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Abstract In this paper we use classical linear stability theory to analvse Lhe
effeet of a uniform vertical magnetic field on the onset of steady thermocapillary-
driven Marangoni convection in a semi-infinitely deep layer of quiescont
clectrically-ronducting fluid, We obtain an exact expression for the margiual
stability curve for the onset of steady convection in the presence of a magnetic
field. We show that increasing the magnetic ficld streugth stabilises the Javer.
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Abstrak Didalam makalah ini kami menggunakan teori kestabilan lincar klasik
untuk menganalisa kesan medan magnet terhadap olakan mantap Marangoni
dalam lapisan mengufiuk bendalir vang tak terhingga dalamnva. Kami perolehi
penyelesaian tepat bagi lengkung kestabilan sut apabila tercetusnva olakan man-
tap dengan mengambilkira kewujudan medan magnet. Kami dapati bahawa
medan magnet menstabilkan lapisan mengufuk bendalir tersebut.

Katakunci Olakan, Marangoni

1 Introduction

The onset of thermocapillary-driven (Marangoni) convection in a laver of flmd whicl is
heated from above or below is a fundamental model problem for several material processing,
technologies, such as semiconductor crystal growth from melt in microgravity conditions
where, as Schwabe [11] describes, typically thermocapillary rather than buoyancy forces are
the dominant mechanisin driving the flow.
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I Liis ploneering work Pearson [7] showed that thenmocapillary effects will drive steady
Maranponi convection ina flinid layer of finite depth provided that the laver is heated
sufficiently strongly from below, Pearson's 7] work was restricted to the linit of strong
surface tension in whicl the free wpper surface is non-deformable, but subsequently Seriven
and Steraling [12], Smith [14] and Takashima [15] showed that the presence of free-surface
deformation has a dramatic destabilising effect on the long-wave modes. The temporal
growth rates of this instability have recently heen investigated by Regnier and Lebon (9] and
Wilson and Thess (21). Very recently, Hashim and Wilson [4] extended Regnier and Lebon’s
[9] work to include the effect of a magnetic ficld. Takashima [16] showed nmnerically that
oscillatory Maraugoni convection can also oceur, but only if the layer is heated sufficiently
strongly from ahove and the free surface is deformable.

Iu practice, nueontrolled convection often results in unsatisfactory end-prodiets, such
as poor crvstal quality and poor weld penetration. Thus there has bheen considerable prac-
tical. experimental and theoretical terest in understanding various additional plivsical
wiechanisis for suppressing (or possibly eliminating altogether) the onset of conveetion.
The etfects of & body foree due to an externally-imposed magnetic field on the onset of
convection have been studied theoretically (extending the pioneering theoretical analvses of
Ravleigh [8] and Pearsou [7]) by several anthors, for example, Wilson [18, 19, 20] and Hashim
and Wilson 5], Wheu a maguetic feld is ituposed on an electricallv-conducting liguid, the
liguid motion is reduced bhecanse of the interaction between the tmposed magnetic Geld and
the indneed cleetrie current. A review of the use of magnetic fields in semiconductor erystal
prowth was presented by Series and Hurle [13].

All of the studies mentioned above dealt with layvers of finite depth. The analysis of
the onset of Marangoni conveetion in a sem-infinitely deep layer is simpler than that of
finite depth layver. While this case is sufficiently simmple for us to make significant analytical
progress it still retains many of the gqualitative features of the finite-depth problem. Study-
ing this problem also allows ns to isolate the influence of surface effects from those due to
the presence of the Jower houndary. The first analysis of Marangoni convection in a semi-
wiinitely deep laver of fluid was performed by Scanlon and Segel [10]. They studied the
linear and weakly non-linear regitues of Marangoni convection in the case of non-deformable
free upper surface and infinite Prandel nnmber (defined in Section 2). More recently Ve-
larde ef al. [17] condneted a linear stability analysis of osecillatory Marangoni convection
in a semi-infinitely deep laver of Auid with free-surface deformation. In particular. they
presented some narmericallv-calenlated marginal stability curves and critical values of the
Marangoni nnmber for the onset of conveetion and the corresponding analyrical results in
the asvmptotic limit of high frequeney of oscillation. Subsequently Garcia-Yharra and Ve-
lavde (2] generalised this work to nvestigate the ouset of oscillatory Marangoni conveetion
o sewi-iufinitely deep singles or two-component liguid layers both with or withont Soret
thermal diffusion. Very recently, Hashim and Wilson [6] obtained for the first time a de-
tailed deseription of the marginal stability curves for the onset of oscillatory Marangoni
convection in a semi-infinitely deep laver of finid.

