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Abstract How to design a fail-stop signature scheme is still a field in need of cultiva-
tion. If an attacker can successfully break an ordinary fail-stop signature scheme, then
only a signer not a recipient is able to prove that a forgery has happened. This system
only solves one dimensional of cryptographic problems. In this paper, we describe
a new kind of digital signature scheme called fail-stop designated recipient signature
scheme. The scheme allows a signer and an intended recipient to cooperatively pro-
vide a proof of forgery if an attacker can successfully forge a signature on a message
m. The scheme also provides that the intended recipient is the only entity to verify
the resulting signature and prove the validity to any interested third party. With this
property, we show that our new signature scheme is the best alternative to solve certain
problems concerning the protection of confidential documents especially those which
are personally sensitive (to the owner) and is also applicable for group of recipients to
verify a signature jointly (shared verification) in a group-oriented environment.

Keywords Cryptography, Digital Signature, RSA Signature Scheme, Discrete Loga-
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1 Introduction

Digital signature scheme allows an electronic document to be signed by a signer in a signing
algorithm. Later, an owner of the document can determine whether the resulting signature
is valid or not to confirm its integrity by performing a verifying algorithm. Up to now, many
types of signature schemes have been invented by Camenisch[4], Chaum[5] and Lim[10] and
each of them has a unique feature so that it can solve a unique problem in the real world
situations. Basically, in all classical digital signature schemes if a forger successfully obtain
a forge signature that passes the verification procedure then the scheme is completely in-
secure and a signer would be blamed then. This is the main disadvantage of the digital
signature scheme. However, fail-stop signature completely avoids this type of attack. If an
attacker successfully forges a signature, then a real signer can provide a proof and show to
any third party that a forgery has happened. This concept was first introduced by Waidner
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and Pfitzmann[20] and then was formally defined in Pfitzmann and Waidner[17]. Theoreti-
cally, fail-stop signature schemes are known to exist if claw-free pairs of permutations (not
necessarily with trapdoor) exist, see Bleumer et. al[2] and Pfitzmann and Waidner[18] for
description and Pfitzmann and Waidner[17] for proof. For complete definition of claw-free
permutations, see Goldwasser et. al[7]. In particular, Bleumer et. al [2] and Heijst et.
al[8] show that fail-stop signatures only exist if factoring large integer or discrete logarithm
problem is hard.

The first construction of fail-stop signature by Waidner & Pfitzmann[20] uses a one-
time signature scheme and requires messages to be signed bit by bit although the tree-
authentication as proposed by Merkle[11] is used. This general construction is not efficient.
There is an efficient construction for fail-stop signature that can be used to protect clients
unconditionally secure in online payment system (see Pfitzmann[14]). However in this
scheme all signatures by one client must have the same recipient like the bank in a payment
system. Furthermore, signing is a 3-round protocol between the signer and the recipient.
Pfitzmann[15] also presented an efficient scheme with single recipient. First fail-stop signa-
ture schemes based on factorization and discrete logarithm problems have been proposed
respectively in Susilo et. al[19] and Heyst and Pedersen[9]. The former uses modulus factors
as a proof of forgery whereas the latter uses a private key of the system as a proof of forgery.
In Pedersen and Pfitzmann[13], a formal definition of fail-stop signature is given and a gen-
eral construction using bundling homomorphism is proposed. See also Pfitzmann[16]. To
provide a proof of forgery, they show that under bundling homomorphism, two signatures
(respectively generated by signer and forger) are shown to collide. Note that, none of the
proposed schemes provide that, only an intended recipient can verify the signature and the
proof of forgery must be done collaboratively by the two entities: the signer and the des-
ignated recipient. These properties if satisfied are very useful in many various applications
that we will be discussed later.

