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Abstract In this paper a course of solving variational problem is considered. [2]
obtained what appears to be specialized inequality for a variance, namely, that for a
standard normal variable X , V ar[g(x)] ≥ E[g′(x)]2 . However both of the simplicity
and usefulness of the inequality has generated a plethora of extensions, as well as
alternative proofs. [5] had focused on a result of two random variables for the normal
and gamma distribution. They obtained the result of normal distribution with k
functions, without proving and the proof is presented here. This paper also extend the
result obtained by [5] to the k functions for the gamma distribution.
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1 Introduction

In solving a variational problem, [2] obtained what appears to be specialized inequality for
a variance. Let X be normally distributed with density ϕ (x) and mean 0 and variance 1.
If g is absolutely continuous and g(X) has finite variance, then

E[g′(X)]2 ≥ V ar[g(X)]. (1)

Equality in (1) is achieved for linear functions. This inequality have arisen earlier,
especially because of its use in variational problems. There are many papers that deal with
inequality (1) and in many cases they relate to the single function. However, the random
variables might have multivariate distributions. So, we present the study of matrix variance
inequality for the normal and gamma distribution with k-functions.

2 Literature Review

Chernoff’s proof is based on expanding g(X) in orthonormalized Hermite polynomials with
respect to the normal density

g(X) = a0 + a1H1(X) + a2H2(X) + · · · (2)
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with probability 1. Let

E[Hi(X)] = 0, E[Hi(X)Hj(X)] = δij , (3)

dHi(x)
dx

√
iHi−1(x)

ai = E[g(X)Hi(X)] (4)

and
V ar(g(X)) = a2

1 + a2
2 + · · ·+ a2

n + · · · , (5)

g′(X) = a1 +
√

2a2H1(X) + · · ·+√
nanHn−1(X) + R′n(X).

So that if g′(X) has a second moment,

E[g′(X)]2 =
∑

ia2
i ≥ V ar[g(X)]. (6)

And if g′(X) has no second moment then
∑

ia2
i is infinite. For a logconcave density

exp[−ϕ(x)] , [4] proved that

V ar[g(X)] ≤ E[g′(X)/ϕ′′(X)]2, (7)

and for the normal density, (7) is reduced to (1).
[1] shows that

E[g′(X)] = E[Xg(X)] (8)

has a similar flavor to that of (1). Stein’s proof is essentially based on integration by
parts, but can also be proven by using Hermite polynomials. [6] and [7] provide an alter-
native proof based on the Cauchy-Schwarz inequality. [6] prove that for the normal density
ϕ(x), ϕ′(x) = −xϕ(x). [7] extends (1) to the case that X1, . . . , Xk are independent N(0, 1)
random variables and g is defined on Rk. Then

V ar[g(X)] ≤ E[g1(X)]2 + · · ·+ E[gk(X)]2,

where gi(x) = δg(x)/δxi and X = (X1, . . . , Xk).
[10] provides other extensions, and in particular, the lower bounds in (1);

[Eg′(X)] ≤ V ar[g(X)] ≤ E[g′(X)]2,

[Eg′(X)]2 +
1
2
[Eg(X)]2 ≤ V ar[g(X)].

[11] improved the bounds for families other than normal. They also obtain the lower
bound for the normal distribution

n∑

k=1

∣∣EG(k)(X)
∣∣2

k!
≤ V ar[G(X)],

with n = 2.
[4] discussed a generalization to operators and use a complete orthonormal system. [8]

obtain an equality similar to (1) by consider the double exponential distribution with density
exp(−|x|)/2.
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3 Characterizations

In this paper we provide a proof of matrix variance inequality for the normal and gamma
distributions of k-functions. Actually the result of matrix variance inequality for the normal
distribution is obtained by [5] without proving. We extend this paper to find the matrix
variance inequality for the gamma distribution with k-functions. We used the proposition
obtained in [2]. This proposition later studied by [5] and shows the proof of matrix variance
inequality of normal and gamma distribution for 2-functions.

Proposition. Let X be a N(0, 1) random variable, g1, . . . , gk absolutely continuous
functions with finite variances. Let H = (hij) and C = (cij) be k × k matrices defined by

hij = E[g′i(X)g′j(X)],

cij = Cov[gi(X), gj(X)].
(9)

Then H ≥ C in the Loewner ordering, i.e, H − C is nonnegative definite.
The proof of this proposition is discussed in Section 4.

