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Abstract Let G be a finite group written additively and S a non-empty subset
of G. We say that S is e-exhaustive if G = S + . . . + S (e times). The minimal
integer e > 0, if it exists, such that S is e-exhaustive, is called the exhaustion
number of the set S and is denoted by e(S). The exhaustion numbers of various
subsets of finite abelian groups have been determined by the author [1]. In this
paper the exhaustion numbers of maximal sum-free sets of the cyclic groups of
prime power order are determined.
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Abstrak Biar G suatu kumpulan terhingga yang ditulis secara penambahan
dan S suatu subset tak kosong bagi G. Kita katakan bahawa S adalah habisan-e
jika G = S + . . .+ S (e kali). Integer minimal e > 0, jika ianya wujud, supaya S
adalah habisan-e dipanggil nombor habisan bagi set S dan ditandai sebagai e(S).
Nombor-nombor habisan bagi beberapa subset kumpulan-kumpulan abelan ter-
hingga telah ditentukan oleh penulis [1]. Dalam kertas ini, nombor habisan bagi
set-set bebas hasil tambah yang maksimal bagi kumpulan-kumpulan kitaran
yang berperingkat kuasa nombor perdana akan ditentukan.

Katakunci Nombor habisan, set bebas-hasil tambah, kumpulan kitaran

1 Introduction

Let G be a finite group written additively. For a non-empty subset S of G, we say that S
is e-exhaustive if G is covered by the sum of e copies of S, that is,

G = S + . . . + S (e times).

For convenience, we shall use e · ·S to denote S + . . . + S (e times). The minimal integer
e > 0, if it exists, such that S is e-exhaustive, is called the exhaustion number of the set S
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and is denoted by e(S). If such e > 0 does not exist, we say that the exhaustion number of
the set S is infinite and write e(S) = ∞. If e(S) is finite, then we say that S is exhaustive
in G. Clearly if S is e-exhaustive, then it is also e′-exhaustive for any e′ > e. It is also clear
that if S is exhaustive in G then S 6⊆ H for any proper subgroup H of G.

The exhaustion numbers of various subsets of finite abelian groups have been determined
by the author in [1]. In this paper we shall determine the exhaustion numbers of maximal
sum-free sets of cyclic groups of prime power order. A sum-free set S of G is a non-empty
subset of G satisfying (S + S) ∩ S = ∅. We say that S is a maximal sum-free set if S is
sum-free and |S| ≥ |T | for every sum-free set T in G. Various properties of sum-free sets
have been studied before (see for example [3]). We show in this paper that except for the
cyclic group Z/7, the maximal sum-free sets of cyclic groups of prime power order are either
not exhaustive or exhaustive with exhaustion number four. For the cyclic group Z/7, its
maximal sum-free sets have exhaustion number six.

We shall use the notation dxe to mean the smallest integer ≥ x. As usual, the notation
[x] means the largest integer ≤ x. It is not difficult to see that dxe = [x] + 1 if x is not an
integer.

2 Exhaustion Numbers of Subsets of Z/m, m ≥ 2 Which

are in Arithmetic Progression

The main result in this section is Theorem 2.2 which has been obtained in [1]. For the sake
of convenience and since this result is used frequently in the next section, we shall reproduce
it here. We first prove the following lemma:

Lemma 2.1 Let m and s be positive integers with s > 2. If s − 1 does not divide m − 1,
then

m ≤
⌈

m − 1
s − 1

⌉
(s − 1) + 1 ≤ m + (s − 2).

Proof: Since s − 1 does not divide m − 1, so
⌈

m−1
s−1

⌉
=

[
m−1
s−1

]
+ 1. Suppose first that

([
m−1
s−1

]
+ 1

)
(s − 1) + 1 < m. Then

[
m − 1
s − 1

]
(s − 1) < m − s

and hence [
m − 1
s − 1

]
<

m − s

s − 1
=

m − 1
s − 1

− 1,

which is not possible. Therefore
([

m−1
s−1

]
+ 1

)
(s − 1) + 1 ≥ m.

