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Abstract In this paper, a 2 point implicit block one-step method for solving
a system of ordinary differential equations (ODEs) using variable step size is
developed. This method will estimate the solutions of initial value problems at
2 point simultaneously based on equidistant block method. Numerical results
are given to compare the efficiency of the new method and that of the 2 point
implicit block one-step method by Rosser (1967).
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1 Introduction

Differential equations are often used to model problems in science and engineering. In most
practical problems, these differential equations are highly nonlinear and cannot be solved
analytically. Hence, we need an appropriate numerical integration method to solve the
problems. This work is the early investigation of our research in solving ODEs using block
method. Block method for numerical solutions of first order and higher order ODEs have
been proposed by several researchers such as Milne (1953) who used them only as a starting
value for predictor-corrector algorithm, Rosser (1967) developed Milne’s proposal into a set
of implicit formulas, Shampine and Watts (1969), Worland (1976), Franklin (1978), Burrage
(1993), Sommeijer (1993), and Omar (1999). In this paper, the form of initial value problem
(IVP) for a system of first order ODEs

Y =flx,y), yl@=yw a<z<d (1)

where a and b are finite is solved using the 2 point implicit block one-step method.
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Figure 1: 2 Point Method
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In Figure 1, the interval [a, b] is divided into a series of blocks with each block containing
2 points and 2 steps. The 2 point method will simultaneously produces two new equally
spaced solution values within a block. The solution at the point x,, is used to start the k
block while the solution at the point x,,o is the last point in the k£ block will be used to
start the k£ + 1 block and the same process continues for the next block.

The evaluation information from the previous step in a block can be called from other
steps of the same block. This method will be formulated in terms of linear multistep method
but the method is equivalent to one step method.

Rosser (1967) introduced the 2 point implicit block one-step method based on the inte-
gration formula which is basically of the Newton-Cotes type. The values of y,,+1 and 4,42
were approximated by integrating Equation (1) over the interval [z, 2,11] and |2y, Tp42]
respectively.

In this paper, the 2 point implicit block method will be formulated based on Newton
backward divided difference formula. The new method used the closest point in the interval
to integrate Equation (1) in order to approximate y,41 and y,42. The approximation of
Yn+1 and y,4o is by integrating Equation (1) over the interval [z, Z,41] and [Znq1, Tpi2)
respectively.

2 2-Point Implicit Block One-Step Method

The two values, y,+1 and y,2 are simultaneously found in a block. Let xz,4+1 = x,, + h,

therefore,
Tn+41 Tn41
/ yde = / fa,y)da

n n

or

vnn) = v+ [ S (2)

n

We replace f (z,y) in Equation (2) with polynomial interpolation as follows,

k

m - m r — Tp

Poya () =) (-1) ( . )v Jarz where s= T2,
m=0
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By replacing dx = hds and changing the limit of integration, we obtain

k -1
Tn =y (zn, h mV'" wher m = (—1™ _S>ds
V) =y ) +h 3 T g where o = (1) /.. o)

The generating function G (t) for the ~,, is given by,

G(t) :n;iiowmtm - i(—t)’”/_; ( - )dS:/l [i(_t)m( o )] ds

m=0 -2 m=0

We see that

and it follows that

t 2
(vot® + yit" +yt® + at® + ) (1 + stgt =01
Grouping and comparing coefficients yields
v S
— — 1 — _O g r =
’70_17 Y1 = 1 27 Ym Tzzom‘Fl—T m 273747"' (4‘)
and the values of v, when m = 0,1 and 2 are as follows,
_1 3 )
Yo=1 M= 5 Y2 = o
Formulae (3) can be written in the form
k
Yn+1 = Yn + h Z ﬂk,mfnJerm (5)
m=0

where k is the number of interpolation points and

B = (1" 3 < " >%. (©)

r=m

Let k = 2 in Equation (5) and Equation(6), will give the formulae of the first point in the
2 point block as follows,

h
Yn+1 = Yn + ﬁ(5f" +8fnt1 — fnt2)-

Now taking x,+2 = x,41 + h and integrating f once from z,1 to x,42 in Equation (2)
gives

