Exhaustion Numbers of Maximal Sum-free Sets of Certain Cyclic Groups

A. Y. M. Chin
Institute of Mathematical Sciences
University of Malaya
50603 Kuala Lumpur, Malaysia

Abstract

Let G be a finite group written additively and S a non-empty subset of G. We say that S is e-exhaustive if $G=S+\ldots+S$ (e times). The minimal integer $e>0$, if it exists, such that S is e-exhaustive, is called the exhaustion number of the set S and is denoted by $e(S)$. The exhaustion numbers of various subsets of finite abelian groups have been determined by the author [1]. In this paper the exhaustion numbers of maximal sum-free sets of the cyclic groups of prime power order are determined.

Keywords Exhaustion number, sum-free set, cyclic group

Abstract

Abstrak Biar G suatu kumpulan terhingga yang ditulis secara penambahan dan S suatu subset tak kosong bagi G. Kita katakan bahawa S adalah habisan-e jika $G=S+\ldots+S$ (e kali). Integer minimal $e>0$, jika ianya wujud, supaya S adalah habisan-e dipanggil nombor habisan bagi set S dan ditandai sebagai $e(S)$. Nombor-nombor habisan bagi beberapa subset kumpulan-kumpulan abelan terhingga telah ditentukan oleh penulis [1]. Dalam kertas ini, nombor habisan bagi set-set bebas hasil tambah yang maksimal bagi kumpulan-kumpulan kitaran yang berperingkat kuasa nombor perdana akan ditentukan.

Katakunci Nombor habisan, set bebas-hasil tambah, kumpulan kitaran

1 Introduction

Let G be a finite group written additively. For a non-empty subset S of G, we say that S is e-exhaustive if G is covered by the sum of e copies of S, that is,

$$
G=S+\ldots+S \quad(e \text { times }) .
$$

For convenience, we shall use $e \cdot S$ to denote $S+\ldots+S$ (e times). The minimal integer $e>0$, if it exists, such that S is e-exhaustive, is called the exhaustion number of the set S
and is denoted by $e(S)$. If such $e>0$ does not exist, we say that the exhaustion number of the set S is infinite and write $e(S)=\infty$. If $e(S)$ is finite, then we say that S is exhaustive in G. Clearly if S is e-exhaustive, then it is also e^{\prime}-exhaustive for any $e^{\prime}>e$. It is also clear that if S is exhaustive in G then $S \nsubseteq H$ for any proper subgroup H of G.

The exhaustion numbers of various subsets of finite abelian groups have been determined by the author in [1]. In this paper we shall determine the exhaustion numbers of maximal sum-free sets of cyclic groups of prime power order. A sum-free set S of G is a non-empty subset of G satisfying $(S+S) \cap S=\emptyset$. We say that S is a maximal sum-free set if S is sum-free and $|S| \geq|T|$ for every sum-free set T in G. Various properties of sum-free sets have been studied before (see for example [3]). We show in this paper that except for the cyclic group $\mathbb{Z} / 7$, the maximal sum-free sets of cyclic groups of prime power order are either not exhaustive or exhaustive with exhaustion number four. For the cyclic group $\mathbb{Z} / 7$, its maximal sum-free sets have exhaustion number six.

We shall use the notation $\lceil x\rceil$ to mean the smallest integer $\geq x$. As usual, the notation $[x]$ means the largest integer $\leq x$. It is not difficult to see that $\lceil x\rceil=[x]+1$ if x is not an integer.