Now suppose that
([

m−1
s−1

]
+ 1

)
(s − 1) + 1 ≥ m + (s − 1). Then

[
m − 1
s − 1

]
(s − 1) ≥ m − 1
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and hence [
m − 1
s − 1

]
≥ m − 1

s − 1
,

which is not possible. Hence
([

m−1
s−1

]
+ 1

)
(s − 1) + 1 ≤ m + (s − 2).

Theorem 2.2 Let S ⊆ Z/m, m ≥ 2 with |S| = s > 1. If S is in arithmetic progression
with difference d relatively prime to m, then

e(S) =
⌈

m − 1
s − 1

⌉
.

If S is in arithmetic progression with difference d not relatively prime to m, then e(S) = ∞.

Proof: Let S = {a, a + d, a + 2d, . . . , a + (s − 1)d} where d is relatively prime to m. By
induction, it can be shown that for any positive integer k, the first term in the (multi)set
k · ·S is ka while the last term is ka + k(s− 1)d. Suppose first that s− 1 divides m− 1 and
let e = m−1

s−1 . Then

e(s − 1)d + d =
(

m − 1
s − 1

)
(s − 1)d + d = md ≡ 0 (mod m)

and it follows that
(ea + e(s − 1)d) + d ≡ ea (mod m),

that is, the difference between the first and last terms of e · ·S is d. Since d is relatively
prime to m, so we must have that e · ·S = Z/m. Note that

(e − 1)a + id 6≡ (e − 1)a + jd (mod m)

for any i, j = 0, 1, . . . , (e−1)(s−1) (= m−s). Otherwise, there exist i, j ∈ {0, 1, . . . , m−s}
such that (i− j)d ≡ 0 (mod m). Since d is relatively prime to m, so i− j ≡ 0 (mod m).
But this is impossible since m − s < m. We also note that

(e − 1)(s − 1)d + d = (m − s)d + d

= (m − (s − 1))d
6≡ 0 (mod m).

Therefore ((e − 1)a + (e − 1)(s − 1)d) + d 6≡ (e − 1)a (mod m). It thus follows that
(e − 1) · ·S 6= Z/m and hence e(S) = e = m−1

s−1 .

Now suppose that s− 1 does not divide m− 1. Let e =
[

m−1
s−1

]
+1. Then by Lemma 2.1

ea + e(s − 1)d + d = ea +
([

m − 1
s − 1

]
+ 1

)
(s − 1)d + d

= ea + (m + i)d
≡ ea + id (mod m)

for some i = 0, 1, . . . , s − 2. We thus have that either the difference between the first and
last terms of e · ·S is d (this happens if i = 0) or the last term in (the multiset) e · ·S coincides
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with one of its earlier terms (this happens if i ∈ {1, . . . , s − 2}). In either case, since d is
relatively prime to m it must follow that e · ·S = Z/m. Note that

(e − 1)(s − 1) =
[
m − 1
s − 1

]
(s − 1) <

(
m − 1
s − 1

)
(s − 1) = m − 1 < m.

Therefore
(e − 1)a + id 6≡ (e − 1)a + jd (mod m)

for any i, j = 0, 1, . . . , (e − 1)(s − 1). Since

(e − 1)a + (e − 1)(s − 1)d + d < (e − 1)a + (m − 1)d + d

= (e − 1)a + md,

so (e − 1)a + (e − 1)(s − 1)d + d 6≡ (e − 1)a (mod m). It follows that (e − 1) · ·S 6= Z/m

and hence e(S) = e =
[

m−1
s−1

]
+ 1.