4 A Matrix Variance Inequality for The Normal Distribution

We show the proof of a matrix variance inequality for k-functions which are normal distri-
bution. To prove the proposition, we expand g1(X), g2(X), . . . , gk(X) in orthonormalized
Hermite polynomials:

g1(X) = a0 + a1H1(X) + a2H2(X) + · · ·
g2(X) = b0 + b1H1(X) + b2H2(X) + · · ·
...

...
...

...
...

gk(X) = u0 + u1H1(X) + u2H2(X) + · · ·

(10)

with probability 1, where

E[Hi(X)] = 0, E[Hi(X)Hj(X)] = δij , (11)

dHi(x)
dx

√
iHi−1(x)

ai = E[g1(X)Hi(X)]

bi = E[g2(X)Hi(X)]
...

...
...

ui = E[gk(X)Hi(X)].

Then, from (5) we have
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V ar[g1(X)] =
∞∑

i=1

a2
i , V ar[g2(X)] =

∞∑

i=1

b2
i , . . ., V ar[gk(X)] =

∞∑

i=1

u2
i (12)

Cov[g1(X), g2(X)] =
∞∑

i=1

aibi, ..., Cov[g1(X), gk(X)] =
∞∑

i=1

aiui, (13)

Cov[g2(X), gk(X)] =
∞∑

i=1

biui. (14)

Hence, H and C are k × k matrices in the form

H =




∑
ia2

i

∑
iaibi . . .

∑
iaiui∑

iaibi

∑
ib2

i . . .
∑

ibiui

...
...

. . .
...∑

iaiui

∑
ibiui . . .

∑
iu2

i




and (15)

C =




∑
a2

i

∑
aibi . . .

∑
aiui∑

aibi

∑
b2
i . . .

∑
biui

...
...

. . .
...∑

aiui

∑
biui . . .

∑
u2

i




, respectively. (16)

Then, we get

H−C =




∑
(i− 1)a2

i

∑
(i− 1)aibi . . .

∑
(i− 1)aiui∑

(i− 1)aibi

∑
(i− 1)b2

i . . .
∑

(i− 1)biui

...
...

. . .
...∑

(i− 1)aiui

∑
(i− 1)biui . . .

∑
(i− 1)u2

i




. (17)

Let
αi =

√
i− 1ai, βi =

√
i− 1bi, ..., γi =

√
i− 1ui

where

τ(1) = (α1, α2, α3, . . .), τ(2) = (β1, β2, β3, . . .), ..., and τ(k) = (γ1, γ2, γ3, . . .). (18)

Actually (17) is in the form of

H−C =




∑√
i− 1ai

√
i− 1ai

∑√
i− 1ai

√
i− 1bi . . .

∑√
i− 1ai

√
i− 1ui∑√

i− 1ai

√
i− 1bi

∑√
i− 1bi

√
i− 1bi . . .

∑√
i− 1bi

√
i− 1ui

...
...

. . .
...∑√

i− 1ai

√
i− 1ui

∑√
i− 1bi

√
i− 1ui . . .

∑√
i− 1ui

√
i− 1ui
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It is obvious that if αi =
√

i− 1ai, then α′i =
√

i− 1ai. Consequently we can rewrite
(17) as

H−C =




∑
αiα

′
i

∑
αiβ

′
i . . .

∑
αiγ

′
i∑

βiα
′
i

∑
βiβ

′
i . . .

∑
βiγ

′
i

...
...

. . .
...∑

γiα
′
i

∑
γiβ

′
i . . .

∑
γiγ

′
i




.

Hence, we obtained

H−C =




τ(1)τ
′
(1) τ(1)τ

′
(2) . . . τ(1)τ

′
(k)

τ(2)τ
′
(1) τ(2)τ

′
(2) . . . τ(2)τ

′
(k)

...
...

. . .
...

τ(k)τ
′
(k) τ(k)τ

′
(2) . . . τ(k)τ

′
(k)


 =




τ(1)

τ(2)

...
τ(k)




(
τ ′(1) τ ′(2) . . . τ ′(k)

)
≥ 0.

(19)

5 A Matrix Inequality for Gamma Distribution

The gamma density function is defined by

g(X) =
xαe−x

Γ(α + 1)
, α > −1.

[9] uses the Laguerre family of orthogonal family to obtain the inequality

V ar[g(X)] ≤ EX[g′(X)]2, (20)

with equality if and only if g(x) is linear. The key features of the Laguerre family are

E[L(α)
n (X)L(α)

n (X)] =
(

n + α
n

)
δij ,

dL
(α)
n

dx
= −L

(α+1)
n−1 (x). (21)

Let say

g1(x) =
∑

anL
(α)
n (x),

g2(x) =
∑

bnL
(α)
n (x),

g3(x) =
∑

cnL
(α)
n (x),

...
...

