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Abstract The purpose of this paper is to discuss a two-dimensional geometrical
construction whose validity is justified by Pappus’ theorem. An application to
polynomial interpolation on the three-pencil mesh expressed in homogeneons
coordinate is also given.
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Abstrak Tujuan kertas ini ialah untuk membincangkan suatu pembinaan ge-
ometri hermatra dua yang mana kesahannya dijnstifikasikan oleh teorem Pap-
pus. Penggunaannya kepada interpolasi polinomial pada jaringan tiga pensil
vang dinvatakan dalam koordinat homogen turut diberikan,

Katakuneci Koordinat homogen, teorem Pappus, jaringan tiga pensel. inter-
polasi polinomial.
1 Introduction

In more recent times, the combination of geometry and analysis has created the lively
new area of fractals and, in more applied topies such as finite clement method and CAGD
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(computer aided geometrie design). The purpose of this paper is to strike a small blow
for peometry by discussing a two-dimensional geometrical construction whose validity is
justified by Pappus’ theorem and which has an application on the theory of interpolation.
We begin the next section with a description of the nse of homogencons coordinates and,
ax an application, give a proof of Pappus' theorem.

2 Pappus’ Theorem

I homogeneons coordinates we use a traple of numbers (v, g, 2). not all zeros, to denote
a point i the plawe, A # 0, (roy,2) and (Are, Ay Az) represent the same point and. if
= # 0, the point (g, z) colneides with the point (r/z.y/2) in the Fuelideany plane. The
line with equation nr + by + ¢ =0 iu the Euclidean plane has equation ar + by +cz = 0 in
homogenecons coordinates, Consider now the linear transformation

¢ X
|l =M|Y (1
¢ Z

Under this trausformation, the points (1,0,0), (0,1,0) and (0.0,1), which we denote by
XY and Z, becowe the points whose coordinates are given by the columns of the watrix
M. These three transformed points will not lie in a straight line il M is non-singular. Con-
versely. given auy three points not lying ina straight line, we form a (non-singular) matrix
M whose colinnns are defined by the coordinates of these points. Then the transformation
matrix M~ will map the three points into XY aud Z respectively. We also note that
under any such non-singnlar transformation. straight lines are mapped into straipht lines,

Pappus' theoren s said to be the fonndation of modern projective geometry, We now
recall the statement of the theorem and pive its prool nsing homogencous coordinates. (See
Fiaonre 1)

Figure 1: Pappms’ Theoremn
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Theorem 2.1 Pappus’ Theorem. Consider two straight lines la andlg Lying ina plane
Let Ay, A2 and A on iy and let By, By and By lie on lg. We now ronstruct three further
points as follows: let Cy be the point of intersechon of the lines AaBy and AzBa end
(eyclically) let C» be the intersection of A3, and A;Bs and Cy be the point of interseclion
of AyBy and A3 By. Then Cy.Cs and Cy lie in a straight line.

Proof The following proof is based on that piven in Maxwell [%). Tn any homogeneons
coordinate system, suppose that 14 and Iz intersect at a point P and let @ and R denote
other points on /g and l4. respectively. Now we choose a new homogencous coordinate
systemn obtained by mapping P . Q and R onto X, Y. and Z. respectively. Thns the two
straight lines 14 and lg will be denoted by y =0 and z = 0. respectively. Then we may
denote the six points A, and B, as follows:

A, = {a,,0,1). fi= 1,2, 3,
B, = (4,10, 1=123

The equation of Az By is 1~ 3y — aaz =) and simnilarly the equation of AzBg 18 0 — da) —
azz = 0. Thus the point of intersection of Az B3 and Az, is

(,.'1 = ((}gﬂg ez rr;iﬂ_g,{)g = (!;j,}f'}'_l' £= ;"'f3) ¥
Similarly, nsing the cyelic order, we see that the coordinates of €y and C'y are
(s = (rvaidy — oy 3y, o — 35 — i11)

and
C;; = (.(}1,’11 - l!';}_;']ff_}.frl - (i‘g.ﬂ‘l — J‘J‘p_} ’

