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Abstract This paper focuses on obtaining stability regions of numerical meth-
ods for ordinary differential equations (ODEs). In particular, the aim of this
paper is to construct a stability region for method of Two Point Block Backward
Differentiation Formulae (BDF). For the method to be of practical importance,
the stability region must cover the whole of the negative half-plane.
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1 Introduction

Many numerical techniques are available for the solution of initial value problems (IVPs)
and these techniques depend on many factors including speed of convergence, computational
expense, data-storage requirements, accuracy, and stability. Shampine and Watts[1], Chu
and Hamilton [2] both suggest that the stability problem appears to be the most serious
limitation of block methods. Our aim is to investigate the linear stability properties of this
block BDF. Below we give some basic definition of stability of a multistep method given in
Lambert [3].
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Definition 1.1

The linear multistep method or linear k-step method can be represented in standard
form by an equation

k∑

j=0

αjyn+j = h
k∑

j=0

βjfn+j (1)

where yn+j ≈ y (xn+j) and fn+j ≡ f (xn+j , yn+j), coefficients αj , βj are suitably chosen
constants subject to conditions αk = 1, |α0| + |β0| 6= 0 and k is defined as the order of the
particular method employed.

Definition 1.2

The first characteristic polynomial , ρ associated with the general method (1), where
it is the polynomial of degree k whose coefficients are αj and the second characteristic
polynomial σ whose coefficients are βj are defined by

ρ(ζ) =
k∑

j=0

αjζ
j

σ(ζ) =
k∑

j=0

βjζ
j





(2)

where ζ ∈ C is a dummy variable. Stability is determined by the location of the roots of
the characteristic polynomials.

Definition 1.3

The linear multistep method (1) is said to satisfy the root condition if all of the roots of
the first characteristic polynomial have modulus less than or equal to unity, and those of
modulus unity are simple . The method (1) is said to be zero-stable if it satisfies the root
condition.

We emphasize the fact that all the roots of the first characteristic polynomial must lie
in or on the unit circle and there must be no multiple roots on the unit circle.

Definition 1.4

The linear multistep method (1) is said to be absolutely stable in a region R for a given
hλ if for that hλ, all the roots rs of the stability polynomial π (r, hλ) = ρ(r) − hλσ(r) = 0,
satisfy |rs| < 1, s = 1, 2, . . . , k.

Definition 1.5

A method is said to be A-stable if all numerical approximations tend to zero as n → ∞
when it is applied to the differential equation y′ = λy with a fixed positive h and a (complex)
constant λ with a negative real part.
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2 Stability Theory of Block Numerical Methods for ODEs

In this section, we introduce the basic definition of a block method described by Fatunla
[6].

Definition 2.1

Let Ym and Fm be vectors defined by

Ym = [yn, yn+1, yn+2, . . . , yn+r−1]t

Fm = [fn, fn+1, fn+2, . . . , fn+r−1]t

}
(3)

respectively.
Then a general k-block, r-point method is a matrix finite difference equation of the form

Ym =
k∑

i=1

AiYm−i + h

k∑

i=0

BiFm−i (4)

where all Ai’s and Bi’s are properly chosen r × r matrix coefficients and m = 0, 1, 2, . . .
represents the block number, n = mr the first step number in the m-th block and r is the
proposed block size.

We defined zero stable for block methods according to Chu and Hamilton [3] as follows.

Definition 2.2

The Block Method (4) is said to be zero-stable if the roots Rj , j = 1(1)k of the first

characteristic polynomial ρ(R) = det
[∑k

i=0 AiR
k−i

]
= 0, Ao = −I , satisfies |Rj | ≤ 1. If

one of the roots is +1, we call this root the principal root of ρ(R).
Consequently, we will extend the approach to formulas that has been derived by Zarina

[12] called the Two Point Block Backward Differentiation Formula . These formulas
are given by

yn+1 = −1
3
yn−1 + 2yn − 2

3
yn+2 + 2hfn+1

yn+2 =
2
11

yn−1 −
9
11

yn +
18
11

yn+1 +
6
11

hfn+2





(5)

The linear stability properties (5) are determined through application of the standard linear
test problem

y′ = λy, λ < 0, λ complex (6)

