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Abstract In this paper, the problem of forced convection flow of micropolar fluid of

lighter density impinging orthogonally on another heavier density of micropolar fluid

on a stretching surface is investigated. The boundary layer governing equations are

transformed from partial differential equations into a system of nonlinear ordinary

differential equations using similarity transformation and solved numerically using dsolve

function in Maple software version 2016. The velocity, microrotation and temperature of

micropolar fluid are analyzed. It is found that both upper fluid and lower fluid display

opposite behaviour when micropolar parameter K various with strong concentration

n = 0, Pr = 7 and stretching parameter λ = 0.5. The results also show that stretching

surface exert the force that increasing the velocity of micropolar fluid.
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1 Introduction

Theory of micropolar fluid was initiated by Eringen in year 1965 extending the famous equation
of viscous fluid which is Navier-Stokes equation. Micropolar fluid is a non-Newtonian fluid
that contained microstructure which experienced translational motion and rotational motion.
Micropolar fluid theory also able to explain some fluid phenomena that contain suspended fluid
additives such as animal blood, liquid crystal, paint, body fluid, colloidal fluid, magnetic fluids,
cloud with dust, muddy fluids and polymer that cannot be explained by Navier-Stokes equation.
Due to the wide applications, many researchers concentrate on micropolar as subject of study
such as Rees and Bassom [1], Ahmadi [2], Chawla [3], Guram and Smith [4], Peddieson [5],
Takhar and Soundalgekar [6], Ishak et al. [7], Ariffin et al. [8] and Shelukhin and Neverov [9].
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Details about micropolar fluid can be found on Ariman et al. [10], Ariman et al. [11], Willson
[12], Lukaszewicz [13] and Eremeyev et al. [14].

The problem of heat transfer in boundary layer flow is an active research field considering its
many applications such as transpiration cooling, drag reduction, bearing and radial diffusers,
thermal recovery of oil, the design of thrust bearings and radial diffusers, material drying,
laser pulse heating and more [15]. In case of micropolar fluid, Eringen [16] extended problem of
micropolar fluid with addition of thermal effect when he published The Theory of Thermofluidic.
Gorla et al. [17] analyzed the heat transfer in micropolar boundary layer flow over a flat plate
for both constant wall temperature and constant heat flux. Balaram and Sastri [18] discussed
about free convection of micropolar fluid flow. On the other hand, a mathematical model of
forced convection in micropolar fluid flow over a wavy surface was proposed by Cheng and
Wang [19].

The boundary layer flow of shrinking surfaces is very useful in polymer extrusion, drawing
of copper wires, continuous stretching of plastic films, hot rolling, glass fiber and many
more especially in engineering field. Sakiadis [20] introduced the problem of moving surface.
Miklavcic and Wang [22] initiated the investigation on shrinking sheet where they found that
the solution of shrinking sheet is possible to exist if the stagnation point is considered or there
is exist adequate suction. However, those studies are works only for Newtonian fluid. For
micropolar fluid case, Soundalgekar and Takhar [23] analyzed flow of micropolar fluid past
a continuously moving plate. In addition, Chiam [24] studied the micropolar fluid flow over
a stretching sheet. While, Na and Pop [25] worked on boundary-layer flow of a micropolar
fluid due to a stretching wall. The topic of stagnation-point flow over a shrinking sheet in a
micropolar fluid was attempted by Ishak et al. [26].

The research continue to develop for convective flow and heat transfer over a stretching
or shrinking sheet when Crane [21] analyzed the flow on stretching sheet. The application
of this area can be seen in industrial and engineering process such as extrusion, glass fiber,
glass blowing, paper production, extraction of polymer and rubber sheets. Besides, the rate of
heat transfer at the stretching surface also give impact on the quality of final product. Yacob
and Ishak [27] extended this work to micropolar fluid over a shrinking sheet. They found
that stronger suction is required in order to a solution exist for micropolar fluid compared to
Newtonian fluid.

