S is e-exhaustive if G is covered by the sum of e copies of S, that is,

$$G = S + \ldots + S$$
 (e times).

For convenience, we shall use $e \cdot S$ to denote $S + \ldots + S$ (e times). The minimal integer e > 0, if it exists, such that S is e-exhaustive, is called the *exhaustion number* of the set S

and is denoted by e(S). If such e > 0 does not exist, we say that the exhaustion number of the set S is infinite and write $e(S) = \infty$. If e(S) is finite, then we say that S is *exhaustive* in G. Clearly if S is e-exhaustive, then it is also e'-exhaustive for any e' > e. It is also clear that if S is exhaustive in G then $S \not\subseteq H$ for any proper subgroup H of G.

The exhaustion numbers of various subsets of finite abelian groups have been determined by the author in [1]. In this paper we shall determine the exhaustion numbers of maximal sum-free sets of cyclic groups of prime power order. A sum-free set S of G is a non-empty subset of G satisfying $(S + S) \cap S = \emptyset$. We say that S is a maximal sum-free set if S is sum-free and $|S| \ge |T|$ for every sum-free set T in G. Various properties of sum-free sets have been studied before (see for example [3]). We show in this paper that except for the cyclic group $\mathbb{Z}/7$, the maximal sum-free sets of cyclic groups of prime power order are either not exhaustive or exhaustive with exhaustion number four. For the cyclic group $\mathbb{Z}/7$, its maximal sum-free sets have exhaustion number six.

We shall use the notation $\lceil x \rceil$ to mean the smallest integer $\ge x$. As usual, the notation $\lceil x \rceil$ means the largest integer $\le x$. It is not difficult to see that $\lceil x \rceil = \lceil x \rceil + 1$ if x is not an integer.

2 Exhaustion Numbers of Subsets of \mathbb{Z}/m , $m \ge 2$ Which are in Arithmetic Progression

The main result in this section is Theorem 2.2 which has been obtained in [1]. For the sake of convenience and since this result is used frequently in the next section, we shall reproduce it here. We first prove the following lemma:

Lemma 2.1 Let m and s be positive integers with s > 2. If s - 1 does not divide m - 1, then

$$m \le \left\lceil \frac{m-1}{s-1} \right\rceil (s-1) + 1 \le m + (s-2).$$

Proof: Since s - 1 does not divide m - 1, so $\left\lceil \frac{m-1}{s-1} \right\rceil = \left\lfloor \frac{m-1}{s-1} \right\rceil + 1$. Suppose first that $\left(\left\lfloor \frac{m-1}{s-1} \right\rfloor + 1 \right) (s-1) + 1 < m$. Then

$$\left[\frac{m-1}{s-1}\right](s-1) < m-s$$

and hence

$$\left[\frac{m-1}{s-1}\right] < \frac{m-s}{s-1} = \frac{m-1}{s-1} - 1,$$

which is not possible. Therefore $\left(\left[\frac{m-1}{s-1}\right]+1\right)(s-1)+1 \ge m$. Now suppose that $\left(\left[\frac{m-1}{s-1}\right]+1\right)(s-1)+1 \ge m+(s-1)$. Then

$$\left[\frac{m-1}{s-1}\right](s-1) \ge m-1$$

and hence

$$\left[\frac{m-1}{s-1}\right] \geq \frac{m-1}{s-1},$$

which is not possible. Hence $\left(\left[\frac{m-1}{s-1}\right]+1\right)(s-1)+1 \le m+(s-2)$.

Theorem 2.2 Let $S \subseteq \mathbb{Z}/m$, $m \ge 2$ with |S| = s > 1. If S is in arithmetic progression with difference d relatively prime to m, then

$$e(S) = \left\lceil \frac{m-1}{s-1} \right\rceil.$$

If S is in arithmetic progression with difference d not relatively prime to m, then $e(S) = \infty$.