We now note that

alds —aafly g —ag  da— i3
det | ocvgify — ayfly g — oy fy — %y =
i3 — (]2}"1-2 (xy — 1y i‘j] == tf'_)_

and the points 'y, 2 aud Cs which are represented by the row vectors, lie ina straiphi
line. A little calculation shows that equation of this line is ar + by + ez =10 wlhiere

a = (opBy— asfde)+ (oamh — oy ita) 4 (exg o — ity )
h = f.ru’fl (ﬁa o j'ig} + rgidn (i3 — ,‘"f_]} + exq ity (/39 — ),
¢ = it (ag —a3) +agi (o3 —arl +agidfg e — o).

If the two lines {4 and Ig are parallel, we can represent them in homogeneons coordinates
by the pair of equations

ar + by +ecz = 0

ar + My + cz o= 0

with ¢ # ¢ In this case we say that they "meet” at the (b, 0], sav £ The proof is then

completed similarly as above. M
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In Pappus’ theorem the set of points {Cy, Ca, C3} is created by applving the constric-
tion deseribed i the statement of the theorem to the sets of points {A1, A2, A3} and
{81, Ba2. B3}, We remark that there is a full svmmetry in these three sets of points in
the seuse that, bepinning with any two of them. we can generate the third by the Pappus
constricetion.

3 Three-pencil Mesh

In this section we desceribe the construetion of the “three-pencil mesh™ proposed by Lee and
Phillips (2]. We begin with anv three vertices X, Y and Z not lving on a straight line and
draw one line through cach of the vertices, creating the three points Py g, Py and P, as
in Figure 2. We then draw a sccond line throngh X, joining X to Py, . and a second line
throngh 7, joining Z to Py g. letting two new lines intersect at £y ;. We then complete this
second stage by drawing a second line throngh Y. by joining it to P and we also label
Foq and Psg.

]
F 0.0

X

Figure 2: Three-peucil Lartice

The next stage is to draw a third line through each of the vertices X Y and Z as follows:
we join X to Fpa and Z to Py . creating the two further points P2 and Pri. We see that
the three points Pra, Poy and Y lic in a straight line (see Figure 3}, Indeed. this follows
from Pappus’ theoren by taking {4 as the line containing P g, Pao and X. and /g as the
line containing Fo.1, Foo and Z. Now we let the line joining ¥ to Pro and Pa cut the line
XPFPypat Pspand line ZPyg at Pgy. This completes the third stage, when we have three
lines through each of the vertices X ¥ and Z and a mesh of 10 points P, with 7 > 0,5 >0
and 7+ 7 < 3. The point P, lies on the (7 + 1)th line through X, the (2 + 1)th line through
Z, and the (7 + 7)th line through Y.

After £ stages we have £ lines through cach of the vertices X, Y and Z and a mesh
of (k+ 1)(k+2)/2 points P, withi >0, j > 0and i+ j < k. Next we join X to Py
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X

Z

Figure 3. Next Stage in the Construction of a Three-peneil Lattice

and Z to P . Then we find, by applying Pappus' theorem £ times, that Y is on the same
straight line as & points in our coustruction. We label these as described above, as we
also label the two points Py, and FPyryq where the new line through Y cuts X Py and
Z Pap respectively. We terminate the construction process when. for some choice of positive
integer n, we have three pencils, cach of n lines, and with X, ¥ and Z being the vertices of
these pencils, thus creating a mesh of (n + 1)(n + 2)/2 poiuts.