Application of (6) to (5) where f(x, y) = λy, then gives the following

yn+1 = −1
3
yn−1 + 2yn − 2

3
yn+2 + 2λhyn+1

yn+2 =
2
11

yn−1 −
9
11

yn +
18
11

yn+1 +
6
11

λhyn+2





(7)



86 Zarina Bibi Ibrahim, Mohamed Suleiman, Rozita Johari & Fudziah Ismail

Hence
yn+1 − 2λhyn+1 = −1

3
yn−1 + 2yn − 2

3
yn+2

yn+2 −
6
11

λhyn+2 =
2
11

yn−1 −
9
11

yn +
18
11

yn+1





(8)

We write (8) in matrix-vector form as

[
1 − 2λh 0

0 −
6
11

λh

] [
yn+1

yn+2

]
=




−1
3

2

2
11

− 9
11




[
yn−1

yn

]
+




0 −2
3

18
11

0




[
yn+1

yn+2

]

(9)
Setting ĥ = λh , and rearrange (9) will give




(
1 − 2ĥ

) 2
3

− 8
11

(
1 − 6

11
ĥ

)




[
yn+1

yn+2

]
=




−1
3

2

2
11

− 9
11




[
yn−1

yn

]
(10)

which is equivalent to
AYm = BYm−1 (11)

with the matrix coefficients specified as

A =




(
1 − 2ĥ

) 2
3

− 8
11

(
1 − 6

11
ĥ

)


 , Ym =

[
yn+1

yn+2

]
, B =




−1
3

2

2
11

− 9
11


 , Ym−1 =

[
yn−1

yn

]
.

The first characteristic polynomial of the Block Method (5) is given by

ρ(t) = det [tA − B]

= det


t




1 − 2ĥ
2
3

−
8
11

(
1 − 6

11 ĥ
)


 −




−1
3

2

2
11

− 9
11







= det




t
(
1 − 2ĥ

)
+

1
3

2t

3
− 2

−18t

11
− 2

11
t

(
1 − 6

11
ĥ

)
+

9
11




= −
1
11

− 2t −
20ĥt

11
+

23t2

11
−

28ĥt2

11
+

12ĥ2t2

11

By solving ρ(t) = det [tA − B] = 0, the following stability polynomial is obtained,

− 1
11

− 2t − 20ĥt

11
+

23t2

11
− 28ĥt2

11
+

12ĥ2t2

11
= 0 (12)
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whose stability region is depicted in Section 3.
To determine for zero stable, we substitute ĥ = hλ = 0 to the equation (12). We get

− 1
11

− 2t +
23t2

11
= 0

Hence,
23t2 − 22t− 1 = 0

(−23t− 1) (−t + 1) = 0

This will yield

t =
1
23

, t = 1.

Thus the linear multistep method is zero stable. Since one of the roots is +1, we call this
root principal root and label it t1(= +1).

3 Stability Region

The absolute stability region R associated with the block method (5) is the set
R = {hλ : for that hλ where the roots of the stability polynomial (12) are of moduli less
than one}.

Below we present the stability region R which corresponds to the block BDF. The
stability region R (shaded area) is shown in Figure 1. The stability region is drawn in the
hλ plane and hence it takes all the values of hλ.

Figure 1: Stability Region for Two Point Block BDF

The roots for the shaded region of the stability polynomial lie inside the complex unit
circle and those on its boundary are of moduli one. Hence the Two Point Block Backward
Differentiation method is stable in the entire plane except in the white circle. In conclusion,
since all region in the left half plane is in the stability region, the method is also A-stable.
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Table 1

Test problem Step size Maximum error

Problem 1

y′ = f(x, y) = −10y; y(2) = e−20; 2 ≤ x ≤ 5 0.2 1.97877× 10−5

Solution: y(x) = e−10x

Problem 2

y′ = f(x, y) = −20y + 20; y(1) = 1 + e−20; 1 ≤ x ≤ 3 0.2 1.45322× 10−3

Solution: y(x) = 1 + e−20x

4 Numerical Results

In this section, we give the results for the stiff problems we have tested. If these stiff
problems are solved using Euler method, the restriction on the stepsize h is |hλ| < 2. Hence
the problem cannot be solved with Euler for h = 0.2 for both problem. These problems
are solved by the given Block Method with h = 0.2 The numerical results are tabulated in
Table 1.

Based on the numerical results, it can be concluded that the Block Method is suitable
for stiff problems because of its A stability property.
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