Finally, suppose that m and d are not relatively prime. Let n be the smallest positive
integer such that nd ≡ 0 (mod m). Then (da+(n− 1)d)+ d ≡ da (mod m) and we thus
have that

d · ·S = {da, da + d, da + 2d, . . . , da + (n − 1)d}
= {da, d(a + 1), d(a + 2), . . . , d(a + n − 1)}.

That is, d · ·S is the subgroup of Z/m of order n and we can write

d · ·S = {0, d, 2d, . . . , (n − 1)d}.

It follows that
(kd) · ·S = {0, d, 2d, . . . , (n − 1)d}

for any positive integer k. Hence S cannot be exhaustive.

3 Exhaustion Numbers of Maximal Sum-free Sets of
Cyclic Groups

In this section we show that except for the cyclic group Z/7, the maximal sum-free sets of
cyclic groups of prime power order are either not exhaustive or exhaustive with exhaustion
number four. For the cyclic group Z/7, its maximal sum-free sets have exhaustion number
six.

3.1 The Case p = 3

Proposition 3.1 The maximal sum-free sets of the cyclic group Z/3n (n ≥ 1) are either
not exhaustive or exhaustive with exhaustion number 4.
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Proof: It is not difficult to see that Z/3 has 3 sum-free sets (that is, {0}, {1} and {2}) and
that these sets are not exhaustive. Now consider n ≥ 2 and let S be a maximal sum-free
set of Z/3n. From [2, Theorem 4] it can be worked out that S is automorphic to one of the
following forms:

(i) {3i + 1 | i = 0, 1, . . . , 3n−1 − 1};

(ii) {3n−1 + (3j + 1)i | i = 0, 1, . . . , 3n−1 − 1}, j = 0, 1, . . . , 3n−1 − 1;

(iii) {j.3n−1+(3n−2 +(3k+1)i) | i = 0, 1, . . . , 3n−2−1; j = 0, 1, 2}, k = 0, 1, . . . , 3n−2−
1 (n ≥ 3).

If S is automorphic to a maximal sum-free set of the form (i), then it is in arithmetic
progression with difference 3. By Theorem 2.2, it follows readily that e(S) = ∞. Suppose
that S takes the form (ii). Then S is in arithmetic progression with difference 3j + 1 which
is clearly relatively prime to 3. The number of elements s in S is 3n−1. Note that

3n − 1
s − 1

=
3n − 1

3n−1 − 1
= 3 +

2
3n−1 − 1

.

Hence 3n − 1 is divisible by 3n−1 − 1 if and only if n = 2. We thus have by Theorem 2.2
that

e(S) =
[

3n − 1
3n−1 − 1

]
+ 1 =

[
3 +

2
3n−1 − 1

]
+ 1 = 4

if n 6= 2. If n = 2 then by Theorem 2.2 again,

e(S) =
32 − 1

32−1 − 1
= 4.

Finally, suppose that S is automorphic to a maximal sum-free set of the form (iii). Then
we can write S as the disjoint union of S1, S2 and S3 where

Sr = {(r − 1).3n−1 + 3n−2, (r − 1).3n−1 + 3n−2 + (3k + 1),
. . . , (r − 1).3n−1 + 3n−2 + (3k + 1)(3n−2 − 1)}, r = 1, 2, 3.

Clearly, each Sr is in arithmetic progression with difference 3k + 1. Note that

4 · ·Sr = {4(r − 1).3n−1 + 4.3n−2, 4(r − 1).3n−1 + 4.3n−2 + (3k + 1),
. . . , 4(r − 1).3n−1 + 4.3n−2 + 4(3n−2 − 1)(3k + 1)}, r = 1, 2, 3.

