Matematika, 1999, Jilid 15, bil. 2, hlm. 95-109
(©Jabatan Matematik, UTM.

Fuzzy Logic Model for Dynamic
Multiprocessor Scheduling

Shaharuddin Salleh
Department of Mathematics
Faculty of Science
Universiti Teknologi Malaysia
81310 UTM Skudai, Johor, Malaysia

Bahrom Sanugi
Department of Mathematics
Faculty of Science
Universiti Teknologi Malaysia
81310 UTM Skudai, Johor, Malaysia

Hishamuddin Jamaluddin
Department of Applied Mechanics
Faculty of Mechanical Engineering

Universiti Teknologi Malaysia
81310 UTM Skudai, Johor, Malaysia

Abstract In this paper, we propose a dynamic task scheduling technique based
on fuzzy logic. The main objective of the work is to implement load balancing
in scheduling tasks on a network of processing elements. The fuzzy engine we
propose is capable of processing inputs from incomplete and ambiguous data that
arises from the current state of the processors. In the model, an arriving task is
placed in a central queue based on the first-come-first-serve rule. When the task
is ready to be assigned, its information is passed to the processors for bidding.
One processor acts as the global scheduler to monitor the overall activities, while
all others have local schedulers for managing their own activities. The latter
supplies information on its current state and follows whatever decision given
by the former. The two components work together and the global scheduler
uses the fuzzy logic mechanism in making decision on the task assignment. Our
experimental work shows promising results in achieving the objective.

Keywords Load balancing, fuzzy logic, task scheduling, multiprocessor and
transputer.

96 Shahruddin, Baharom & Hishamuddin

Abstrak Dalam artikel ini, satu teknik penjadualan kerja secara dinamik meng-
gunakan logik fuzi dicadangkan. Objektif utamanya ialah untuk mendapatkan
pengseimbangan beban dalam proses penjadualan kerja di dalam satu rangka-
ian yang terdiri daripada beberapa pemproses. Enjin fuzi ini berupaya mem-
proses input daripada data-data yang tidak jelas atau tidak tentu yang terbit
daripada keadaan semasa pemproses-pemproses. Dalam model ini, kerja yang
baru tiba beratur menunggu giliran dalam satu barisan pusat berasaskan per-
aturan sampai-dahulu-didahulukan. Apabila kerja ini sampai gilirannya, mak-
Iumat semasanya dihantar ke pemproses-pemproses untuk dinilai. Sebuah pem-
proses berfungsi sebagai penjadual hakiki untuk mengawal aktiviti-aktiviti ke-
seluruhan, sementara yang lain-lain sebagai penjadual tempatan untuk mengu-
rus aktiviti pada pemprosesnya. Penjadual tempatan sentiasa memberi mak-
Iumat semasanya dan menurut perintah daripada penjadual hakiki. Kedua-dua
komponen ini berkerjasama dalam menjayakan aktiviti-aktiviti penjadualan be-
rasaskan mekanisma logik fuzi. Beberapa keputusan menggalakkan untuk men-
capal objektif berjaya dihasilkan melalui model ini.

Katakunci Pengseimbangan kerja, logik fuzi, penjadualan kerja, multi-
pemproses dan transputer.

1 Fuzzy Logic Background

Fuzzy logic, as described by Zadeh [9,10] and Kosko [4], is one of the most powerful tools for
designing autonomous intelligent systems. It has been found to be useful in solving problems
that are difficult to model mathematically. Much of the power of fuzzy logic is derived
from its ability to draw conclusion and generate responses based on vague, ambiguous,
incomplete, and imprecise qualitative data. The mechanism is based on logical inference
of rules in processing non-numeric information to generate crisp or numeric output. Fuzzy
logic has a wide range of applications, for example, in the design of control systems and in
various decision making processes.

Fuzzy logic contributions in the area of information technology could be in the form of
approximate reasoning, where it provides decision-support and expert systems with powerful
reasoning capabilities bound by a minimum number of rules. Theoretically, fuzzy logic is a
method for representing analog processes, or natural phenomena that are difficult to model
mathematically on a digital computer. The processes are continuous in nature, and are not
easily broken down into discrete segments. With a reliable set of inference rules, inputs are
converted into their fuzzy representations during the fuzzification process, and the output
generated is then converted back into the ”crisp”, or numerically precise solutions during
the defuzzification process. The rules that determine the fuzzy and crisp predicates for
both the fuzzification and the defuzzification processes are constructed from sources like
past history, neural network/neuro-fuzzy training and numerical approximation.