2 Exhaustion Numbers of Subsets of $\mathbb{Z} / m, m \geq 2$ Which are in Arithmetic Progression

The main result in this section is Theorem 2.2 which has been obtained in [1]. For the sake of convenience and since this result is used frequently in the next section, we shall reproduce it here. We first prove the following lemma:

Lemma 2.1 Let m and s be positive integers with $s>2$. If $s-1$ does not divide $m-1$, then

$$
m \leq\left\lceil\frac{m-1}{s-1}\right\rceil(s-1)+1 \leq m+(s-2)
$$

Proof: Since $s-1$ does not divide $m-1$, so $\left\lceil\frac{m-1}{s-1}\right\rceil=\left[\frac{m-1}{s-1}\right]+1$. Suppose first that $\left(\left[\frac{m-1}{s-1}\right]+1\right)(s-1)+1<m$. Then

$$
\left[\frac{m-1}{s-1}\right](s-1)<m-s
$$

and hence

$$
\left[\frac{m-1}{s-1}\right]<\frac{m-s}{s-1}=\frac{m-1}{s-1}-1
$$

which is not possible. Therefore $\left(\left[\frac{m-1}{s-1}\right]+1\right)(s-1)+1 \geq m$.
Now suppose that $\left(\left[\frac{m-1}{s-1}\right]+1\right)(s-1)+1 \geq m+(s-1)$. Then

$$
\left[\frac{m-1}{s-1}\right](s-1) \geq m-1
$$

and hence

$$
\left[\frac{m-1}{s-1}\right] \geq \frac{m-1}{s-1}
$$

which is not possible. Hence $\left(\left[\frac{m-1}{s-1}\right]+1\right)(s-1)+1 \leq m+(s-2)$.
Theorem 2.2 Let $S \subseteq \mathbb{Z} / m, m \geq 2$ with $|S|=s>1$. If S is in arithmetic progression with difference d relatively prime to m, then

$$
e(S)=\left\lceil\frac{m-1}{s-1}\right\rceil
$$

If S is in arithmetic progression with difference d not relatively prime to m, then $e(S)=\infty$.
Proof: Let $S=\{a, a+d, a+2 d, \ldots, a+(s-1) d\}$ where d is relatively prime to m. By induction, it can be shown that for any positive integer k, the first term in the (multi)set $k \cdot S$ is $k a$ while the last term is $k a+k(s-1) d$. Suppose first that $s-1$ divides $m-1$ and let $e=\frac{m-1}{s-1}$. Then

$$
e(s-1) d+d=\left(\frac{m-1}{s-1}\right)(s-1) d+d=m d \equiv 0 \quad(\bmod m)
$$

and it follows that

$$
(e a+e(s-1) d)+d \equiv e a \quad(\bmod m)
$$

that is, the difference between the first and last terms of $e \cdot S$ is d. Since d is relatively prime to m, so we must have that $e \cdot S=\mathbb{Z} / m$. Note that

$$
(e-1) a+i d \not \equiv(e-1) a+j d \quad(\bmod m)
$$

for any $i, j=0,1, \ldots,(e-1)(s-1)(=m-s)$. Otherwise, there exist $i, j \in\{0,1, \ldots, m-s\}$ such that $(i-j) d \equiv 0 \quad(\bmod m)$. Since d is relatively prime to m, so $i-j \equiv 0(\bmod m)$. But this is impossible since $m-s<m$. We also note that

$$
\begin{aligned}
(e-1)(s-1) d+d & =(m-s) d+d \\
& =(m-(s-1)) d \\
& \not \equiv 0 \quad(\bmod m)
\end{aligned}
$$

Therefore $((e-1) a+(e-1)(s-1) d)+d \not \equiv(e-1) a(\bmod m)$. It thus follows that $(e-1) \cdots S \neq \mathbb{Z} / m$ and hence $e(S)=e=\frac{m-1}{s-1}$.