Since 4(3n−2−1) = (3+1)(3n−2−1) = 3n−1 +3n−2−4, so |4 · ·Sr| = 3n−1 +3n−2−4+1 =
3n−1 + 3n−2 − 3. It is straightforward to check that |4 · ·Si ∩ 4 · ·Sj | = 3n−2 − 3 for every
i, j = 1, 2, 3 (i 6= j) and that 4··S1∩4··S2∩4··S3 = ∅. Therefore |4··S1∪4··S2∪4··S3| = 3n

and it follows that 4 · ·S = 4 · ·S1 ∪ 4 · ·S2 ∪ 4 · ·S3 = Z/3n. By some straightforward (but
tedious) calculation, it can be shown that 3 · ·S 6= Z/3n. Therefore e(S) = 4.
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3.2 The Case p ≡ 2 (mod 3)

Proposition 3.2 The maximal sum-free sets of the cyclic group Z/pn where p ≡ 2 (mod 3)
and n ≥ 1 are all exhaustive with exhaustion number 4.

Proof: We may write p = 3k + 2 for some k ∈ Z. Let S be a maximal sum-free set of Z/pn.
Then by [2, Theorem 2] we may take

S = {ip + (k + j) | i = 0, 1, . . . , pn−1 − 1; j = 1, . . . , k + 1}.

First suppose that n = 1. In this case, S is in arithmetic progression with difference 1 and
s = |S| = k + 1. Note that

p − 1
s − 1

=
3k + 1

k
= 3 +

1
k

.

Clearly, 3k+1 is divisible by k if and only if k = 1, that is, p = 5. We thus have by Theorem
2.2 that

e(S) =
[
3k + 1

k

]
+ 1 = 3 + 1 = 4

if p 6= 5 and

e(S) =
3(1) + 1

1
= 4

if p = 5.
Now suppose that n ≥ 2. Since S is not in arithmetic progression we cannot make use

of Theorem 2.2. It is however straightforward to show that

3 · ·S = {ip + j | i = 0, 1, . . . , pn−1 − 1; j = 1, . . . , 3k + 1}
6= Z/pn

but

4 · ·S = {ip + (k + j) | i = 0, 1, . . . , pn−1 − 1; j = 2, . . . , p + 1}
= Z/pn.

Hence e(S) = 4 as asserted.

3.3 The Case p ≡ 1 (mod 3)

Proposition 3.3 The maximal sum-free sets of the cyclic group Z/pn where p ≡ 1 (mod 3)
and n ≥ 1 with (p, n) 6= (7, 1) are all exhaustive with exhaustion number 4. If (p, n) =
(7, 1), then the maximal sum-free sets of Z/7 have exhaustion number 6.

Proof: We may write pn = 3k + 1 for some k ∈ Z. Let S be a maximal sum-free set of
Z/pn. Then by [4, Theorem 2], S is automorphic to one of the following forms:

(i) {k, k + 1, . . . , 2k − 1};

(ii) {k + 1, k + 2, . . . , 2k};

(iii) {k, k + 2, k + 3, . . . , 2k − 1, 2k + 1}.
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First suppose that S is automorphic to the form (i) or (ii). Then S is in arithmetic
progression with difference 1 and s = |S| = k. Note that

pn − 1
s − 1

=
3k

k − 1
= 3 +

3
k − 1

.

Hence 3k is divisible by k − 1 if and only if k = 2 or 4, that is, p = 7 or 13. We thus have
by Theorem 2.2 that

e(S) =
[

3k

k − 1

]
+ 1 = 3 + 1 = 4

if p 6= 7, 13,

e(S) =
3k

k − 1
=

3(2)
2 − 1

= 6

if p = 7 and

e(S) =
3k

k − 1
=

3(4)
4 − 1

= 4

if p = 13.
Now suppose that S is automorphic to the form (iii). Taking note that 3k + 1 ≡ 0

(mod pn), we have

3 · ·S = {3k, 3k + 2, 3k + 3, . . . , 3k + 3k} 6= Z/pn.

Consider the 4k + 3 elements

4k, 4k + 2, 4k + 3, . . . , 4k + (4k + 2), 4k + (4k + 4).

Since 4k + 3 > pn, it is easy to see that 4 · ·S must be Z/pn. Hence e(S) = 4.
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