4 Application to Interpolation

We now show how, for each point P ; in the mesh and in any given homogeucons coordinate
systerm, we can coustriet a polynomial p; ;(x, . z) which has the value 1 at the point P,
and the value zero at all other points of the wesh. For, with respect to the piven coordinate
system, let

uplr,y,2) = 0, 0<k<n-1.
welr,y.z) = 0, 0<k<n-1.
we(z,y,z) = 0, < k<n-—1.

denote the equatious of the lines in the three peneils with vertices X, Y and Z respectively.
where up = 0, v = 0, and wy = 0 are the equations of the & + 1 - lines in cach peneil.
Then, for any non-zero constant A; ; ,we define

=1 n 1—1
piglT.y.2) = Ay H u (T, Y, 2) H (T, y. z) H wilr, y, 2), (2)
t=0 t=147+1 t=0

where an cmpty product denotes unity. Thus pi, (7, ¥, z), being a constant times a produet
of n linear forms is non-zero at the point P, and is zcro ar all other points of the mesh
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sinee the union of the straight Tines corresponding to the lincar forins which appear in (2)
contains every point of the mesh except for Py, . Finally we choose the sealing factor A,
so that pp o (#, g, 2) has the valne 1at P, Thus if Sz, y, 2) is any Tnetion defined on the
triangle with vertices at Pyg, Pag and Py, aud f,, denotes the value of this fnetion at
the point 22,0 the polynomial

Zf' Pyl z) 13
L]

will nterpolate the Tunetion at all {(n o+ 1)(n + 2)/2 points of the three-pencil mesh. The
above summation 18 to bhe taken over all 2 2 0. 7 2 0, with 7+ j < n.

5 The Mesh Expressed in Homogeneous Coordinates

Let us consider any point {(ro, yio. zg) with g, yg. zo all non-zero. Then we may make a
transformarion of the forn (1), where

1_,"’-?'“ () ”
M = 0 1y 0
0 (] l/.EU

We sce that under this transformanon (1,000, (0.1,1) and (0.0,1) are mapped onto
tHliemselves and the point (ro.yo. 20) 8 mapped to (1.1.1). Thns, to deseribe the above
threo-pencil mesh we can chioose a coordinate system so that X, ¥V aud Z are denoted by
(OO (0100 and (0.0,1) respectively, and Py is {1,1.1). Then the hne ugle,y.2) =0
throneht X ois 2 = 0, and the line wgCroy.2) = 0 through 2 is r — 3 = 0. We now
need only wo tix Py, save then the whole three-peneil mesh is determined, Let us therefore
vhovse Fypoas the poiut (g, g.1), Tor some positive g, Then this Bxes the line ig{r, g z) =0
as o — g2 = Dand Prgis (g, 1.1 We now follow the constrnetion through algebraically and
an induction arpmunent shows that P, s (g’ ™. 97, 1) and the three pencil of lines are

uglroy,z) = y-q¢ =0, 0<k<n-1,
tplroyz) = = rjk"']-: =(; 0<hk<n—1,
wplr,yz) = r-¢'y=0, D<k<n—1

The point P, is the point of interseetion of the three lines
e g2y =00 v, oz p2) =00 wlry )= 0.
Provided that g = 0, all (n 4 1){(n + 2)/2 poiuts P, . for .3 > 0,7+ j < n . lie in the
friangle with vertices Pog. Poo. and g .
6 Transformation to the Euclidean Plane

Still working i homogencous coordinates, we now apply a lincar transformation, represented
by Lhe matrix A, mapping the vertices Foo, Pro. and By, as follows:
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Foo = (1.1,1) — (0,0, a0) (4)
Pio = (4" 1.1) — (a;,0,ay) (5]
Pon = (q".q".1) — (0.az,0;) ()

where ag.ap, oz # 0. The transformation matrix is thus defined by

00 ag 1 1 1
a; 0 ay [ =|qg" 1 1|A,
0 ay as q" q"
0 that
—a; )] ag — a,
A=(1- q"}_1 ay  —flz  ay—an
0 as  nr — qag

provided that q # 1. This transformation maps the poiut P, ; = (¢"*7 47 1) onto the point
Py = (74, 4. 2i5), where

Ty = I (q] ’qH—I)/[l_qnj‘ (7)
Yy = ax{l—¢') /(1 —q"), (%)
2y = Ty + iy +0o (g -q") /(1 —=q"). 19)

If z,, # 0, this corresponds to the point
P1.3 — (5"51/353'-1)1)/31‘))

in the Euclidean plaue. If ag # a;.a; # az. and az # §"ag, theu the above transformation
maps the three vertices X. Y and Z respectively onto the poiuts