This paper presents a dynamic scheduling model based on fuzzy logic for parallel pro-
cessing systems. Fuzzy logic provides a powerful tool for representing the solution space of
the problem that arises from the imprecise information of its input derived from the current
states of both the processing elements (PEs) and the arriving tasks. This information can
be interpreted by the fuzzy engine which performs the analysis and then makes decision

Fuzzy Logic Model for Dynamic Multiprocessor Scheduling 97

on the assignment of the tasks to the PEs. Section 2 describes the nature of the dynamic
scheduling problem in general. Section 3 describes our model which includes the precedence
relationship of the tasks as the constraint to the problem. The performance of the model is
evaluated through the experimental work in Section 4. Section 5 describes the implementa-
tion of fuzzy scheduling models on several transputer network models and, finally, Section
6 gives the summary and conclusion.

2 The Dynamic Task Scheduling Problem

Task scheduling, as described in El-Rewini et al. [3], is defined as the scheduling of tasks
or modules of a program onto a set of autonomous processing elements (PEs) in a parallel
network, so as to meet some performance objectives. Dynamic scheduling is a form of
task scheduling caused by the nondeterminism factor in the states of the tasks and the
PEs prior to their execution. Nondeterminism in a program originates from factors such
as uncertainties in the number of cycles (such as loops), the and/or branches, and the
variable task and arc sizes. The scheduler has very little a priori knowledge about these
task characteristics and the system state estimation is obtained on the fly as the execution
is in progress. This is an important step before a decision is made on how the tasks are
to be distributed. Dynamic scheduling is often associated with real-time scheduling that
involves periodic tasks and tasks with critical deadlines.

The main objective in dynamic scheduling is usually to meet the timing constraints, and
perform load balancing, or a fair distribution of tasks on the PEs. Load balancing improves
the system performance by reducing the average job response time of the tasks. In Lin
and Raghavendra [5], load balancing involves three components. First, is the information
rule which describes the collection and storing processes of the information used in making
the decisions. Second, is the transfer rule which determines when to initiate an attempt
to transfer a job and whether or not to transfer a job. Third, is the location rule which
chooses the PEs to and from which jobs will be transferred. It has been shown by several
researchers that with the right policy to govern these rules, a good load balancing may be
achieved.

Tasks that arrive for scheduling are not immediately served by the PEs. Instead they will
have to wait in one or more queues, depending on the scheduling technique adopted. In the
first-come-first-serve (FCFS) technique, one PE runs a scheduler that dispatches tasks on a
first-in-first-out basis to all other PEs. Each dispatched PE maintains its own waiting queue
of tasks and makes request for these tasks to be executed to the scheduler. The requests
are placed on the scheduled queue maintained by the scheduler. This technique aims at
balancing the load among the PEs and it does not consider contraints such as communication
overhead. Chow and Kohler [2] proposed a queueing model where an arriving job is routed
by a job dispatcher to one of the PEs. An approximate numerical method is introduced for
analyzing two-PE heterogeneous models based on an adaptive policy. This method reduces
the job turnaround time by balancing the total load among the PEs. In [2], a central job
dispatcher based on the single-queue multiserver queueing system is used to make decisions
on load balancing. The approach is efficient enough to reduce the overhead in trying to
redistribute the load based on the global state information.

Several balance-constrained heuristics, such as in Saletore [6], consider communication
issues in balancing the load on all PEs. The approach adds balance constraint to the FCFS

98 Shahruddin, Baharom & Hishamuddin

technique by periodically shifting waiting tasks from one waiting queue to another. This
technique performs local optimization by applying the steepest-descent algorithm to find
the minimum execution time. The cost-constraint heuristic in [6] further improves the load
balancing performance by checking the uneven communication cost and quantify them as
the time needed to perform communication.