In this paper, we propose a new digital signature called Fail-Stop Designated Recipient
Signature (FDRS) scheme. The scheme allows a signer and an intended recipient to co-
operatively provide a proof of forgery if an attacker can successfully forge a signature on
a message m. The scheme also provides that the intended recipient is the only entity to
verify the resulting signature and capable to prove the validity of signature to any third
party. With this property it is possible to solve certain problems concerning the protec-
tion of confidential documents especially those that are personally sensitive to the owner
of documents. As usual the scheme will involve three players: a signer who issues a signa-
ture, a designated recipient as a recipient of signatures and an adversary (Adv) who always
attempting to forge signatures.

1.1 Problem Statement

If an attacker can successfully break an ordinary fail-stop signature scheme, then only a
signer not a recipient is able to prove that a forgery has happened plus outsiders can verify
the resulting signature even though the signed document is very confidential to the actual
owner. This should be avoided and to overcome this problem we create FDRS such that only
an intended verifier is able to verify his or her confidential document. Also, the intended
verifier can later prove to any third party that the resulted signature is genuine.

The paper is organized as follows. In the next section, we present the basic concepts
and definitions of our model of fail-stop designated recipient signature schemes. In section
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3, we present our new scheme and prove that it satisfies the requirements of the model in
section 4. We next discuss some immediate applications of our scheme and present a small
example and this can be found in section 5. Finally, section 6 concludes the paper.

2 The Model of Fail-Stop Designated Recipient Signature (FDSR)

FDRS consists of five algorithms. The algorithms are as in original fail-stop signature but
we put some modifications to suit to our desire applications.

Definition 2.1 A fail-stop designated recipient signature scheme consists of five algorithms
(GEN, SIGN, VER, PVER, PTEST).

(i) GEN, SIGN and VER are respectively for generating keys, signing messages and
verifying signatures.

(ii) PVER for recipient to prove validation of signature to a third party without revealing
any secret information.

(iii) PTEST for both signer and recipient to provide a proof of forgery if an adversary
successfully forges a signature.

A secure FDRS must satisfy the following properties:

A1. If the signer signs a message, then the recipient can verify the signature and accept it
as genuine.

A2. A polynomially bounded (limited) forger cannot create forged signatures that suc-
cessfully pass the VER.

A3. When a forger with unlimited computational power succeeds in forging a signature
that passes the VER, the signer and recipient are able to construct a proof of forgery
and convince an interested third party that a forgery has occurred.

A4. A polynomially bounded (limited) signer or recipient cannot create a signature that
he can later prove to be a forgery.

To achieve the above properties, we must have:

B1. For each public key, there must exist many matching secret keys. In other words,
there must exist SK, a set consisting of secret keys and each of which fits with the
signer’s public key, PK.

B2. Different secret keys from SK must create different signatures on the same message, m.

B3. The real signer knows only one of the secret keys and thus can only construct one
possible signature on a given message.

B4. An enemy with unlimited computational power knows all the secret keys in SK, thus
can generate all the signatures but he is unable to determine which one will be used by
the signer. If the enemy presents a forged signature and claiming that the signature is
signed by a signer, the signer then is able to provide a proof of forgery by generating
his own signature on the message and use this signature with the one presented by
enemy to break the underlying assumption of the scheme.



12 Eddie Shahril Ismail & Yahya Abu Hasan

To show security of FDRS, it suffices to prove the following properties:

C1. There exists a probabilistic polynomial time algorithm PVER that takes a pair of
secret and public key, a message and a forged signature for that message, and outputs
a proof of forgery.

C2. An enemy with unlimited computing power, who knows the public key of the signer
and his or her signature on a message, cannot find the secret key of the signer. Thus,
he or she would not be able to construct signer’s signature on a new message.

C3. A polynomially bounded signer cannot construct a valid signature on a message, and
later prove that it is a forgery.

Generally, FDRS can be categorized into two ways: (1) FDRS with a trusted dealer (TD)
who is trusted by all others entities and the one who is responsible in initializing the system
and (2) FDRS without TD, and in this case the role of TD is given to a recipient. Our
proposed scheme is based on former.

3 The New Scheme

We now present our fail-stop designated recipient signature scheme based on the factoriza-
tion problem and discrete logarithm problem using a scheme of Susilo et. al [19] as our
basic scheme.