Now suppose that $s-1$ does not divide $m-1$. Let $e=\left[\frac{m-1}{s-1}\right]+1$. Then by Lemma 2.1

$$
\begin{aligned}
e a+e(s-1) d+d & =e a+\left(\left[\frac{m-1}{s-1}\right]+1\right)(s-1) d+d \\
& =e a+(m+i) d \\
& \equiv e a+i d \quad(\bmod m)
\end{aligned}
$$

for some $i=0,1, \ldots, s-2$. We thus have that either the difference between the first and last terms of $e \cdot S$ is d (this happens if $i=0$) or the last term in (the multiset) $e \cdot S$ coincides
with one of its earlier terms (this happens if $i \in\{1, \ldots, s-2\}$). In either case, since d is relatively prime to m it must follow that $e \cdot S=\mathbb{Z} / m$. Note that

$$
(e-1)(s-1)=\left[\frac{m-1}{s-1}\right](s-1)<\left(\frac{m-1}{s-1}\right)(s-1)=m-1<m
$$

Therefore

$$
(e-1) a+i d \not \equiv(e-1) a+j d \quad(\bmod m)
$$

for any $i, j=0,1, \ldots,(e-1)(s-1)$. Since

$$
\begin{aligned}
(e-1) a+(e-1)(s-1) d+d & <(e-1) a+(m-1) d+d \\
& =(e-1) a+m d
\end{aligned}
$$

so $(e-1) a+(e-1)(s-1) d+d \not \equiv(e-1) a \quad(\bmod m)$. It follows that $(e-1) \cdots S \neq \mathbb{Z} / m$ and hence $e(S)=e=\left[\frac{m-1}{s-1}\right]+1$.

Finally, suppose that m and d are not relatively prime. Let n be the smallest positive integer such that $n d \equiv 0 \quad(\bmod m)$. Then $(d a+(n-1) d)+d \equiv d a \quad(\bmod m)$ and we thus have that

$$
\begin{aligned}
d \cdots S & =\{d a, d a+d, d a+2 d, \ldots, d a+(n-1) d\} \\
& =\{d a, d(a+1), d(a+2), \ldots, d(a+n-1)\}
\end{aligned}
$$

That is, $d \cdots S$ is the subgroup of \mathbb{Z} / m of order n and we can write

$$
d \cdots S=\{0, d, 2 d, \ldots,(n-1) d\}
$$

It follows that

$$
(k d) \cdots S=\{0, d, 2 d, \ldots,(n-1) d\}
$$

for any positive integer k. Hence S cannot be exhaustive.

3 Exhaustion Numbers of Maximal Sum-free Sets of Cyclic Groups

In this section we show that except for the cyclic group $\mathbb{Z} / 7$, the maximal sum-free sets of cyclic groups of prime power order are either not exhaustive or exhaustive with exhaustion number four. For the cyclic group $\mathbb{Z} / 7$, its maximal sum-free sets have exhaustion number six.

3.1 The Case $p=3$

Proposition 3.1 The maximal sum-free sets of the cyclic group $\mathbb{Z} / 3^{n} \quad(n \geq 1)$ are either not exhaustive or exhaustive with exhaustion number 4.

Proof: It is not difficult to see that $\mathbb{Z} / 3$ has 3 sum-free sets (that is, $\{0\},\{1\}$ and $\{2\}$) and that these sets are not exhaustive. Now consider $n \geq 2$ and let S be a maximal sum-free set of $\mathbb{Z} / 3^{n}$. From [2, Theorem 4] it can be worked out that S is automorphic to one of the following forms:
(i) $\left\{3 i+1 \mid i=0,1, \ldots, 3^{n-1}-1\right\}$;
(ii) $\left\{3^{n-1}+(3 j+1) i \mid i=0,1, \ldots, 3^{n-1}-1\right\}, \quad j=0,1, \ldots, 3^{n-1}-1$;
(iii) $\left\{j .3^{n-1}+\left(3^{n-2}+(3 k+1) i\right) \mid i=0,1, \ldots, 3^{n-2}-1 ; j=0,1,2\right\}, k=0,1, \ldots, 3^{n-2}-$ $1 \quad(n \geq 3)$.