3 Fuzzy Model for Dynamic Task Scheduling

Task scheduling involves a difficult factor as the main constraint: the precedence relation-
ships between the tasks. Task scheduling applications can be found in many areas, for
example, in real-time control of robot manipulators, flexible manufacturing systems, and
traffic control [4]. In this section, a fuzzy logic model for dynamic task scheduling that
performs load balancing is proposed. This section describes the computing system and the
proposed approach to deal with task precedence constraints in dynamic scheduling.

Our earlier model (Salleh and Zomaya [8]) is a static model based on fuzzy logic that
takes imprecise information for its input derived from the current states of both the PEs
and the arriving tasks. This information is passed to the fuzzy engine which performs the
analysis and then makes decisions on the assignment of tasks to the PEs. The present
approach modifies this model to handle the more challenging dynamic environment.

3.1 Model and Relevant Terminology

The computing platform for simulating dynamic task scheduling assumes a multiproces-
sor system with K fully-connected PEs [7,8]. A suitable realization for this model is the
message-passing transputer-based system where each transputer represents a processing el-
ement with a processor and a memory module each, and has communication links with
other transputers.

We provide some terminology to be used throughout this paper. The task scheduling
problem evolves from the need to map J tasks TS; for j = 1,2, ... J from a parallel
program optimally onto a target machine, which consists of K processing elements PEy
for £ =1, 2,... K, connected in a network. Each task TS;, represented in the set TS =
{TS; | j=1,2,..., J},is a sequential unit of work in a program whose size can be as small
as one line of code and up to the size of a single function or procedure.

The processing elements (or processors) are represented as the set PE = {PEg | k =
1, 2,..., K}, which are connected in a network with an arbitrary interconnection config-
uration represented by the matrix p. The length (size) of TS;, denoted as lji, is defined
as the elapsed time for the execution of the task sequentially on PEj. This length is
also referred to as the task execution time or the task worst-case computation time. The
value of l;; for T'S; depends on the processing speed of the processor PE; in use, and
may vary on different processors. The task TS; initiated at time ¢ = TS;.at is said to
have arrived at that time. This task is not immediately executed as it has to wait in
a queue. The actual start time for the execution of TS; is denoted TS;.ast, while its
completion time is T'Sj.ct. For the execution in PEy, we obtain [, = TS;.ct — TS;.ast.

Fuzzy Logic Model for Dynamic Multiprocessor Scheduling 99

PE; PEs PE;3 PE4 PEg
ls ls ls ls ls
Interconnection
Network
PE; PEg PE~7 PEg
ls ls ls s

Figure 1. The Fully-Connected Computing System Model with 9 PE’s

Figure 1 shows a network of fully-connected computing system II = {PE, p} with 9
processing elements labeled as PEg for k =1, 2,... ;9. The interconnection matrix p has
entries p;; = 1 if PE; and PE; are adjacent, and 0 otherwise. Each processing element in
the network has its own memory to process instructions and data. All PEs in the computing
model are also assumed to be homogeneous with the same execution speed. This assumption
implies that I; is used instead of I, for the task length.

In this work, we assume the incoming tasks are randomly generated, independent, non-
preemptive and have some communication requirements with other tasks. Besides, the tasks
are characterized with random arrival times but have no execution deadlines. These task
characteristics can be summarized as I' = {TS, ¢} where

TS = {lj, TS;.at, TS;.rt, TS;.ast, T'S;.ct, TS;.st | i=12 ..., .]} (1)

Our scheduling model in [7] consists of a FCFS central queue for newly arrived tasks
and a host of PEs (servers) to receive these tasks, as shown in Figure 2. The queue is based
on Poisson distribution on the M/M/K Markovian model with K servers and a mean arrival
rate of A. A newly arrived task enters the queue and waits for its turn to be assigned. This
task is dispatched by the scheduler to a PE with the probability p; based on the adopted
scheduling policy. Each PEj for k =1, 2,... , K, processes tasks assigned to it at a mean
service rate of pi according to an exponential distribution.