The System Setup (GEN):
The fail-stop designated recipient signature scheme requires TD to choose and generate the
system parameters for the scheme. TD is implemented according to the following steps:

(i) Choose two 512-bit primes p and q such that p = 2p̄ + 1 and q = 2q̄ + 1 where p̄ and
q̄ are also prime numbers.

(ii) Compute n = pq and ϕ(n) = (p− 1)(q − 1).

(iii) Choose an integer α ∈ Z∗n = {1 ≤ υ ≤ n− 1| gcd(υ, n) = 1} arbitrarily and a secret
key d ∈ Z∗ϕ(n) = {1 ≤ η ≤ ϕ(n)− 1| gcd(η, ϕ(n)) = 1}.

(iv) Compute e ≡ d−1 mod ϕ(n) and β ≡ αd mod n.

(v) Broadcast (α, n) and send the pair (e, β) to the signer via secure channel.

A signer then identifies an intended recipient who wishes to accept his or her resulting
signature. They then agree on a random common secret key λ ∈R Z∗n. Next the signer
passes securely the integer β to the intended recipient who then does the following:

(vi) Select at random private key xR ∈R Z∗n and compute and send γ ≡ βxR(modn)
securely to the signer.

The signer then proceeds by selecting secret keys and computing the corresponding
public keys as shown below:

(vii) Choose four secret keys k1, k2, k3, k4 ∈ Z∗n.
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(viii) Compute the following public keys that are related to the intended recipient:

β1 ≡ αk4γk3(mod n),

α1 ≡ αk3βk1
1 (mod n) and α2 ≡ αk4βk2

1 (mod n). (1)

The four secret keys chosen by signer must be used once (choose different secret keys for
different messages). This is because if two different messages are signed using the same four
secret keys then these secret keys will be obtained easily.

Signing (SIGN) and Verifying (VER):
To sign a message m ∈ {0, 1}∗, the signer is implemented according to the following steps:

(i) Compute y1 = k1m + k2λ and y2 = k3m + k4λ.

(ii) A valid signature on a message m is given by (y1, y2).

The recipient accepts the signature as genuine if and only if the following check is correct:

αy2βy1
1 ≡ αm

1 αλ
2 (mod n). (2)

Note that only the intended recipient, who knows λ, can verify the signature. Unfortunately,
the signer also has an ability to check the validity of signature, but this is not a serious
problem when the scheme is applied to our applications.

Prove of Validation (PVER):
In some cases, the recipient needs to prove the validity of the signature to any third party.
To do this, the signer computes and sends recipient ω1 = αk1 and ω2 = αk2 secretly. The
recipient then sends third party ω3 = αλ

2 whose next confirms that

αy2βy1
1 α−m

1 ≡ ω3(mod n). (3)

Finally the recipient proves that logω2
αy1ω−m

1 = logα2
αy2βy1

1 α−m
1 in a zero-knowledge

technique for example using the protocol for simultaneous discrete logarithm [3, 6].

Now assume that Adv successfully obtains a forged signature (ȳ1, ȳ2) that passes VER, the
signer and the recipient now can jointly prove that a forgery has happened by running the
following procedure.

Algorithm Proof of Forgery (PTEST):

(i) Signer constructs his signature on m as (y1, y2).

(ii) Signer then calculates Z1 = ȳ1 − y1 and Z2 = y2 − ȳ2.

(iii) Signer and recipient jointly compute Z = e(Z2 − k4Z1) − xRk3Z1 = cϕ(n) for some
integer c.
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With the knowledge of cϕ(n) and the modulus n, the signer or the intended recipient can
find the non-trivial factors of n using Miller-Bach algorithm [12, 1]. Note that, both signer
and recipient are required to provide a proof of forgery. It is also attractive if everyone
can provide a proof of forgery with signer’s and recipient’s consent if both of them are not
available.

Theorem 3.1 If GEN and SIGN are run smoothly then the validation of signature in VER
is correct.