Proof: Let $S = \{a, a + d, a + 2d, ..., a + (s - 1)d\}$ where d is relatively prime to m. By induction, it can be shown that for any positive integer k, the first term in the (multi)set $k \cdot S$ is ka while the last term is ka + k(s - 1)d. Suppose first that s - 1 divides m - 1 and let $e = \frac{m-1}{s-1}$. Then

$$e(s-1)d + d = \left(\frac{m-1}{s-1}\right)(s-1)d + d = md \equiv 0 \pmod{m}$$

and it follows that

$$(ea + e(s - 1)d) + d \equiv ea \pmod{m},$$

that is, the difference between the first and last terms of $e \cdot S$ is d. Since d is relatively prime to m, so we must have that $e \cdot S = \mathbb{Z}/m$. Note that

$$(e-1)a + id \not\equiv (e-1)a + jd \pmod{m}$$

for any $i, j = 0, 1, \ldots, (e-1)(s-1) (= m-s)$. Otherwise, there exist $i, j \in \{0, 1, \ldots, m-s\}$ such that $(i-j)d \equiv 0 \pmod{m}$. Since d is relatively prime to m, so $i-j \equiv 0 \pmod{m}$. But this is impossible since m-s < m. We also note that

$$(e-1)(s-1)d + d = (m-s)d + d$$

= $(m-(s-1))d$
 $\not\equiv 0 \pmod{m}.$

Therefore $((e-1)a + (e-1)(s-1)d) + d \not\equiv (e-1)a \pmod{m}$. It thus follows that $(e-1) \cdot \cdot S \neq \mathbb{Z}/m$ and hence $e(S) = e = \frac{m-1}{s-1}$.

Now suppose that s-1 does not divide m-1. Let $e = \left\lfloor \frac{m-1}{s-1} \right\rfloor + 1$. Then by Lemma 2.1

$$ea + e(s-1)d + d = ea + \left(\left[\frac{m-1}{s-1}\right] + 1\right)(s-1)d + d$$
$$= ea + (m+i)d$$
$$\equiv ea + id \pmod{m}$$

for some i = 0, 1, ..., s - 2. We thus have that either the difference between the first and last terms of $e \cdot S$ is d (this happens if i = 0) or the last term in (the multiset) $e \cdot S$ coincides

with one of its earlier terms (this happens if $i \in \{1, \ldots, s-2\}$). In either case, since d is relatively prime to m it must follow that $e \cdot S = \mathbb{Z}/m$. Note that

$$(e-1)(s-1) = \left[\frac{m-1}{s-1}\right](s-1) < \left(\frac{m-1}{s-1}\right)(s-1) = m-1 < m.$$

Therefore

$$(e-1)a + id \not\equiv (e-1)a + jd \pmod{m}$$

for any i, j = 0, 1, ..., (e - 1)(s - 1). Since

$$(e-1)a + (e-1)(s-1)d + d < (e-1)a + (m-1)d + d$$

= $(e-1)a + md$,

so $(e-1)a + (e-1)(s-1)d + d \not\equiv (e-1)a \pmod{m}$. It follows that $(e-1) \cdot \cdot S \neq \mathbb{Z}/m$ and hence $e(S) = e = \left\lfloor \frac{m-1}{s-1} \right\rfloor + 1$.

Finally, suppose that m and d are not relatively prime. Let n be the smallest positive integer such that $nd \equiv 0 \pmod{m}$. Then $(da + (n-1)d) + d \equiv da \pmod{m}$ and we thus have that

$$d \cdot S = \{ da, da + d, da + 2d, \dots, da + (n-1)d \}$$

= $\{ da, d(a+1), d(a+2), \dots, d(a+n-1) \}.$

That is, $d \cdot S$ is the subgroup of \mathbb{Z}/m of order n and we can write

$$d \cdot S = \{0, d, 2d, \dots, (n-1)d\}.$$

It follows that

$$(kd) \cdot S = \{0, d, 2d, \dots, (n-1)d\}$$

for any positive integer k. Hence S cannot be exhaustive.

3 Exhaustion Numbers of Maximal Sum-free Sets of Cyclic Groups

In this section we show that except for the cyclic group $\mathbb{Z}/7$, the maximal sum-free sets of cyclic groups of prime power order are either not exhaustive or exhaustive with exhaustion number four. For the cyclic group $\mathbb{Z}/7$, its maximal sum-free sets have exhaustion number six.

3.1 The Case p = 3

Proposition 3.1 The maximal sum-free sets of the cyclic group $\mathbb{Z}/3^n$ $(n \ge 1)$ are either not exhaustive or exhaustive with exhaustion number 4.