As the name suggests, the assignment of a task is made based on competition among
the PEs. The model stipulates that one PE acts as the controller which stores the global
scheduler while all other PEs each have a local scheduler. Figure 1 illustrates this concept
where the controller is PE9. The controller PE receives and stores all information about the
incoming tasks, processes them and then makes decision on their assignments to other PEs
in the network. The local scheduler in each PE manages the processor resources, supplies
information on the state of the processor to the global scheduler, receives instructions from
the global scheduler on when to execute an assigned task and keeps information on all its
assigned tasks.

100 Shahruddin, Baharom & Hishamuddin

ORORO

A e departures

—
Arrivals \

® &

Figure 2. The M/M/K Queueing Model

When a new task arrives, the controller PE obtains the task’s information and puts the
task in the central queue. This task is not immediately assigned unless the queue is empty.
The task at the front of the FCFS queue is selected for assignment. The controller PE
broadcasts its information to all other PEs in the network requesting the bidding of this
task. Every local scheduler then responds by supplying two pieces of information regarding
the state of its PE. First, is the processor execution length PEg.pel, which is the length of
all the completed tasks in PEk defined as follows:

J J
PEypel = L= sil; (2)
j=l j=1

where k =1, 2,..., K is the PE number and l;; = 0 if TS; ¢ PE;. In the above equation,
sjk is a parameter which determines whether the task TS; belongs to PE; or not, defined
as follows:

{1 TS, € PRy
Sik {0 it TS; ¢ PE, (3)

Second, is the processor delay time, PEj.del, which is the waiting time before T'S; can start
executing. This waiting time is the delay caused by

1. The dynamic nature of scheduling which adds overhead to the system by delaying
some processes.

2. The precedence relationship between the offered task T'S;, and its predecessors T'S;.

If both TS; and TS; € PE;, then PEj.del = TS;.Irt — TSy .ct, otherwise the method
in the next section is used to determine this value.

Fuzzy Logic Model for Dynamic Multiprocessor Scheduling 101

3. The unsuccessful bidding by PE; on the task prior to TS;, which creates an unneces-
sary waiting time before another offer is received.

4. The state of PE;, whether it is busy executing another task or not, at the required
time.

For PEj.del > 0, a value close to 0 means the task can start executing almost immediately
at the PE, while a larger value means a longer waiting time before it can actually start. We
now discuss the method to determine the value of PE.del.

3.2 Task Precedence Relationship

Every partial order between any two tasks incurs a significant delay due to the precedence
rule, that a task cannot start executing until its predecessors have completed their execution,
and synchronization for data transfer. A scheduled task will not be able to start executing
until it has received all the required data from its predecessors. This means that the value
of PE.del is expected to be significant depending on the network platform. Therefore, it is
expected that the simulation will generate a schedule with both high PE;.pct and PEg.pil
forallk=1,2,... K.

Figure 3 shows the chronological movement of TS; € PE; from the time it arrives at
time t = t(to its completion at ¢ = t3. The task is ready for assignment at ¢ = ¢; but it
still has to wait until ¢ = t5 before starting its execution at an assigned processor.

TS;.at TS;.rt TS;.ast .
to t ta 3 —
| | | |
[[[[
TS; arrives TS; in the front TS; leaves queue, TS; completes
place in central of queue, ready assigned to PEg execution
queue to br assigned starts execution
PE}.del l;
TS; queue PEj delay time, TS, execution
waiting time waiting to be length
assigned
TS;.xl

TS; response length
Figure 3. Movement of Task T'S; € PE

In the FCFS queue of our model, it is assumed that a task arrives at the time no earlier
than the arrival time of all its predecessors. This is necessary to guarantee the successful
completion of all tasks and also to avoid any waiting period at the PE. The execution status
of a task at time ¢ is denoted as T'S;.st. A task TS; is said to be ready to be assigned to
a processor if it has received all the required data from the predecessor tasks. The ready
time T'S;.rt for TS; is defined as the earliest time TS; can be assigned to any available
processor. We further define the ready time for TS; as either high ready time or low ready
time. The high ready time TS;.hrt of a ready task TS; is the highest value of the sum of the
predecessor task energy and its communication to TS;. The low ready time TS;.Irt is the
next highest value. The processor with T'S;.hrt may skip some or all of the communication

