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Abstract In numerical methods, boundary element method has been widely used to solve

acoustic problems. However, it suffers from certain drawbacks in terms of computational

efficiency. This prevents the boundary element method from being applied to large-scale

problems. This paper presents proposal of a new multiscale technique, coupled with

boundary element method to speed up numerical calculations. Numerical example is

given to illustrate the efficiency of the proposed method. The solution of the proposed

method has been validated with conventional boundary element method and the proposed

method is indeed faster in computation.
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1 Introduction

Your acoustic waves often exist in vibration or impinged on by incident wave, which is also
known as an infinite medium outside of structure. Solving acoustic wave problems can be used
to predict sound field for noise control. The acoustic wave equation for one-dimension space
can be written as:

∂2ϕ

∂x2
−

1

c2

∂2ϕ

∂t2
+ Qδ (x, xQ) = 0, (1)

where ϕ = ϕ (x, t) is the perturbation acoustic pressure at point x and time t, c is the speed of
sound, and Qδ(x, xQ) represents a possible point source located at xQ [1] .

Boundary Element Method (BEM) is an important numerical technique. Efficient in
modelling and the ability to reduce the dimension of the problem are some principal advantages
of the BEM over other numerical methods. The BEM mesh is much easier to generate for three
dimensional problems or infinite domain problems by using the dimension reduction in the
Boundary Integral Equation (BIE) formulations [2]. Integral equations and boundary value
problem for systems of partial differential equations are frequently solved by using BEM [3],
and as it is one of the most effective methods to solve numerical computation of the acoustic
wave problems. BEM is very suitable for modeling symmetrical problems, since discretization
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is done only at the boundary, while computation is easy and efficient when in use. However,
BEM has disadvantages. Matrices system of equations will frequently be populated in BEM
in the case of non-symmetric or non-linear problems. These are not accessible by conventional
BEM. This means that the storage requirements and computational time will tend to grow
according to the square of the problem size [4]. BEM often suffers from drawbacks usually in
terms of the computational efficiency, which leads to a linear system of equations with dense
coefficient matrix. This prevents the boundary element method from being applied to large-
scale problems [1].

Solving the problem of acoustic wave by just using BEM is much slower since the method
is heavily loaded with numerical integration. To overcome this problem, this paper presents
proposal of multiscale technique, coupled with boundary element method to speed up the large
scale acoustic problems, with the help of Fortran, which is a numeric and scientific programming
language. Numerical example is given to illustrate the efficiency of the proposed method.
The solution of the proposed method has been validated with conventional boundary element
method and the former method is indeed faster in computation.

2 Multiscale Boundary Element Method

This proposed method is aimed as improvement of BEM to solve numerical computation of
the acoustic problems, by couplingmultiscale technique with BEM to speed up the acoustic
problems in large-scale with the help of Fortran.

2.1 Multiscale Technique

Multiscale is also known as multi-resolution, multilevel, multigrid, etc. Past studies have
demonstrated that all scale-born complexities can be effectively overcome or drastically reduced
by multiscale algorithms [5]. Multiscale modeling or multiscale mathematics is the field of
solving problems which have important features at multiple scales of time and space. For
example, multiscale modelling and computation are required in studying natural porous media
that have extreme heterogeneity [6].

For regions involving large-scale problems, a new multiscale method can be developed by
breaking down the regionsfrom bigger mesh to produce smaller-scale meshes. In this study,
piecewise Newton interpolation has been used, since this interpolation technique can predict
better initial guess solution of higher resolution.This interpolation is used to get values at
positions in between the data points. The points are simply joined by straight line segments.
Each segment is bounded by two data points and can be interpolated independently.

In this study, conjugate gradient and interpolation have been implemented as a multiscale
technique coupled with BEM. The positive definition of quadratic function takes the form of

f(x) =
1

2
xT Qx + bTx + c, (2)

where x is the unknown vector, b is the known right-hand-side vector and c is a real number.
x, b ∈ <n, Q = QT 〉0, the gradient vectors

{

gk
}

are mutually orthogonal, as

(

gk
)T

gi = 0, for i 6= k. (3)
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Moreover, the search direction vectors are mutually Q-conjugate [7]. In other words,

(

dk
)T

Qdi = 0, for i 6= k. (4)

The basic conjugate gradient method which is designed for quadratic function is applied as
below,

Algorithm 1

Step 1: Set k = 0 to select the initial point x0.