I the present paper we use a classical linear stability theory to investigate the effect of
a uniform vertical magnetic field on the onset of steady thermocapillary-driven Marangoni
convection in a semi-infinitely deep layer of quiescent clectrically-condncting fluid. We ob-
tain an explicit expression for the marginal stability curve for the onset of steady convection.
In particular, this work extends parts of Scanlon and Segel's [10], Velarde et al’s [17] and
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Garcia-Ybarra and Velarde's [2] work to include the effect of a maguetic Held, and is an
essential first step before embarking npon further non-linear studies.

2 Problem Formulation

The basic equations which express the interactions between the fuid motions and the mag-
netic fields consist of Maxwell's equations together with a suitably modified forin of the lin-
ear momentum equation. Negleeting the displacement currents (since we are uol concerned
with the effects due to the propapation of electromagnetic waves), Maxwell's cquations are
piven by

V-H = 10, (1)

VxH = 4nl], (2)
JH .

VxE = —‘Hfdr—, (d]

where H, J and E are respectively the magnetic field, the current density and the electric
field, and p is the magnetic permeability. Furthermore, for a woving medinn. H, J and E
must satisfy Ohm's law given by

J = a(E+p U= H), (4)

where ¢ is the clectrical conductivity and U is the fluid velocity vector. The homogeneons
incompressible electricallyv-conducting Newtonian fluid in the presence of a magnetic tield
can be shown as

d .
(a—T+U-V)H = (H-V)U+7VH, (5]
by using equations (1) (4), where n = 1/drpo.

The motion of an electrically-conducting fluid in the presence of a magnetic field will
give rise to a Lorentz foree which acts on the flnid so that an extra body force termn L
appears in the Navier-Stokes equation which, with buovancy forces in the bulk of the fiuid
neglected, can be written as

d 1 1 _
—+U-V|U = —-Vp+vV*U+ -L, (6)
ot » ]
where p is the Huid pressure, pis the fluid density, v is the kinematic viscosity and L s the
Lorentz force. In general, L 1s given by

L = gE+pJxH, (7)

where ¢ is the electric charge density. Assuming that the magnitude of the speed of a fluid
eleruent is much smaller than the speed of light (i.c. we neglect terms of order [U?/¢2). L
takes the siimpler form

oo

L = pJxH, (
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or, according to equation (2),

L = %(Vxﬂ)x}l. (9)
Using an alternative form for L,
#H? 4
L = -¥ —(H-
( - ) h = (H-V)H, (10)

alluws ns to write the equation of motion (6) 1u the form

(il 1 5
(f_+U-\7)U = —=VI+sVUH+ —’f—-(H-VjH. {11)
ot /1 dwp

where I1 = p + p|H|? /87 is the magnetic pressure. The equation of heat condnetion is

(T‘)—+U-v)'r = &VPT, (12)
ot i
where T is the temperature and & is the thermal diffusivity.