Proof: Let a signature on a message m is given by (y1, y2) . Then it is easy to show that
the following congruence holds:

αy2βy1
1 ≡ αk3m+k4λβk1m+k2λ

1 ≡
(
αk3βk1

1

)m (
αk4βk2

1

)λ

≡ αm
1 αλ

2 (mod n). (4)

To illustrate the above scheme, we will describe it using a simple flowchart as illustrated in
Figure 4.1. The flowchart contains all algorithms involved in this scheme.

4 Security and Efficiency Performances

An enemy with unlimited computational power has a non-negligible probability to forge
a signature and if the enemy presents the forge signature, we can provide a proof that a
forgery has happened. In our scheme, to provide such proof, we need collaboration between
a signer and a designated recipient. To show that our scheme is secure we have to prove
the following lemmas and theorems as suggested in section 2. We begin by proving the
following lemma.

Lemma 4.1 There are ϕ (n)2 equally likely secret keys that match with the signer-related
public key.

Proof: The public key of the scheme, (α1, α2, β1) gives us the following three equations:

α1 ≡ αk3βk1
1 (mod n),

α2 ≡ αk4βk2
1 (mod n), (5)

β1 ≡ αk4γk3(mod n)

and by denoting z = logα β1 = k4 + dxRk3, the above equations (the first two) can be
written as

α1 ≡ αk3+k1z mod n and α2 ≡ αk4+k2z mod n (6)

By solving the discrete logarithm problem, we obtain

z1 ≡ (k3 + k1z) mod ϕ (n) and z2 ≡ (k4 + k2z) mod ϕ (n) (7)

for z1, z2 ∈ Z∗n or equivalently we have:
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(
z 0 1 0
0 z 0 1

)



k1

k2

k3

k4


 =

(
z1

z2

)
mod ϕ (n) (8)

These equations contain 4 variables and the rank of the coefficient matrix is 2. We see that,
k3 and k4 can take values between 1 to ϕ (n) thus we can obtain ϕ (n)2 different solutions.

Lemma 4.2 If the signer receives a forged signature (ȳ1, ȳ2) not equal to his valid signature
(y1, y2) on a message m and the forge signature passes the verification test then he or she
can factorize the modulus n.

Proof: Since both signatures (y1, y2) and (ȳ1, ȳ2) pass the verification test then according
(1) we must have that

αy2βy1
1 ≡ αȳ2βȳ1

1 (mod n)

αy2
(
αk4γk3

)y1 ≡ αȳ2
(
αk4γk3

)ȳ1 (mod n)

αy2+y1k4+dxRk3y1 ≡ αȳ2+ȳ1k4+dxRk3ȳ1(mod n)
y2 + y1k4 + dxRk3y1 ≡ ȳ2 + ȳ1k4 + dxRk3ȳ1(modϕ(n)) (9)

(y2 − ȳ2) + (y1 − ȳ1)k4 ≡ dxRk3(ȳ1 − y1)(modϕ(n)).

Note that at this stage the signer or recipient does not know ϕ(n). However, by multiplying
both sides with e and using Z1 = ȳ1 − y1 and Z2 = y2 − ȳ2, we then have the following:

e(Z2 − Z1k4) ≡ xRk3Z1(modϕ(n)) (10)

or equivalently Z = e(Z2−k4Z1)−xRk3Z1 = cϕ(n) for some integer c. We have completed
the proof.

Theorem 4.1 Knowing the public key together with the signature for a message m, an
enemy unlimited computational power can calculate ϕ (n) possible secret keys that could
have been used for signing the message.