102 Shahruddin, Baharom & Hishamuddin

cost from its latest predecessor to the incoming task to enable it to start executing the
incoming task at the time ¢t = TS;.Irt. For other processors, the earliest time they can
execute the task T'S; is at ¢t = TS;.hrt. The following relationships can be made

TSj high ready time = TSj.hI‘t :mélx {5ijTSi.Ct + Cij}
3 (4)
TS;low ready time = TS;.Irt :m;éfc {6:;TS;.ct +¢i5}
for i, k=1, 2,...,J. In the above equation, ¢ = {¢;;} is the communication matrix with

positive values if TS; < TS;, and ¢;; = 0 otherwise. The parameter J;; represents the
partial order T'S; < TS; defined as follows

|1 ifTS; < TS;
0ij = { 0 otherwise (5)

In addition, we define the processor ready time PEj.prt as the earliest time PE; becomes
available and is ready to accept T'S;. The value of PEk.prt is determined as follows

| max{TSg.ct, TS;.hrt} ifk#s
PEg.prt = { max{TSrg.ct, TS; . hrt} ifk=s (6)

where TSy, denotes the latest task executed or is still executing in PEj and s is the subscript
of the assigned PE. It follows that T'S;.rt = PE,.prt and TS;.ast > PE,.prt for PE,.

The above method can be used to determine PEg.del in a static manner, that is, if the
values of T;.Irt, T'S;.hrt and PE,.prt are all known beforehand. In dynamic scheduling,
this information is not always available at the time TS; is ready to be assigned. In dynamic
scheduling, PEy.del has to be evaluated first before the start time for T'S; is determined.
We now discuss a method to evaluate PE;.del.

3.3 The Fuzzy Scheduler

Scheduling of tasks using fuzzy logic involves three orderly steps [4,9,10], as illustrated in
Figure 4, namely, the fuzzification of the input variables, the application of fuzzy inference
rules and the defuzzification of the results. During the fuzzification process, the numeric
input values are read and transformed into their corresponding fuzzy variables (or linguis-
tics) based on a predefined set of rules. These fuzzy inputs, called antecedents, form their
corresponding membership function graphs, which are commonly represented as triangles.

Numeric Numeric
Input Fuzzy Output
—> Fuzzification Inference Defuzzification —
Rules

Figure 4. Structure of the Fuzzy Scheduler

The fuzzy variables for the first input PEj.pel are denoted as E1, E2, E3, E4 and
E5. The real values that correspond to this antecedent are user defined and can be changed

Fuzzy Logic Model for Dynamic Multiprocessor Scheduling 103

interactively at runtime during the simulation. The mean of the processor execution length,
denoted as PEg.pel or puq, is defined as follows

K
1
o = 7o 3= P g

This mean value is updated every time a new task arrives to represent changes in PEj.pel
for k=1, 2,..., K. Therefore, the variables in the first antecedent change values at every
update of j .. The second antecedent from the input PE.del is made up of four fuzzy
variables: 11, 12, I3 and I4.

The second stage involves the application of the fuzzy inference rules to both antecedents
to generate a consequent. Each rule is expressed as follows

(antecedentl, antecedent2; consequent)

which means IF antecedentl AND antecedent?2 THEN consequent. The consequent, or
fuzzy output, is made up of four fuzzy variables: AH, AL, RL and RH, which represent
acceptance or rejection low /high, classified based on numeric values from 0 to 1. A value
close to 1 means the bidding PE has a strong chance of being accepted while a decreasing
value represents a weaker chance. The process involves the mapping of antel and ante2
to their respective membership degree values on their graphs. These degree values are
compared and the minimum of the two is then projected onto the membership function of
their consequent graph. The area between this value, the graph and the horizontal axis,
usually in the shape of a trapezium, then represents the output of one inference rule.

The final stage is the defuzzification of the fuzzy output into a crisp or numeric value.
There are several defuzzification schemes and this model uses the most popular method
called the centroid method [4,9,10]. The defuzzification process generates a centroid value
for every bidding PE whose range is from 0 to 1. These centroid values are compared and
the PE with the maximum value is declared the winner. In the event that the maximum
centroid values are the same in some PEs, the award goes to the PE with the most minimum
PEj.pel. The task is then dispatched to the winning PE and its execution starts immediately
once that PE is ready. The task next in line in the queue is now put for grab and the bidding
process repeats.