Previous studies have primarily concentrated on boundary layer flow of one fluid model
only. For two fluids model, the stagnation flow of surface of a quiescent fluid was investigated
by Wang [28]. In different study, Reza and Gupta [29] studied MHD stagnation-point of
an electrically conducting fluid on the surface of another quiescent fluid. A few years later,
Rohni et al. [30] performed numerical analysis of stagnation-point of a fluid on a shrinking
surface of another quiescent fluid. Recently, Reza et al. [31] presented their work on stagnation
point flow and heat transfer for a viscoelastic fluid impinging on a quiescent fluid. Later, Isa
and Mohammad [32] discover the relationship of dusty fluid on a stretching sheet of another
quiescent fluid. But, none of the works mentioned involving two micropolar fluid. From our
knowledge, the topic of forced convection of micropolar fluid over stretching surface of another
quiescent fluid is still has not been investigated yet.
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2 Problem Formulation

Consider an incompressible micropolar fluid of density ρ1, dynamic viscosity µ1, vortex viscosity
µ1, spin-gradient viscosity γ1 and microinertia density j1 impinging orthogonally on a stretching
surface of another quiescent, heavier incompressible micropolar fluid of density ρ2, dynamic
viscosity µ2, vortex viscosity κ2, spin-gradient viscosity γ2 and microinertia density j2. Tw

and T∞ are temperature of surface and free stream temperature respectively. A sketch of the
physical problem is shown in Figure 1. Let (x,y1) denote the Cartesian coordinates for the upper
fluid with x = 0 as the symmetry plane, and x-axis is taken along the interface between the
two fluids. It is assumed that the surface is stretched or shrinked with the velocity uw(x) = cx,
where c is a constant that c > 0 indicates a stretching sheet. The coordinate system for the
lower fluid is (x,y2) as shown in Figure 1. Note that the z-axis is normal to the (x,y1) plane.

Figure 1: Physical Coordinate

Under the boundary layer approximations, the governing equations of continuity,
momentum, angular momentum and energy are,

∂ui

∂x
+

∂vi

∂yi

= 0, (1)

ui

∂ui

∂x
+ vi

∂ui

∂yi

= Ui

dUi

dx
+

µi + κi

ρi

∂2ui

∂y2

i

+
κi

ρi

∂Ni

∂yi

, (2)

ρiji

(

ui

∂Ni

∂x
+ vi

∂Ni

∂yi

)

= γi

∂2Ni

∂y2

i

− κi

(

2Ni +
∂ui

∂yi

)

, (3)

ui

∂Ti

∂x
+ vi

∂Ti

∂yi

=
k0

ρicp

∂2Ti

∂y2

i

, (4)

subject to boundary conditions

ui(x) = cx, vi = 0, Ni = −n
∂ui

∂yi

, Ti = Ti,w at yi = 0,

u1(x) → ax, u2(x) → 0, Ni → 0, Ti → T∞ as yi → ∞,
(5)
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where ui and vi are the velocity along x and yi axes, Ui = ax is free stream velocity, µi is vortex
viscocity, κi is vortex viscosity, Ni is the component of microrotation vector normal to x − y
plane, ρi is density of micropolar fluid, ji is microinertia density, Ti is the fluid temperature,
γi is spin gradient viscocity, k0 is thermal conductivity, cp is specific heat and n is a constant
such that 0 ≤ n ≤ 1. From Jena and Mathur [33], the strong concentration case (n = 0)
represents the concentrated particle flows in which the microelements close to the wall surface
are unable to rotate. According to Ahmadi [2], the weak concentration case (n = 1/2) indicates
the vanishing of the anti-symmetrical part of the stress tensor. The case n = 1, as suggested
by [5], is used for the modeling of turbulent boundary layer flows. In this paper, we consider the
cases of n = 0 (strong concentration) and n = 1/2 (weak concentration). Further, we assume
that γi is defined as

γi = (ui + κi/2)ji = µi(1 + Ki/2)ji, (6)

where i = 1, 2 is refering to upper fluid and lower fluid. Furthermore, Ki is micropolar
parameter, defined by

Ki =
κi

µi

. (7)