Proof: With the public key (α1, α2, β1) and the signature (y1, y2) on m, an unlimited
computational power enemy can solve the discrete logarithm and factorization problems.
The enemy particularly has the following equations:

z1 ≡ (k3 + k1z) mod ϕ (n) ,

z2 ≡ (k4 + k2z) mod ϕ (n) , (11)
ȳ1 ≡ (k1m + k2) mod ϕ (n) ,

ȳ2 ≡ (k3m + k4) mod ϕ (n)

where z = logα β1 = k4 + dxRk3 , z1, z2 ∈ Z∗n and the last two equations is an acceptable
signature on m. These equations next can be formed as
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z 0 1 0
0 z 0 1
m 1 0 0
0 0 m 1







k1

k2

k3

k4


 =




z1

z2

ȳ1

ȳ2


 mod ϕ (n) . (12)

The coefficient matrix has rank 3 and the equations contain 4 variables. Thus there are
exactly ϕ (n) solutions to this equation.

Corollary 4.1 An enemy with unlimited computational power cannot compute the signer’s
signature on a new message.

Proof: From Theorem 4.1, the enemy knows ϕ (n) secret keys but unable to determine
which key will be used by signer.

The following theorem guarantees no limited computational power of signers to be able to
deny his or her signatures.

Theorem 4.2 A computationally bounded signer cannot make signatures, which he or she
can later prove to be forgeries.

Proof: In order to deny a signature, given (α, β1, α1, α2) dishonest signer must find four
secret keys

(
k̄1, k̄2, k̄3, k̄4

)
such that

α1 ≡ αk̄3βk̄1
1 (mod n) and α2 ≡ αk̄4βk̄2

1 (mod n) (13)

However, finding those secret keys is equivalent to the discrete logarithm problem, which is
hard to solve.

Lemma 4.3 Different secret keys that match with the public key and pass the verification
test for a message m create different signatures on m̄ 6= m.

Proof: As shown in Theorem 4.1, an enemy with unlimited computational power can obtain
ϕ (n) secret keys. Say, there is another signature (ȳ1, ȳ2) which also passes the verification
test then we have

ȳ1 ≡ (k1m̄ + k2) mod ϕ (n)
ȳ2 ≡ (k3m̄ + k4) mod ϕ (n) (14)

and obtain the following equation



z 0 1 0
0 z 0 1
m 1 0 0
0 0 m 1
m̄ 1 0 0
0 0 m̄ 1







k1

k2

k3

k4


 =




z1

z2

y1

y2

ȳ1

ȳ2




mod ϕ (n) . (15)

The coefficient matrix has rank 4 and the equations contain 4 variables. Thus there is only
one unique solution.
For efficiency aspect, our scheme has no difference with the scheme presented in [19]. In
that scheme, to sign a message, the signer has to use different secret key for different
message. This means for each sender of a message, the signer’s public and secret key will
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be periodically generated. Our scheme also suffers from this problem. Our SIGN has no
modular exponentiation but involves two standard multiplications and VER involves only
three modular exponentiations of modulo n.

5 Applications Through Case Study

We discuss two immediate applications corresponding to our FDRS. They are: protection of
confidential document and flexible shared verification. For the former, we discuss it through
a case study.

(I) Protection of Confidential Documents

Using the new signature scheme, we can protect our confidential documents (or document
that personally sensitive). For example, a document contains some required information
that qualifies the owner to vote electronically, a health certification required by University
before a student registers as a graduate student or before a person can be employed as
an accountant and a certificate contains information of qualifications before allowing a
candidate to be interviewed. These are amongst the confidential documents that contain
some parts of the owner information. The protection of these documents are obviously
important, to avoid any accusation of integrity of a document, owner and the party who
issues a signature on the document.

Our case study consists of the following: Consider the following situation for three entities:
A recipient Remy, Medical Varsity - an entity that produces signatures and World Medic
- an interested third party. Remy graduated in Optometry, wishes to find a job at World
Medic as an Optometrist. He then attends a virtual interview and was asked to ’present’
his certificate (diploma, degree, etc) that has issued and signed by Medical Varsity. He then
was offered the post. Sometimes later, World Medic accepts a forged signature on Alice’s
certificate. World Medic starts to investigate and brings the case to court. However, Remy
and Medical Varsity prove that they are not guilty by showing that a forgery has happened
by performing the FDRS.