Our fuzzy model for the task allocation problem is summarized as Algorithm TS_FL, as
follows

/* Algorithm TS_FL */
For j=1toJ
If TS; st is ‘waiting’ or ‘ready’ or ‘executing’
1. If TS; is initiated (arrives at ¢ > TS;.at)
1.1 Place TS; in the FCFS queue to generate its priority list.
1.2 Set TS;.st to ‘waiting’.
2. If TS; in the front of the queue is ready (¢ > TS;.rt)
2.1 Remove TS; from the queue. Set T'S;.st to ‘ready’.
2.2 (Fuzzification)

104 Shahruddin, Baharom & Hishamuddin

Evaluate PEj.pel and fipe]
Evaluate PEg.del using the method in Section 3.2.
Transform these crisp inputs into their fuzzy sets using Table 1.
Determine their degrees from the membership functions.
2.3 (Applying The Inference Rules)
Find the minimum degree value from Step 2.2.
Project this value onto their consequence graph.
2.4 (Defuzzification)
Find the centroid and area of the trapezium formed.
2.5 Repeat Steps 2.2, 2.3 and 2.4 for other relations using the same inputs.
2.6 Find the final centroid of all overlapping areas in Step 2.5.
2.7 Award the task to the PE with the maximum centroid value in Step 2.6.
3. If TS; is assigned to PE, // PE, is the assigned PE
3.1 Set TS;.st to ‘executing’.
3.2 Set PEg.st to ‘busy’.
3.3 Update the Gantt charts.
4. If TS; is executing (TS;.ast < t < TS;.ct)
4.1 Update the Gantt charts.
5. If TS; completes its execution (¢ = TS;.ct)
5.1 Set TSj.st to ‘completed’.
5.2 Reset PEs.st to ‘available’.
5.3 Update the Gantt charts.

4 Simulation Results

The simulation program called TS_FL.EXE, written in C, implements the fuzzy scheduling
model using Algorithm TS_FL. The program runs the simulation and generates results
for successive cases of 36, 100 and 200 tasks. The start time is ¢ = 0.0 and the end is
at t = TSL.ct, for the last scheduled task TSy. For the purpose of this simulation, the
precedence relationship of the tasks are predetermined in [7]. Other inputs are obtained in
[7], as follows

1. l;: random number between 1 and 8, generated by the program.
2. TS;.at: random number, generated by the program.

3. Communication cost ¢;; from a predecessor T'S; to TS;: random number between 1
and 3, generated by the program.

Figures 5(a)-(c) show the performance results on cases of 2, 3, 4, 5, 6, 7 and 8 processors.
The graphs in Figure 5(a) show evenly distributed fipe with standard deviation 0.707 <
opel < 3.347. There is a fairly good distribution of load on all PEs as reflected on their
low opur values and relatively equal values of PEj.pur in the models. The trend of the
distribution favors large number of tasks and the use of more PEs, where their o and
opur values are lower.

Fuzzy Logic Model for Dynamic Multiprocessor Scheduling 105

Figure 5(a) shows the comparison graphs for ji,; and PE completion time, respectively,
on the PE models. The results show that there is a drastic improvement of both the load
distribution and completion time when the number of PEs are increased. The speedup
graphs in Figure 5(b) tend to support this argument. Finally, the graphs for pipyr in Figure
5(c) show better stability in the distribution of work load when the number of tasks is large,
although its value decreases when there are more processors in the network.

450 —4— 36-Task
400 —B— 100-Task
350 —&A— 200-Task

EL 300
M 950
& 200
150
100
50

#PE Model

Figure 5(a). Comparison of Ppel on the PE Models

4
g 3.5
p 3
e
e 25
d
p 1.5 —4— 36-Task
1 —B— 100-Task
0.5 —A— 200-Task
0 I I I I I \
2 3 4 5 6 7 8
#PE Model

Figure 5(b). Comparison of the Speedup on the PE Models

106 Shahruddin, Baharom & Hishamuddin

—4— 36-Task
—8— 100-Task
—A— 200-Task

Hpur 5

o

x
2 3 4 5 6 7 8

#PE Model

Figure 5(c). Comparison of pipur on the PE Models

5 Implementation on the Transputer Network

In this section, TS_FS.EXE is implemented using four network models. In the Computer
Systems Architects, CSA [1] transputer system, we limit the experiment to five processing
elements from which the network models F4, R4, S4 and L4 are made possible. These
multi-hop models are the fully-connected, ring, star and linear networks respectively using
4 processing elements, as shown in Figure 6.