Proof: It is not difficult to see that $\mathbb{Z}/3$ has 3 sum-free sets (that is, $\{0\}, \{1\}$ and $\{2\}$) and that these sets are not exhaustive. Now consider $n \geq 2$ and let S be a maximal sum-free set of $\mathbb{Z}/3^n$. From [2, Theorem 4] it can be worked out that S is automorphic to one of the following forms:

- (i) $\{3i+1 \mid i=0, 1, \ldots, 3^{n-1}-1\};$
- (ii) $\{3^{n-1} + (3j+1)i \mid i = 0, 1, \dots, 3^{n-1} 1\}, j = 0, 1, \dots, 3^{n-1} 1;$
- (iii) $\{j.3^{n-1} + (3^{n-2} + (3k+1)i) \mid i = 0, 1, ..., 3^{n-2} 1; j = 0, 1, 2\}, k = 0, 1, ..., 3^{n-2} 1$ 1 $(n \ge 3).$

If S is automorphic to a maximal sum-free set of the form (i), then it is in arithmetic progression with difference 3. By Theorem 2.2, it follows readily that $e(S) = \infty$. Suppose that S takes the form (ii). Then S is in arithmetic progression with difference 3j + 1 which is clearly relatively prime to 3. The number of elements s in S is 3^{n-1} . Note that

$$\frac{3^n - 1}{s - 1} = \frac{3^n - 1}{3^{n-1} - 1} = 3 + \frac{2}{3^{n-1} - 1}.$$

Hence $3^n - 1$ is divisible by $3^{n-1} - 1$ if and only if n = 2. We thus have by Theorem 2.2 that

$$e(S) = \left[\frac{3^n - 1}{3^{n-1} - 1}\right] + 1 = \left[3 + \frac{2}{3^{n-1} - 1}\right] + 1 = 4$$

if $n \neq 2$. If n = 2 then by Theorem 2.2 again,

$$e(S) = \frac{3^2 - 1}{3^{2-1} - 1} = 4.$$

Finally, suppose that S is automorphic to a maximal sum-free set of the form (iii). Then we can write S as the disjoint union of S_1 , S_2 and S_3 where

$$S_r = \{ (r-1) \cdot 3^{n-1} + 3^{n-2}, (r-1) \cdot 3^{n-1} + 3^{n-2} + (3k+1), \dots, (r-1) \cdot 3^{n-1} + 3^{n-2} + (3k+1)(3^{n-2}-1) \}, r = 1, 2, 3.$$

Clearly, each S_r is in arithmetic progression with difference 3k + 1. Note that

$$4 \cdot S_r = \{4(r-1) \cdot 3^{n-1} + 4 \cdot 3^{n-2}, 4(r-1) \cdot 3^{n-1} + 4 \cdot 3^{n-2} + (3k+1), \dots, 4(r-1) \cdot 3^{n-1} + 4 \cdot 3^{n-2} + 4(3^{n-2}-1)(3k+1)\}, r = 1, 2, 3.$$

Since $4(3^{n-2}-1) = (3+1)(3^{n-2}-1) = 3^{n-1}+3^{n-2}-4$, so $|4 \cdot S_r| = 3^{n-1}+3^{n-2}-4+1 = 3^{n-1}+3^{n-2}-3$. It is straightforward to check that $|4 \cdot S_i \cap 4 \cdot S_j| = 3^{n-2}-3$ for every i, j = 1, 2, 3 $(i \neq j)$ and that $4 \cdot S_1 \cap 4 \cdot S_2 \cap 4 \cdot S_3 = \emptyset$. Therefore $|4 \cdot S_1 \cup 4 \cdot S_2 \cup 4 \cdot S_3| = 3^n$ and it follows that $4 \cdot S = 4 \cdot S_1 \cup 4 \cdot S_2 \cup 4 \cdot S_3 = \mathbb{Z}/3^n$. By some straightforward (but tedious) calculation, it can be shown that $3 \cdot S \neq \mathbb{Z}/3^n$. Therefore e(S) = 4.

3.2 The Case $p \equiv 2 \pmod{3}$

Proposition 3.2 The maximal sum-free sets of the cyclic group \mathbb{Z}/p^n where $p \equiv 2 \pmod{3}$ and $n \geq 1$ are all exhaustive with exhaustion number 4.