If S is automorphic to a maximal sum-free set of the form (i), then it is in arithmetic progression with difference 3. By Theorem 2.2, it follows readily that $e(S)=\infty$. Suppose that S takes the form (ii). Then S is in arithmetic progression with difference $3 j+1$ which is clearly relatively prime to 3 . The number of elements s in S is 3^{n-1}. Note that

$$
\frac{3^{n}-1}{s-1}=\frac{3^{n}-1}{3^{n-1}-1}=3+\frac{2}{3^{n-1}-1}
$$

Hence $3^{n}-1$ is divisible by $3^{n-1}-1$ if and only if $n=2$. We thus have by Theorem 2.2 that

$$
e(S)=\left[\frac{3^{n}-1}{3^{n-1}-1}\right]+1=\left[3+\frac{2}{3^{n-1}-1}\right]+1=4
$$

if $n \neq 2$. If $n=2$ then by Theorem 2.2 again,

$$
e(S)=\frac{3^{2}-1}{3^{2-1}-1}=4
$$

Finally, suppose that S is automorphic to a maximal sum-free set of the form (iii). Then we can write S as the disjoint union of S_{1}, S_{2} and S_{3} where

$$
\begin{aligned}
S_{r}= & \left\{(r-1) \cdot 3^{n-1}+3^{n-2},(r-1) \cdot 3^{n-1}+3^{n-2}+(3 k+1)\right. \\
& \left.\ldots,(r-1) \cdot 3^{n-1}+3^{n-2}+(3 k+1)\left(3^{n-2}-1\right)\right\}, \quad r=1,2,3
\end{aligned}
$$

Clearly, each S_{r} is in arithmetic progression with difference $3 k+1$. Note that

$$
\begin{aligned}
4 \cdot S_{r}= & \left\{4(r-1) \cdot 3^{n-1}+4.3^{n-2}, 4(r-1) \cdot 3^{n-1}+4.3^{n-2}+(3 k+1)\right. \\
& \left.\quad \ldots, 4(r-1) \cdot 3^{n-1}+4.3^{n-2}+4\left(3^{n-2}-1\right)(3 k+1)\right\}, r=1,2,3
\end{aligned}
$$

Since $4\left(3^{n-2}-1\right)=(3+1)\left(3^{n-2}-1\right)=3^{n-1}+3^{n-2}-4$, so $\left|4 \cdot S_{r}\right|=3^{n-1}+3^{n-2}-4+1=$ $3^{n-1}+3^{n-2}-3$. It is straightforward to check that $\left|4 \cdot S_{i} \cap 4 \cdot S_{j}\right|=3^{n-2}-3$ for every $i, j=1,2,3(i \neq j)$ and that $4 \cdot S_{1} \cap 4 \cdot S_{2} \cap 4 \cdots S_{3}=\emptyset$. Therefore $\left|4 \cdots S_{1} \cup 4 \cdots S_{2} \cup 4 \cdot S_{3}\right|=3^{n}$ and it follows that $4 \cdots S=4 \cdot S_{1} \cup 4 \cdot S_{2} \cup 4 \cdot S_{3}=\mathbb{Z} / 3^{n}$. By some straightforward (but tedious) calculation, it can be shown that $3 \cdots S \neq \mathbb{Z} / 3^{n}$. Therefore $e(S)=4$.

3.2 The Case $p \equiv 2 \quad(\bmod 3)$

Proposition 3.2 The maximal sum-free sets of the cyclic group \mathbb{Z} / p^{n} where $p \equiv 2(\bmod 3)$ and $n \geq 1$ are all exhaustive with exhaustion number 4.

Proof: We may write $p=3 k+2$ for some $k \in \mathbb{Z}$. Let S be a maximal sum-free set of \mathbb{Z} / p^{n}. Then by [2, Theorem 2] we may take

$$
S=\left\{i p+(k+j) \mid i=0,1, \ldots, p^{n-1}-1 ; j=1, \ldots, k+1\right\}
$$