H

0 1 0

S PE, PE, PE;

T 0 1 0 9
3 1
301 310
PE PE

5 0 1 4

Figure 6. Our Transputer Network

In the above figure, PE; is the root transputer or PC/Link, which provides the interface
between a front-end computer and the transputer network. Each transputer PEy, is a 32-bit,
RISC-based INMOS T805 processor. It has 4 bidirectional serial links labeled as 0, 1, 2
and 3 in the figure. The transputer allows multitasking, concurrent processing of jobs and
high-speed communication through message-passing in its network.

For the fuzzy scheduler model, PE; is the global scheduler while PEy, PE3, PE, and

Fuzzy Logic Model for Dynamic Multiprocessor Scheduling 107

PEj5 are the local schedulers. As the global scheduler, PE; runs Algorithm TS_FL, controls
all the scheduling activities in the network and makes decision on task assignments. PE;
will constantly communicate with other PEs in making request for task bidding and gets
the feedback before making any decision. Due to the hardware limitation, any message
between PE; and other PEs must hop through PE;. This has the impact of slowing down
some movement although the difference is not very significant. Communications between
the transputers are provided through the channel functions ChanIn() and ChanOut().

The application from Mandelbrot set graphics program [1] is used in the experiment.
This program draws fractals from the Mandelbrot set recursively. The sequential code of
the program is partitioned into 36 dependent tasks TS; for j =1, 2,...,36. Other inputs
for the 36 tasks are obtained as follows:

1. [; is the amount of time required to execute TS;. The value of /; is only known on
the fly, that is, as the task is executing.

2. TS;.at: random number, generated by the program. Its value determines the position
of TS; in the central queue.

3. Communication cost ¢;; is based on the amount of time required to transfer data from
TS; to TS;. As in (1), its value is only known at the time of execution.

A task TS; is randomly initiated at ¢ = T'S;.at and is immediately placed in the central
queue. The global scheduler in PE; obtains the information on its arrival time and stores
it in its database. When the task T'S; in the front of the queue needs to be scheduled, the
global scheduler transmits the information to the relevant PEs. The local scheduler in each
PE then responds by providing information on their PEg.pel. This information is the total
execution length already performed in the PE which is in the local scheduler database.

The other information, however, is not immediately available. The global scheduler
knows who the predecessors T'S; of TS; are, but how much data is to be transferred is not
known. The method discussed in Section 3.2 is applied. The global scheduler evaluates the
value of each PEj.del by assuming TS; is in PE;. The available time for PE; depends on
factors such as the completion of data transfer from its predecessors TS; and the current
processing status of PEy.

Upon receipt of this information, the global scheduler decides which PE will be awarded
with TS; based on Algorithm TS_FL. The global scheduler then notifies the selected PEs of
the decision and the actual start time for its execution TS;.ast. Algorithm T'S_FL-T below
summarizes the implementation of TS_FL on the transputer network.

/* Algorithm TS_FL-T */
Generate a central queue of tasks from input (2) above.
From t=t; to t=t,
For j=1to J
Apply Step 1 of TS_FL.
If t>TS;.at
PE; broadcasts request for bids to PEg, for k=2,3,...,K.
TS; transfers c;; to PE; by assuming T'S; €PE; and TS; <TS;.
Determine PEy.del.
PEy, for k=2.3,....K supplies their PEy.pel and PEy.del.

108 Shahruddin, Baharom & Hishamuddin

Apply Steps 2 of TS_FL.
Apply Steps 3, 4 and 5 of TS_FL.