Let say, a recipient Remy wishes to obtain a signature on his certificate m = 808, from
an officer of Medical Varsity, Shawn in a FDRS. The scheme’s setup is done by a trusted
dealer, TD who generates the following parameters:

p = 1319, q = 383,
n = pq = 505177, ϕ (n) = (p− 1)(q − 1) = 503476,

α = 11922, d = 3799,
e ≡ d−1 ≡ 3799−1 ≡ 338743 mod 503476,
β ≡ αd ≡ 119223799 ≡ 498165 mod 505177

and TD sends Shawn (e, β) = (338743, 498165) via secure channel but broadcasts the pair
(α, n) = (11922, 505177) . To communicate, Remy and Shawn must agree on a common
secret key, say they choose λ = 764 at random. Shawn then passes securely β to Remy
and next Remy selects his random private key xR = 7998 and computes and securely sends
Shawn

γ ≡ βxR ≡ 4981657998 ≡ 219816 mod 505177.
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Shawn then proceeds by selecting his four secret keys in Z∗n. Let the keys be the following:

k1 = 321, k2 = 456, k3 = 234 and k4 = 127.

These keys must be used only once. This means to sign different message, Shawn should
selects another keys because if the same keys are used twice, the keys will be recovered
easily. Now Shawn will generate three public keys related to Remy. The keys are given by

β1 ≡ (11922)127(219816)234 ≡ 67198 mod 505177
α1 ≡ (11922)234(67198)321 ≡ 220058 mod 505177
α2 ≡ (11922)127(67198)456 ≡ 303464 mod 505177

and will be used by Remy to validate the produced signature. Now to sign 808, Shawn
computes the following:

y1 = 321(808) + (456)(764) = 607752
y2 = 234(808) + (127)(764) = 286100

and these values are the signature of 808. To validate, only Remy has a right to do so. He
checks that αy2βy1

1 ≡ αm
1 αλ

2 mod n holds. Since

(11922)286100(67198)607752 ≡ 172048 ≡ (220058)808(303464)764 mod 505177,

Remy accepts the signature. It is very important for Remy to prove to any third party say,
Chen that the signature is valid otherwise Remy and the signature cannot be trusted. This
is done via zero-knowledge techniques.
Now say an enemy, Eve claims to Chen that (44347, 3) is also a valid signature of 808
produced by Shawn. Unfortunately, this is true since

(11922)3(67198)44347 ≡ 172048 ≡ (220058)808(303464)764 mod 505177

and Chen may brings this to court because he feels that Shawn and Remy is trying to cheat
him. To prove that they are not guilty, Shawn and Remy must show that the primes p and
q have been broken. To do this, Shawn first generates a signature on the message 808 and
this is given by (607752, 286100). He then calculates the two numbers as below:

z1 = 44347− 607752 = −563405
z2 = 286100− 3 = 286097

and next Shawn cooperates with Remy to calculate

z = e(z2 − k4z1)− xRk3z1

= 338743(286097− (127)(−563405))− (7998)(234)(−563405)
= 25389230331736

and this number can be used to find p and q (using Miller-Bach algorithm) because

z = 25389230331736 = (50427886)(503476) = cϕ (n)

where c = 50427886.
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(II) Flexible Shared Verification

The fail-stop designated recipient also can be immediately extended to the flexible shared
verification such that two or more recipients can jointly verify any resulting signature and
cooperatively provide a proof of forgery with a signer. Consider two recipients A and B
with their respective secret key u and v wish to verify a signature jointly. To achieve this,
they just compute and send γ ≡ βu+v(mod n) securely to a signer. The rest of procedures
are similar.

6 Conclusion

We have presented a model and example of our fail-stop designated recipient signature
scheme with two properties: (1) only an intended recipient can validate the resulting sig-
nature and prove it to any requested third party and (2) if there was a forgery then both
the signer and recipient can co-operate to provide a proof that a forgery has happened.
These properties result two immediate applications, protection of confidential documents
and flexible shared verification. We believe our new kind of signature scheme will provide
a better service than the original fail-stop signature scheme.
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