For the upper fluid, we take

u1 = axf ′(η), v1 = −√
aν1f(η),

N1 = ax
√

a/ν1g(η), η = y1/
√

ν1/a, θ1 =
T1 − T∞

T1,w − T∞

, (8)

and for lower fluid

u2 = axF ′(ξ), v2 = −√
aν2F (ξ),

N2 = ax
√

a/ν2G(ξ), ξ = y2/
√

ν2/a, θ2 =
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,
(9)

where a is a constant, η and ξ are similarity variables and a prime denotes differentiation with
coresspond to η and ξ respectively . Meanwhile, ν1 and ν2 is kinematic viscocity for upper fluid
and lower fluid. Clearly with u1 and v1 given in (8), the equation of continuity (1) is satisfied.
Similarly, for the lower fluid, with u2 and v2 given as in (9), it is readily seen that the continuity
equation (1) is identically satisfied. Using (8), equations (2) – (4) are transformed into ordinary
differential equation for the upper fluid flow

(1 + K1)f
′′′ + ff ′′ − f ′2 + K1g

′ + 1 = 0, (10)

(1 + K1/2)g
′′ + fg′ − f ′g − K1(2g + f ′′) = 0, (11)

θ′′
1

+ Prfθ′
1

= 0, (12)

with the boundary conditions

f ′(η) → 1, g(η) → 0, θ1(η) → 0 as η → ∞. (13)

Similarly, using (9), equations (2) - (4) for the lower fluid, we obtain

(1 + K2)F
′′′ + FF ′′ − F ′2 + K2G

′ = 0, (14)
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(1 + K2/2)G
′′ + FG′ − F ′G − K2(2G + F ′′) = 0, (15)

θ′′
2

+ PrFθ′
2
= 0, (16)

with the boundary conditions

F ′(ξ) → 0, G(ξ) → 0, θ2(ξ) → 0 as ξ → ∞. (17)

It is also worth to mention that when K1 = K2 = 0 the governing equation is reduced to
Newtonian fluid [34]. At the interface, η = ξ = 0, and so the continuity of velocity at the
interface gives

f(0) = 0, f ′(0) = λ, F (0) = 0, F ′(0) = λ,
g(0) = −nf ′′(0), θ1(0) = 1, θ2(0) = 1, G(0) = −nF ′′(0),

(18)

where λ = c/a > 0 is the constant stretching parameter. It should be mentioned that equations
(10) - (12) and (14) - (16) are subject to the boundary conditions (13), (17) and (18) have no
closed form analytical solutions.

3 Numerical Procedure

The system of governing equations (10) - (12) and (14) - (16) was solved numerically. We
are using built-in dsolve function that executed in Maple software version 2016. This
built-in function uses finite difference method with Richardson’s extrapolation as default
method for solving boundary-value problems (BVP). The implemented algorithm is shown
as in figure 2. Finite difference method is a method that used to solve boundary-value
problems. Meanwhile Runge-Kutta-Fehlberg is one of the methods that used to solve initial-
value problems. Therefore, finite difference method is employed since this mathematical
model involving boundary-value problem. On the other hand, Richardson’s extrapolation
is a technique that often applied with other method to improve the accuracy of a solution.
Therefore, when Richardson’s extrapolation is used with finite difference method, the accuracy
of approximation to the solution of boundary-value problem can be improved.

4 Results and Discussion

From the numerical results obtained, we investigated the velocity, microrotation and the
temperature of micropolar fluid in strong concentration (n = 0) and weak concentration
(n = 0.5) where the micropolar parameter for both upper and lower fluid are the same
(K = K1 = K2). According to Lok et al. [35], the flow over shrinking surface (λ < 0) is
not restricted within a boundary layer. For that reason, we only consider for stretching surface
(λ > 0). Table 1 represents the comparison values of skin friction when stretching parameter
λ varies and K = 0 with Rosali et al. [36] for validation purpose. It is shown that the current
numerical outcomes agree with the previous work.