Proof: We may write p = 3k + 2 for some $k \in \mathbb{Z}$. Let S be a maximal sum-free set of \mathbb{Z}/p^n . Then by [2, Theorem 2] we may take

$$S = \{ip + (k+j) \mid i = 0, 1, \dots, p^{n-1} - 1; j = 1, \dots, k+1\}.$$

First suppose that n = 1. In this case, S is in arithmetic progression with difference 1 and s = |S| = k + 1. Note that

$$\frac{p-1}{s-1} = \frac{3k+1}{k} = 3 + \frac{1}{k}.$$

Clearly, 3k+1 is divisible by k if and only if k = 1, that is, p = 5. We thus have by Theorem 2.2 that

$$e(S) = \left\lfloor \frac{3k+1}{k} \right\rfloor + 1 = 3 + 1 = 4$$

if $p \neq 5$ and

$$e(S) = \frac{3(1)+1}{1} = 4$$

if p = 5.

Now suppose that $n \ge 2$. Since S is not in arithmetic progression we cannot make use of Theorem 2.2. It is however straightforward to show that

$$3 \cdot S = \{ ip + j \mid i = 0, 1, \dots, p^{n-1} - 1; j = 1, \dots, 3k + 1 \} \\ \neq \mathbb{Z}/p^n$$

but

$$4 \cdot S = \{ip + (k+j) \mid i = 0, 1, \dots, p^{n-1} - 1; j = 2, \dots, p+1\} \\ = \mathbb{Z}/p^n.$$

Hence e(S) = 4 as asserted.

3.3 The Case $p \equiv 1 \pmod{3}$

Proposition 3.3 The maximal sum-free sets of the cyclic group \mathbb{Z}/p^n where $p \equiv 1 \pmod{3}$ and $n \geq 1$ with $(p, n) \neq (7, 1)$ are all exhaustive with exhaustion number 4. If (p, n) = (7, 1), then the maximal sum-free sets of $\mathbb{Z}/7$ have exhaustion number 6.

Proof: We may write $p^n = 3k + 1$ for some $k \in \mathbb{Z}$. Let S be a maximal sum-free set of \mathbb{Z}/p^n . Then by [4, Theorem 2], S is automorphic to one of the following forms:

- (i) $\{k, k+1, \ldots, 2k-1\};$
- (ii) $\{k+1, k+2, \ldots, 2k\};$
- (iii) $\{k, k+2, k+3, \ldots, 2k-1, 2k+1\}.$

First suppose that S is automorphic to the form (i) or (ii). Then S is in arithmetic progression with difference 1 and s = |S| = k. Note that

$$\frac{p^n - 1}{s - 1} = \frac{3k}{k - 1} = 3 + \frac{3}{k - 1}.$$

Hence 3k is divisible by k-1 if and only if k=2 or 4, that is, p=7 or 13. We thus have by Theorem 2.2 that

$$e(S) = \left[\frac{3k}{k-1}\right] + 1 = 3 + 1 = 4$$

if $p \neq 7, 13$,

$$e(S) = \frac{3k}{k-1} = \frac{3(2)}{2-1} = 6$$

if p = 7 and

$$e(S) = \frac{3k}{k-1} = \frac{3(4)}{4-1} = 4$$

if p = 13.

Now suppose that S is automorphic to the form (iii). Taking note that $3k + 1 \equiv 0 \pmod{p^n}$, we have

$$3 \cdot S = \{3k, 3k+2, 3k+3, \dots, 3k+3k\} \neq \mathbb{Z}/p^n.$$

Consider the 4k + 3 elements

$$4k, 4k+2, 4k+3, \ldots, 4k+(4k+2), 4k+(4k+4).$$

Since $4k + 3 > p^n$, it is easy to see that $4 \cdot S$ must be \mathbb{Z}/p^n . Hence e(S) = 4.

References

- [1] A. Y. M. Chin, *Exhaustion numbers of subsets of abelian groups*, submitted for publication.
- [2] P. H. Diananda and H. P. Yap, Maximal sum-free sets of elements of finite groups, Proc. Japan Acad. 45 (1969), 1–5.
- [3] A. P. Street, Sum-free sets, Springer Lecture Notes in Math. 292 (1972), 123-272.
- [4] H. P. Yap, Maximal sum-free sets in finite abelian groups, II, Bull. Austral. Math. Soc. 5 (1971), 43–54.