Step 2: g0 = ∇f(x0).. If g0 = 0, stop; go to step 9: else, set d0 = −g0.

Step 3: ak =
dkT

gk

QdkT dk
.

Step 4: xk+1 = xk + αkdk.

Step 5: gk+1 = ∇f
(

xk+1
)

. If gk+1 = 0, stop; go to step 9.

Step 6: βk =
g(k+1)T

Qdk

dkT Qdk
.

Step 7: dk+1 = −gk+1 + βkdk.

Step 8: Set k = k + 1; go to step 3.

Step 9: End

This method was first proposed for quadratic function; later it was futher developed into a
method for general functions.

2.2 Boundary Element Method

BEM is a general numerical method for solving boundary of initial value problem by formulating
it into boundary integral equations. Solving the integral equations given solution at the
boundary can give an approximate solution to the problem. Conceptually, it works by
constructing “a mesh” over the modelled surface. By using the dimension reduction in Boundary
Integral Equation formulations, BEM mesh is much easier to generate for three dimensional
problems or infinite domain problems.

The governing equation for acoustic wave problems can be written as

∇2ϕ + k2ϕ + Qδ (x, xQ) = 0, ∀x ∈ E, (5)

where Qδ(x, xQ) is a typical point source located at xQ in the acoustic domain E. ∇2is the
Laplace operator. Firstly, an integral equationmust be formed from acoustic wave equation.
The fundamental solution, denoted as G (x, y, ω) , satisfies:

∇2G (x, y, ω) + k2G (x, y, ω) + δ (x, y) = 0, ∀x, y ∈ <2/<3. (6)

The derivative is taken at field point y and the dirac delta function, which represents the unit
derivative, is taken at field x. The diracdelta function, δ (x, y) in two and three dimensions, has
the following sifting properties:
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∫

V

f (y) δ (x, y) dV (y) =

{

f(x), if x ∈ V,

0, if x /∈ V ∪ S ′,
(7)

∫

V

f (y)
∂

∂xi
δ (x, y) dV (y) =







−
∂

∂xi

f(x), if x ∈ V,

0, if , x /∈ V ∪ S ′.
(8)

The fundamental solution is given by [8,1,9] as shown in equation (9)

G(x, y, ω) =











i

4
H

(1)
0 (kr) , for 2D,

1

4πr
eikr, for 3D

(9)

where r is the distance between the source point x and field point y, and its normal derivative
is expressed in [1] and is given by equation (10)

F (x, y, ω) ≡
∂G(x, y, ω)

∂n(y)
=











i

4
H

(1)
1 (kr) r,l n/ (y) , for 2D,

1

4πr2
(ikr − 1) r,j nj (y) eikr, for 3D

(10)

where H
(1)
n () denotes the Hankel function of the first kind, j is subscripts for coordinate

components, and n is the component of the outward normal.
In this method, the Green-Gauss theorem is used next, which is multi-dimensionally

equivalent in terms of integration by parts, where E is a domain bounded by boundary S
of the structure, expressed as:

∫

E

[

u∇2v − v∇2u
]

dE =

∫

S

[

u
∂v

∂n
− v

∂u

∂n

]

dS, (11)

for any two continuous functions u and v. Let v (y) = ϕ (y,) which satisfies Equation (5), and
u (y) = G (x, y, ω) which satisfies Equation (6). From Equation (11), the following equation is
formed [1,10,11,12]:

∫

E

[

G∇2ϕ − ϕ∇2G
]

dE =

∫

S

[

G
∂ϕ

∂n
− ϕ

∂G

∂n

]

dS. (12)

Applying Equations (5), (6) and (7) yields

ϕ (x) =

∫

S

[G (x, y, ω) q (y)− F (x, y, ω)ϕ (y)] dS (y) + QG (x, xQ, ω), ∀x ∈ S, (13)

where q = ∂ϕ/∂n and QG (x, xQ, ω) are due to the point source at xQ. Equation (13) is the
integral equation of the solution ϕ that represents the acoustic problem (5) which is inside
domain S.
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3 Numerical Example