Figures 3 - 5 and table 2 show velocity, skin friction, microrotation and temperature for both
upper fluid and lower fluid respectively when micropolar parameter K varies with concentration
n = 0, stretching parameter λ = 0.5 and Pr = 7 which represent the Pr number for water.
Figure 3 presents that the velocity of upper fluid is decreasing while velocity of lower fluid
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Figure 2: Implemented Algorithm to Solve the Mathematical Model

is increasing as micropolar parameter K increases. We also notice that the boundary layer
thickness is greater in lower fluid than in upper fluid. Besides, the values of skin friction
of upper fluid is decreasing despite the skin friction of lower fluid increasing when micropolar
parameter K increases as in Table 2. Referring to figure 4, we observe the trend of microrotation
of upper fluid is decreasing whereas the values of microrotation of lower fluid is increasing as
micropolar parameter K increases. Both figures have a profile that achieving the maximum
value nearby the wall which later declining to zero as boundary layer increase. Figure 5 unveils
that the increment of micropolar parameter K is enhancing the magnitude of temperature for
upper fluid. It is observed that the temperature of lower fluid is decreasing due to the addition
of micropolar parameter K as shown in the same figure.
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Table 1: Values of f”(0) for Various Values of λ when n = 0, Pr = 1

λ Rosali et al.
[36]

Present

0.0 1.232588 1.232590
0.1 1.146561 1.146560
0.2 1.051130 1.051130
0.3 0.946816 0.946817
0.4 0.834072 0.834073
0.5 0.713295 0.713295
1.0 0 0
2.0 -1.887307 -1.887310
3.0 -4.276541 -4.276540
4.0 -7.086378 -7.086378
5.0 -10.264749 -10.264700

Figure 3: Velocity Profiles for Upper Fluid and Lower Fluid with Different Values of K when
n = 0, λ = 0.5 and Pr = 7

Table 2: Skin Friction with Different Values of K when n = 0, λ = 0.5, Pr = 7

K Upper fluid Lower fluid
0.0 0.713295 -0.353556
1.0 0.490518 -0.238570
2.0 0.387729 -0.187166

In figures 6 - 8, the velocity, microrotation and temperature of a micropolar fluid of another
quiescent fluid are presented for various Pr values when micropolar parameter K = 1 with
concentration n = 0 (strong concentration) and stretching parameter λ = 0.5. There is no
change in velocity as in figure 6 for upper fluid and lower fluid when Pr number increases due
to the decouple of boundary layer governing equation (2) - (4). Similar trend also appears for
microrotation of upper fluid and lower fluid as in figure 7. Furthermore, figure 8 exhibits that the
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Figure 4: Microrotation Profiles for Upper Fluid and Lower Fluid with Different Values of K
when n = 0, λ = 0.5 and Pr = 7

Figure 5: Temperature Profiles for Upper Fluid and Lower Fluid with Different Values of K
when n = 0, λ = 0.5 and Pr = 7
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temperature of upper fluid and lower fluid is decreasing as Pr number gets higher. The higher
Pr number, the fluid become more viscous resulting less heat lead to the lower temperature.
It is also seen that lower fluid has more thermal boundary layer thickness compared to upper
fluid.

Figure 6: Velocity Profiles for Upper Fluid and Lower Fluid with Pr = 0.5, 1.0, 2.0 when n = 0,
λ = 0.5 and K = 1

Figure 7: Microrotation Profiles for Upper Fluid and Lower Fluid with Pr = 0.5, 1.0, 2.0 when
K = 1, n = 0, λ = 0.5



N. A. Majid et al. / MATEMATIKA 35:3 (2019) 397–413 406

Figure 8: Temperature Profiles for Upper Fluid and Lower Fluid with Pr = 0.5, 1.0, 2.0 when
K = 1, n = 0, λ = 0.5

The graphical representation for velocity, microrotation and temperature when micropolar
parameter K = 1 with concentration n = 0.5 (weak concentration), stretching parameter
λ = 0.5 and variation Pr number are depicted in figures 9 - 11. In figure 9, we observe the
changes in Pr values does not affect velocity for upper fluid and lower fluid as mentioned before
in the case of n = 0 (figure 6). Besides, the microrotation of upper fluid and lower fluid as show
in figure 10 also follow the same trend. However, it is seen that the values of microrotation
of upper fluid is increasing when concentration n = 0.5 unlike when n = 0 (figure 7). On the
other hand, magnitude of microrotation for lower fluid is gradually decline toward zero. Figure
11 is plotted to present the temperature of upper fluid and lower fluid. It is seen that the
temperature of upper fluid and lower fluid is decreasing along the addition of Pr number.