(1+,0), (=d,1+4), and (0,9)

in the Euclidean plane, where a, 4,9 # 0 and

1 1 1
(1+—) (1+—) (1+—)>U.
¥ Jii ¥
and we have
1 a- 4 1 1 1 1 1
ﬂ:l+—,2:(l+—) l+—).g”:(1+—)(l+-)(l+—). (10
ag (g y 11 5 ) Y

Then (10) shows that, corresponding to anyv such o, 3 and 5. which tixes the positions
of the vertices of the three pencils of lines in the Euclidean plauc. we obtain a nuique g > 0
and unique rations a; fag and as/ag. Thus, to each choice of positions of the thiree vertices,

we have a unique three-pencil lattice, determined by (7)-(9). For example. with o = 1,

1= ]5 ¥ = % and n =4, we obtain the Jattice shown in Figure 4.
Letting ¢ — oo and keeping 4 = %‘ 5= % and n = 4 we obtain the lattice in Figure 5.

in which one of the three pencils is a system of parallel lines,
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Figure 4: Three-pencil Lattice with All Three Vertices Finite

/

Figure 5: Three-pencil Lattice with Two Finite Vertices
and One Pencil of Parallel Lines

Figure 6: Three-pencil Lattice with One Finite Vertex
and Two Pencils of Parallel Lines
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If we let both o — oc and 7 — oc and keep 4 = % and n = 4, we obrain the lattice in
Figure 6. in which two of the three pencils are systems of parallel lines,

As a farther example, we let & — oo and v — 0o and let 8 = 1/(q™ - 1) to give the
lattice of points

L ¢ -~
1-q" 1—gq"

n-j

), gz T+ 7<n,

which we can also express as the lattice

"1 - g |
S, = ( q‘l_ f]) , D<i<j<n (11)
l_qn l_qn

This is illustrated in Figure 7 for the case where n = 4 and ¢ = 2 . Under the above

transformation effected by the matrix A, the points X and Z arc sent off to infinity and Y
is mapped onto the point (1/(1 —4g"), —=¢"/(1 — q™)) . which is the point (?}—3 —%) for the

o]

case piven in Figure 7.

>~

Figure 7: Auother Lattice with One Fiuite Verrex and
Two Pencils of Parallel Lines

In the limit as ¢ — 1 the lattice Sy tends to the equallv-spaced lattice

&z{(ll—i)}, 0<i<j<n (12)
n n

7 Extensions to Higher Dimensions

All of the lattices discussed in the previous section satisfy what Chung and Yao [1] call
the Geometric Characterization (GC) condition: to each point p, in the lattice S i two-
dimensional Euclidean space there correspoud n lines L 1,4, 2. .o, such that p & 5 lies
in the nnion of {; 1. L a, ...lyn if and only if p # p,. This geueralizes to lattices in higher
dimensional Euclidean space, as indeed do the lattices which we have constructed in rhe
previous section. For example, for the tetrahedron we can construet a lattice of

(n+1)(n +2)(n +3)/3
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poiuts; there are 4 pencils of planes; each peneil of planes is either parallel or meets inoa
finite line: to cach point p; in the lattice there correspond n planes liviling o by such that
p e S liesin the union of 1,1, 2, .., 4, if and only if p# p;. which is the GC condition.

We conclide by giving just one example of such a lattice in three-dimensional Enclidean
space. This is the lattice consisting of the set of points

l—q 1 —¢ S
A 1 g1 ) k=0, i+j4k<n.

Phizels: = (,q l—gn 1 =g’ 1 —gqg"

Each point of the lattice lies in one of cach of the following four peucils of planes

(L—¢q"

T‘f—fj = (qu”;. [JS‘I'SN,
1_ v
y = q), <v<n
(1—4¢")
1—g*
: = _(_q_.]. D<v<n
[l —a™
1___ u
r+y+gtT: = '(_q-—) D<v<n,
(1—gq")

The first three pencils are sets of parallel planes and the fourth is a peneil of planes with

comrmon line
n
—1

2z

T+ y= . .
T l 1*(}” 'l_qn
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