First suppose that $n=1$. In this case, S is in arithmetic progression with difference 1 and $s=|S|=k+1$. Note that

$$
\frac{p-1}{s-1}=\frac{3 k+1}{k}=3+\frac{1}{k} .
$$

Clearly, $3 k+1$ is divisible by k if and only if $k=1$, that is, $p=5$. We thus have by Theorem 2.2 that

$$
e(S)=\left[\frac{3 k+1}{k}\right]+1=3+1=4
$$

if $p \neq 5$ and

$$
e(S)=\frac{3(1)+1}{1}=4
$$

if $p=5$.
Now suppose that $n \geq 2$. Since S is not in arithmetic progression we cannot make use of Theorem 2.2. It is however straightforward to show that

$$
\begin{aligned}
3 \cdot S & =\left\{i p+j \mid i=0,1, \ldots, p^{n-1}-1 ; j=1, \ldots, 3 k+1\right\} \\
& \neq \mathbb{Z} / p^{n}
\end{aligned}
$$

but

$$
\begin{aligned}
4 \cdot S & =\left\{i p+(k+j) \mid i=0,1, \ldots, p^{n-1}-1 ; j=2, \ldots, p+1\right\} \\
& =\mathbb{Z} / p^{n}
\end{aligned}
$$

Hence $e(S)=4$ as asserted.

3.3 The Case $p \equiv 1 \quad(\bmod 3)$

Proposition 3.3 The maximal sum-free sets of the cyclic group \mathbb{Z} / p^{n} where $p \equiv 1(\bmod 3)$ and $n \geq 1$ with $(p, n) \neq(7,1)$ are all exhaustive with exhaustion number 4. If $(p, n)=$ $(7,1)$, then the maximal sum-free sets of $\mathbb{Z} / 7$ have exhaustion number 6 .

Proof: We may write $p^{n}=3 k+1$ for some $k \in \mathbb{Z}$. Let S be a maximal sum-free set of \mathbb{Z} / p^{n}. Then by [4, Theorem 2], S is automorphic to one of the following forms:
(i) $\{k, k+1, \ldots, 2 k-1\}$;
(ii) $\{k+1, k+2, \ldots, 2 k\}$;
(iii) $\{k, k+2, k+3, \ldots, 2 k-1,2 k+1\}$.

First suppose that S is automorphic to the form (i) or (ii). Then S is in arithmetic progression with difference 1 and $s=|S|=k$. Note that

$$
\frac{p^{n}-1}{s-1}=\frac{3 k}{k-1}=3+\frac{3}{k-1}
$$

Hence $3 k$ is divisible by $k-1$ if and only if $k=2$ or 4 , that is, $p=7$ or 13 . We thus have by Theorem 2.2 that

$$
e(S)=\left[\frac{3 k}{k-1}\right]+1=3+1=4
$$

if $p \neq 7,13$,

$$
e(S)=\frac{3 k}{k-1}=\frac{3(2)}{2-1}=6
$$

if $p=7$ and

$$
e(S)=\frac{3 k}{k-1}=\frac{3(4)}{4-1}=4
$$

if $p=13$.
Now suppose that S is automorphic to the form (iii). Taking note that $3 k+1 \equiv 0$ $\left(\bmod p^{n}\right)$, we have

$$
3 \cdot S=\{3 k, 3 k+2,3 k+3, \ldots, 3 k+3 k\} \neq \mathbb{Z} / p^{n}
$$

Consider the $4 k+3$ elements

$$
4 k, 4 k+2,4 k+3, \ldots, 4 k+(4 k+2), 4 k+(4 k+4)
$$

Since $4 k+3>p^{n}$, it is easy to see that $4 \cdots S$ must be \mathbb{Z} / p^{n}. Hence $e(S)=4$.

References

[1] A. Y. M. Chin, Exhaustion numbers of subsets of abelian groups, submitted for publication.
[2] P. H. Diananda and H. P. Yap, Maximal sum-free sets of elements of finite groups, Proc. Japan Acad. 45 (1969), 1-5.
[3] A. P. Street, Sum-free sets, Springer Lecture Notes in Math. 292 (1972), 123-272.
[4] H. P. Yap, Maximal sum-free sets in finite abelian groups, II, Bull. Austral. Math. Soc. 5 (1971), 43-54.