Figure 9: Velocity Profiles for Upper Fluid and Lower Fluid with Pr= 0.5, 1.0, 2.0 when n = 0.5,
λ = 0.5 and K = 1
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Figure 10: Microrotation Profiles for Upper Fluid and Lower Fluid with Pr = 0.5, 1.0, 2.0 when
n = 0.5, λ = 0.5 and K = 1

Figure 11: Temperature Profiles for Upper Fluid and Lower Fluid with Pr = 0.5, 1.0, 2.0 when
n = 0.5, λ = 0.5 and K = 1

Figures 12 - 17 represent the velocity, microrotation and temperature of upper fluid and
lower fluid when micropolar parameter K = 1 with concentration n = 0, Pr = 7 when stretching
parameter λ varies. The velocity of upper fluid significantly increases when stretching parameter
λ increases as plotted in figure 12. From the same figure, the velocity of upper fluid is constant
at stretching parameter λ = 1 due to the equilibrium of velocity of stretching surface and the
velocity of upper fluid. It is also shown in figure 13, the values of velocity for lower fluid raises
with the increment of stretching parameter λ. We found that the forced is exerted by stretching
surface enhanced the velocity of fluid. Generally, microrotation of upper fluid increases with
the increment of stretching parameter and displayed parabolic profile as in figure 14. However,
microrotation had positive values when stretching parameter λ > 1 and negative value when
stretching parameter λ < 1. Figure 15 provides that the microrotation of lower fluid also
increases as stretching parameter λ increases. It is observed that microrotation of lower fluid
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exhibits positive values only which is contrary with upper fluid. From the same figure, we can
see that the microrotation converge faster when stretching parameter λ = 4 and 5. In figure
16, there is a clear trend of decreasing values of temperature when stretching parameter λ
increases. The temperature of lower fluid also behaves in the similar manner as upper fluid
with the increment of stretching parameter λ but with greater thermal boundary layer thickness
as plotted in figure 17. Based on the simulation that we performed, it is nearly impossible to
solve the system of governing equation (2) - (4) using this method when there is no stretching
activity (strecthing parameter λ = 0).

Figure 12: Velocity Profiles for Upper Fluid with Different Values of λ when K = 1, n = 0,
Pr = 7

Figure 13: Velocity Profiles for Lower Fluid with Different values of λ when K = 1, n = 0,
Pr = 7
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Figure 14: Microrotation Profiles for Upper Fluid with Different Values of λ when K = 1,
n = 0, Pr = 7

Figure 15: Microrotation Profiles for Lower Fluid with Different Values of λ when K = 1,
n = 0, Pr = 7
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Figure 16: Temperature Profiles for Upper Fluid with Different Values of λ when K = 1, n = 0,
Pr = 7

Figure 17: Temperature Profiles for Lower Fluid with Different Values of λ when K = 1, n = 0,
Pr = 7

5 Conclusion

In this paper, we have solved the problem of forced convection of micropolar fluid over stretching
surface of another quiescent fluid. The governing boundary layer equations have been solved
using dsolve function in Maple software version 2016. The numerical results acquired were
velocity, microrotation and temperature for micropolar fluid with another quiescent fluid.
With presence of forced convection, the velocity and microrotation of upper fluid decrease
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as micropolar parameter K increases with stretching parameter λ = 0.5. Besides, temperature
of upper fluid slightly increases with increasing of micropolar parameter K. However, lower
fluid reacts the opposite way under the same condition. As the stretching parameter increases,
the velocity and microrotation of upper fluid and lower fluid increase due to the force exerted
by stretching surface. Meanwhile the temperature of micropolar fluid decreases gradually. We
also found that lower fluid has greater boundary layer thickness and thermal boundary layer
thickness compared to upper fluid.
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