Numerical example in 2D is presented in this section to demonstrate the efficiency and speed
of the multiscale Boundary Element Method for the numerical computation of acoustic wave
problems, as comparisonto Boundary Element Method. All computations have been done
using Fortran compiler. Average error Ē and average speed up rate between mesh have been
compared as well. The formula of average error is defined as

Ē =

∫

Edx
∫

1dx
(14)

which the formula of average speed up rate is defined as

S̄ =
Total speed upBEM

Total speed upMBEM
× 100%. (15)

Accordingly, the following governing equation for acoustic wave equations has been considered.

∇2ϕ + k2ϕ + Qδ (x, xQ) = 0, ∀x ∈ S. (16)

The boundary conditions considered are Neumann boundary condition q ≡ ∂ϕ/∂n = q̄ on S, in
which the over bar indicates the prescribed value for the function. Here, ϕ is the perturbation
acoustic pressure, S is the boundary of the domain, and n is the outward normal of the boundary
S. Figure 1 shows the boundary conditions, and Figure 2 shows the mesh of the graph of the
region that has been discretized by using multiscale technique to produce smaller-sized mesh.

Figure 1: Neumann Boundary Conditions

Example

ϕ (x) =

∫

S

[G (x, y, ω) q (y) − F (x, y, ω) ϕ (y)] dS (y) + QG (x, xQ, ω), ∀x ∈ S.

Figure 3 shows the boundary conditions of the problem.
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Figure 2: Mesh of the Problem

4 Results and Discussion

Table 1 shows the total CPU time used to solve the problem between 32, 64, 128 and 256 sizes
by the use of BEM and MBEM. Table 2 shows the average error between mesh, while Table 3
shows the average speed up rate between meshes.

The efficiency of Multiscale Boundary Element Method for solving acoustic problem has
been proven by the results.Themultiscale technique approach, by combination of conjugate
gradient and interpolation, can significantly improve the conditioning of the Boundary Element
Method systems of equations, thus can facilitate faster convergence when the multiscale
Boundary Element Method is applied.

Table 1 shows the comparison of total CPU time in seconds. The total CPU times for
32, 64, 128 and 256 sizes by using the Multiscale Boundary Element Method prove that it is
clearly faster than Boundary Element Method. Table 2 displays comparison of average error
between meshes. The average error indicates that the solution is closer to the exact solution
when the mesh is larger. Evidently, sizes 32, 64, 128 and 256 are more efficient than initial
size 16.

Table 1: Total CPU Time Used by Boundary Element Method and Multiscale Boundary
Element Method

n size
BEM MBEM

Total CPU time used (second) Total CPU time used (second)
32 0.0156 0.0145
64 0.0625 0.0468
128 0.3437 0.1094
256 0.5209 0.1273
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Table 2: Average Error between Meshes by Boundary Element Method and Multiscale
Boundary Element Method

n size
BEM MBEM

Average error, E Average error, E
16 0.065107 0.004138
32 0.041841 0.002496
64 0.004045 0.002002
128 0.002502 0.001786
256 0.001071 0.000802

Table 3: Average Speed up Rate Between Meshes

n size Average speed up rate (%)
32 0.01075862
64 0.0133547
128 0.03141682
256 0.04091909

The comparison of the average error between the two methods proves that the Multiscale
Boundary Element Method is more efficient than Boundary Element Method. Meanwhile,
the comparison of the average speed up rate between meshes in Table 3 shows that speed is
faster when the mesh is larger. The numerical example presented here clearly demonstrates the
efficiency of the proposed Multiscale Boundary Element Method for solving acoustic problem.

5 Conclusion

Based on numerical results, it can be concluded that the Multiscale Boundary Element Method
is faster compared with Boundary Element Method. This paper is expected to establish a
numerical library for the solution of numerical computation of acoustic equation. The proposed
method can be used as a reference for future studies in many fields of science and engineering.
For validation purposes against other (future) experimental and numerical results, the numerical
results obtained will serve as reference and can be used. More researches need to be done to
improve the Boundary Element Method.
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