...
gk(x) =

∑
ukL

(α)
k (x).

(22)

Then
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v11 ≡ V ar[g1(X)] =
∑

a2
n

(
n + α
n

)
,

v22 ≡ V ar[g2(X)] =
∑

b2
n

(
n + α
n

)
,

v33 ≡ V ar[g3(X)] =
∑

c2
n

(
n + α
n

)
,

v12 ≡ Cov[g1(X), g2(X)] =
∑

anbn

(
n + α
n

)
,

v13 ≡ Cov[g1(X), g3(X)] =
∑

ancn

(
n + α
n

)
,

v23 ≡ Cov[g2(X), g3(X)] =
∑

bncn

(
n + α
n

)

...
,

vkk ≡ V ar[gkn(X)] =
∑

u2
n

(
n + α
n

)
,

v1k ≡ Cov[g1(X), gk(X)] =
∑

anun

(
n + α
n

)
,

v2k ≡ Cov[g2(X), gk(X)] =
∑

bnun

(
n + α
n

)
,

v3k ≡ Cov[g3(X), gk(X)] =
∑

cnun

(
n + α
n

)

(23)

and following development in [9], we let

c11 = EX[g′1(X)]2 =
∑

a2
nn

(
n + α
n

)
,

c22 = EX[g′2(X)]2 =
∑

b2
nn

(
n + α
n

)
,

c33 = EX[g′3(X)]2 =
∑

c2
nn

(
n + α
n

)
,

c12 = EX[g′1(X)g′2(X)]2 =
∑

anbnn

(
n + α
n

)
,

c13 = EX[g′1(X)g′3(X)]2 =
∑

ancnn

(
n + α
n

)

...
,

ckk = EX[g′k(X)]2 =
∑

u2
nn

(
n + α
n

)
,

c1k = EX[g′1(X)g′k(X)]2 =
∑

anunn

(
n + α
n

)
,

c2k = EX[g′2(X)g′k(X)]2 =
∑

bnunn

(
n + α
n

)
,

c3k = EX[g′3(X)g′k(X)]2 =
∑

cnunn

(
n + α
n

)
.

(24)
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If V = (vij), C = (cij), then we have

V =




∑
a2

n

(
n + α
n

) ∑
anbn

(
n + α
n

)
. . .

∑
anun

(
n + α
n

)

∑
anbn

(
n + α
n

) ∑
b2
n

(
n + α
n

)
. . .

∑
bnun

(
n + α
n

)

...
...

. . .
...

∑
anbn

(
n + α
n

) ∑
anbn

(
n + α
n

)
. . .

∑
u2

n

(
n + α
n

)




C =




∑
a2

nn

(
n + α
n

) ∑
anbnn

(
n + α
n

)
. . .

∑
anunn

(
n + α
n

)

∑
anbnn

(
n + α
n

) ∑
b2
nn

(
n + α
n

)
. . .

∑
bnunn

(
n + α
n

)

...
...

. . .
...

∑
anunn

(
n + α
n

) ∑
anunn

(
n + α
n

)
. . .

∑
u2

nn

(
n + α
n

)




.

So, it is obvious,

C−V =


∑
a2

n

(
n + α
n

)
(n− 1)

∑
anbn

(
n + α
n

)
(n− 1) . . .

∑
anun

(
n + α
n

)
(n− 1)

∑
anbn

(
n + α
n

)
(n− 1)

∑
b2
n

(
n + α
n

)
(n− 1) . . .

∑
bnun

(
n + α
n

)
(n− 1)

...
...

. . .
...

∑
anun

(
n + α
n

)
(n− 1)

∑
bnun

(
n + α
n

)
(n− 1) . . .

∑
u2

n

(
n + α
n

)
(n− 1)




We let

αn = an

√
n− 1

√(
n + α
n

)
, βn = bn

√
n− 1

√(
n + α
n

)
, ...,

γn = un

√
n− 1

√(
n + α
n

)
,

where

τ(1) = (α1, α2, α3, . . .), τ(2) = (β1, β2, β3, . . .), ..., and τ(k) = (γ1, γ2, γ3, . . .). (25)

Hence,

C−V =




τ(1)

τ(2)

...
τ(k)




(
τ ′(1) τ ′(2) . . . τ ′(k)

)
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which is nonnegative definite.

6 Conclusion

In this paper we have shown how to proof the matrix variance inequality for k-functions
which are normally distributed. We also addressed the case of proving for k-functions which
are gamma distribution. Hence, we can conclude that if X is either normally distributed or
gamma distribution, then H ≥ C in the Loewner ordering which is H − C is nonnegative
definite.
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