We wish to examine the stability of a semi-infinitely deep layer of incompressible, New-
touian fluid which is nnbounded in the horizontal - and y-directions and extends to minns
infinity in the vertical z-direction. The laver is subject to an externallv-imposed uniform ver-
tical magnetic ficld of strength H, a uniform vertical temperature gradient (4 and bounded
above by a free surface which is initially at = = 0 and at constant temperature Th and is
in contact with a passive gas which remains at constant pressure and constant temperatire
Toe. When motion ceewrs the free surface will be deformed and then we denote its position
by z = flr.y.f). The fluid motion is driven entirely by the thermocapillary effect. at the
free surface, where the surface tension, 7, is dependent on temperature 7" according to the
simple hnear law, 7 = 75 — 4 (T = Ty ), where Ty is the value of 7 at T = T, and —5 > ) is the
coctficient of thermal surface tension variation, We neglect buoyancy forces in the bulk of
the fluid (equivalent to taking the coefficient of the thermal expansion of the Auid to be zero)
but include the effect of gravity to allow for the presence of gravity-driven surface waves.
At the free surface we have the usnal kinematic condition and conditions of continuity of
the normal and tangential stresses, and the temperature obeys Newton's law of cooling,
—k0T/in = T ~ Tao), where h is the heat transfer coefficient between the free surface
and the passive medium above, £ is the thermal conductivity of the fluid and n is the out-
ward unit sormal to the free surface. The boundary condition ou the magnetic field depernd
on Lthe clectrical properties of the medium adjoining the fluid (Chandrasekhar [1]). For
snuplicity, we assume that the media above and below the fluid are both perfect electrical
conductors. All perturbations decay to zero as 2 — —oc,

We shall investigate the linear stability of a basic state in which the fluid is at rest, the
free surface is flat. the temperature gradient across the laver is constant, the magnetic field
is uniform, and the pressure is constant. To simplify the analysis we non-dimensionalise
the goveruing equations and boundary conditions using d, d*fv,v/d, Bdv /K, vH /7 as appro-
priate seales for leugth, time, velocity, temperature and maguetic field respectively, As a
result the following non-dimensional proups arise:- the Marangoni number, M = v0d? [ puk,
the Prandt] number, £y = v/x, the crispation (capillary) number. Cr = pre/7od, the Biot
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number, B, = Ad/k, and the Boud number, B, = pod? /1y, where g denotes acceleration
due to gravity. In the absence of a natural geometrical lengthseale in the problem we
choose d = prk/m corresponding to setting C, = 1 without loss of generality. However,
we shall retain C, explicitly in what follows for clarity. In addition to the dimensionless
groups mentioned above we have the Chandrasekhar number (the square of the Hartmann
number) Q = puH?%d?/4mwprn and the magunetic Prandt] number Py = /7.

3 Linearised Problem

We analyse the linear stability of the basic state in the nusual manner by secking perturbed
solutions for any quantity &z, y, z.#) in terms of normal modes in the form

B(r.y,2,1) = Do(x,y.2) + 6(2) exp li(az + a,) + st],

where @y is the value of @ in the basic state and a = {n';: + n'f,jw is the total horizonral
wave number of the pertnrbation. The unknown temporal exponient s will, in general, be
complex.

Substituting into the governing equations and neglecting terms of the second and higher
orders in the perturbations we obtain the corresponding linearised equations (see, for ex-
ample, Hashim [3])

(D?* —a? - sP)T+uw = 0, (13)
(D* - a® — sPy)h, + Dw = (14)
(D? - a?)[(D? - a* — syw + QDh,] = 0. (15)

The corresponding linearised boundary equations are
sf—w = 0, (16)
PC(D? = 3a® - Q — 5)Dw + sP,Qh.] — a*(a* + B,)f = 0, (17)
PD?+a w+a?MPT-f) = 0. (18)
hy = Db (19)
PDT+B,(PT-f) = 0, {20)

evaluated at z = () and

w — 0, (21)
Dw — ()s IZ'EJ
h, — 0, (23)
T — 0, (24)

as z — —oc. Here w(z). T'(2), h, and f denote the vertical variation of the z-component of
veloeity, temperature and magnetic field, and the magnitude of the free surface deflection
of the perturbation respectively and the operator D = d/dz denotes differcntiation with
respect to z. Note that the boundary conditions (19) and (23) correspond to the case whoen
the medium adjoining the fluid layer is a perfect electrical conductor, i.e. no magnetic field
can cross the boundary (see, for example, Chandrasekhar [1]).
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4 Solution of the Linearised Problem

The complete solution of the lincar stability problem is deterinined once we have solved
cguations (13) (15) subject to the boundary conditions (16) (24). In the next subsection
we shall concentrate on the special case when s = (). The general case s # 0 will be dealt
with in the forthcoming paper.