The results obtained from Algorithm TS_FL-T on the F4 network are shown in Table 1.
The schedule generates the schedule length S = 114.35 on PEs, and a reasonably good
load balancing with jipe) = 51.48 and o) = 3.88. The table shows the overall performances
of the network models. In terms of speedup, the mean of PE utilization rate and the graph
completion time, the F4 model performs the best while the L4 model is the worst. The
graphs of Figure 7 further illustrate these results.

Table 1: Comparison in Performance

Network Model | Speedup | opct SL Hpur
F4 1.801 7.467 | 114.4 | 0.48
R4 1.726 9.016 | 119.3 | 0.47
S4 1.740 8.847 | 118.3 | 0.47
14 1.638 9.602 | 125.7 | 0.45
0.48 — 1.85
0.475
0.47 - 1.8
0.465 175 S
0.46 Ig
Hpur (0.455 - 1.7 e
0.45 h
0.445 —@—pur mean 165 P
0.44 - | —#— speedup L 16
0.435
4 1.
043 F4 R4 S4 L4 55
Network Model

Figure 7. Comparison of pipur and Speedup on the Network Models

6 Summary and Conclusion

This paper described a study on the dynamic task scheduling problem using fuzzy logic.
Fuzzy logic has been applied in processing the incomplete and uncertain inputs in the state
of the processors and the task, and then generate some decision on the task assignment. It

Fuzzy Logic Model for Dynamic Multiprocessor Scheduling 109

has been shown in both the simulation and real-time implementation that the fuzzy-based
scheduler performs well in achieving load balancing.

The nondeterministic nature in dynamic scheduling makes the problem very difficult to
solve. The scheduler needs to make fast decision on task assignment based on arbitrary and
incomplete information on the current state of the task and the processor. This difficulty
arises during runtime and it increases overhead to the system as the scheduler will have to
keep a log of all assignment activities in order to progress further.

Our approach in using fuzzy logic produces some useful results that meets the load
balancing performance objective. In the model, one processor is assigned to be the global
scheduler and all others handle their own local schedulers. At any time t the fuzzy scheduler
takes inputs from each processor the current execution load PE.pel and its delay length
PEg.del. The first input balances the load on all processors by placing higher chance of task
assignment to the processor with small load. The second input tries to minimize the delay
by giving the processor with small delay a higher chance. Through the fuzzification and
defuzzification processes, these two variables are moderated and this generates the decision
for the task assignment.

Reference

[1] ———, Logical Systems C for the Transputer Version 89.1 User Manual, Provo,
Utah, 1990. Computer Systems Architects.

[2] Y.Chow and W.H.Kohler, Models for Dynamic Load Balancing in Heterogeneous Mul-
tiple Processor Systems, IEEE Trans. Computers, 28, no.5, (1979), 354-361. 26
(1963), 115-148.

[3] HEI-Rewini, T.G.Lewis and H.H.Ali, Task Scheduling in Parallel and Distributed
Systems, Prentice Hall, 1994.

[4] B.Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to
Machine Intelligence, Prentice-Hall, Englewood Cliffs, New Jersey, 1992.

[5] H.Lin and C.S.Raghavendran, A Dynamic Load-balancing Policy with a Central Job
Dispatcher. IEEE Trans. Software Engineering, vol.18, no.2, 1991, pp.148-158.

[6 | V.Saletore, A Distributed and Adaptive Dynamic Load Balancing Scheme for Paral-
lel Processing of Medium-grain Tasks, Proc. of DMCC-5, Portland, Oregon, 1990,
pp-994-999.

[7] S.Salleh, Fuzzy and Annealing Models for Task Scheduling in Multiprocessor Systems,
Ph.D Thesis, Dept. of Mathematics, Universiti Teknologi Malaysia, 1997.

[8] S.Salleh and A.Y.Zomaya, Using Fuzzy Logic for Task Scheduling in Multiprocessor
Systems Proc. 8th ISCA Int. Conf. on Parallel and Distributed Computing Systems,
Orlando, Florida, 1995, pp.45-51.

[9] L.A.Zadeh, Fuzzy Algorithms Information and Control, vol.12, 1968, pp.94-102.
[10] L.A.Zadeh, Fuzzy Logic IEEE Computer, 1988, pp.83-92.