4.1 Onset of Steady Convection

It the special case s = 0 (corresponding to the onset of steady convection) the magnetic
ticld h, can be eliminated entirely from the problem. In this case equation (15) can be
written, using cquations (13) and (14). as

(D? —a*)|(D* —a*)* = QDT = 0. (25)

The general solution for 1'(z) obtained from equation (25) with appropriate decay as z —
—nC 18 stmply

T(z) = Ajc®* + Age®® + Aget2?, (20)
where
1 § L 1] 17, ) 1
=3 |(4a* + Q)% +Q¥.  L=g3 [14a2+QJ* -Q7,
and A; for i = 1.2.3 are arbitrary constants, The corresponding general expressions for

w(z) and [ caleulated from equations (13) and (17) are

w(z) = _A?Q%EI(‘EII + AgQé‘fQL‘E?z‘ (27)
P,C, Q% (402 4 7
§ = = 22203: D (612 - a2 (28)

The bonndary conditions (16} and (20) vield

£ da” + 2(4a® + Q)% B;
A= =43 and A, = — As,
o= pds il &ila + B,) ’

and so the solutions for T(z), w(z) and f arce

'102 +2(4(12 +Q)’1IBI 22 E? £i2 £az ¢
T(z) = |- e 4 2meh et Ag, (29)
- [ &la+ B)) & o
02 * S1z 82z
w(z) = )ZG Q2 ' }AS, (30)
&
= 0, (31)

where Aq is arbitrary, The remaining boundary condition (18) vields

Q(da* + Q)¥[a + B;] +aM{2a — (4a* + Q}é}] Az = 0.

4
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Figure 1: Marginal Stability Curves for the Onsct of Steady Conveetion for Varions Values
of @ in the Case B; = 0.

and since Ay # 0 we deduce that
M = [4a + Qa~"' +2(46® + Q)¥](a + By). (32)

Note that this expression for the steady marginal curve is independent of O B, and. of
course, P and Py, Setting @@ = 0 and B, = 0 in expression (32) we recover the solution
first obtained by Scanlon and Segel [10], while setting @ = 0 with B, # 0 we recover
the expression obtained by Garcia-Yharra and Velarde 2], M = Hale + B,). Evidently
the critical values are M. = 0 and a. = 0 which do not depend on B, Thus the zero-
wagnetic ficld model predicts that ne matter how small the temperature gradient might be
and regardless of the valiues of B,, steady convection sets in. The marginal stability corves
for the onset of steady convection for various values of @ in the case 3, = 0 and B, # 0
are plotted in Figures 1 and 2 respectively. The marginal stability curves separate regions
of stable modes with Re(s) < 0 (regions below the curves) from those of unstable modes
with Re(s) > 0 (regions above the curve). Both Figures 1 and 2 show that the effect of
inereasing the magnetic field strength @ is to stabilise the layer in the case of B; = 0 and
B, = 1 respectively. In the limit e — 0, M = —Q% +Q%(Q§ +28,)+0(a), while in the limit
a— oo, M= 8(1((1+B,)+.—§-Q(1+ %‘-)—FO{;}). The case 3, = 0 for the insulating bonndary
condition (Figure 1) is particular in that the eritical wavenumber a, is zero and the critical
valuie of M is @. In a real experiment the depth of the laver would be large rather than
iufinite and so this result means that in practice the critical wavelength 2m/a, will always
be comparable to the depth of the layer. Le. the prescuce of the lower boundary will always
play a significant role in determining the exact conditions for the onset of steady convection.
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Figure 2: Marpinal Stability Curves for the Onset of Steady Convection for Various Values
of @ in the Case B, = 1.

However, this is not always the case for the onset of steady convection in the case B; #£ 0
and @ # 0. Figure 2 shows that convection first oceurs at non-zero values of a in the case
By =1 and @ # 0. We note that in the limit of @ — oo, M = (a + B,)[% +2Q7% + o(1)].

5 Conclusions
In this paper we analvsed the effect of a uniform vertical magnetic field on the onset of
steadv Marangoni convection in a semi-infinitely deep layer of quiescent fluid. We obtained

an explicit expression for the marginal stability curve for the onset of steady convection.
We showed that the effect of nereasing the magnetic field is to stabilise the laver.
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