Y (@nt2) =y (Tnt1) + /mn+2 i(—l)m ( - ) V™ fnyada (7)

m
Tnt+l m=0
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By replacing dx = hds and changing the limit of integration, gives

k 0
Y (@ni2) =y (Tny1) +h Z 0m V™ fnte where 6§, = (—1)7”/_ ( —S ) ds. (8)

m=0

The generating function M (t) for the ¢, is given by,

M(t)_mii:odmtm_ i (_t)m/i ( ;f >ds_/0 li (=)™ ( ;f ﬂ ds

m=0 -1 [m=0

We see that M(t) = ﬁ or Z 5, M (ln(l_t— t)) _
m=0

which can be written as

t 2
(50+51t+52t2+53t3+---)(1—|—§+§+Z+---)=1.

Grouping and comparing the terms yields,

m—1
om
50:1, 6m:—2m m:1,2,... (9)

=0

The value of é,,, when m = 0,1 and 2 are as follows

1 1
50 ’ 51 27 62 12
Formulae (8) can be written in the form
k
Yn+2 = Yn+1 + h Z ak,mfnJerm (10)
m=0

where k is the number of interpolation points and

Qpm = (—1)™ zk: ( Tm >5T. (11)

r=m

Let k = 2 in Equation (10) and Equation (11), will give the formulae of the second point
in the 2 point block as follows,

h
Ynt2 = Ynt1 + ﬁ(5f”+2 +8fn+1 = fn)-
Hence, the formulae of the 2 point implicit block method are
h
Ynt+l = Yn+ E(5fn +8fnt1 — fn+2)

h
and Yn+2 = Yn+1 + E(5fn+2 + 8fn+1 - fn) (12)
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3 Implementation of 2-Point Implicit Block One-Step
Method

We will approximate y,11 and y,42 in Equation (12) by the iteration process as follows:

Yntmr = Yn+mhf, m=12 r=0. (13)
h
Yn+1,r+1 = Yn + E(&fn + 8fn+1,r - fn+2,r) (14)
h
Yn+2,r+1 = Yn+tl,r + E(_fn + 8fn+1,7‘ + 5fn+2,r) r= 07 17 27 3 (15)

Define Equation (13) as the initial approximation, each yp4m » is an approximation to yp4m
of order 4+ 2. Hence, f,4m, r is an approximation to f,4,, of order 4+ 2. Since fy,{m  are
multiplied by coefficients of order h in Equation (14) and Equation (15), and it turns out
that yp4m r+1 will be an approximation of order r + 3. At r = 1 will give method of order
3 and if r > 1 can improves the accuracy but still at the same order. In the program, we
use r = 2 and the convergent test will be

Yns2,rt1 — Yniorl| <0.1x TOLERANCE.

4 2-Point Implicit Block One-Step Method Half Gauss
Seidel

In Equation (14) and Equation(15), the approach is similar to the Jacobi iteration. At the
r + 1th iteration, the approximate value of y,11, in Equation (15) is from the previous
iteration and the order is one less. Hence, we replace the algorithm by Equation (16) as
follows,

h
Yn+1r+1 = UYUn + E(&fn + 8fn+1,r - fn+2,r)
h
Ynt2,+41 = Yntlr+1+ E(_fn +8fnt1,r +5fnt2r) 7=0,1,2 (16)

In Equation (16), the approximate value of y,,11 41 is from the same iteration to replace
Yn+1,r from the previous iteration and this is the Gauss Seidel style. We observed that the
numerical results are much better.

5 Stability region

The stability of the 2-point implicit block one step method derived in the previous section
on a linear first order problem when the method is applied to the test equation

y=f=Xy (17)

The formula of the 2-point block one step method is given by Equation (13)—(15). For r = 0,
substitute fr,11,0 and fry20 from Equation (13) into the right hand side of Equation (14)
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and Equation (15). When r = 1, substitute f,111 and fp42,1 into the right hand side of
Equation (14) and Equation (15) and the process continue. The characteristics polynomials
of the method at r = 0,1, 2 are as follows,

At r=0,
t2—(252+25+1)t = 0 (18)
At r=1,
9 43 —2 —
= (Gh +2h +2h+ 1)t = 0 (19)
At r=2,
24 43 o _
t2_(§h4+§h3+2h2+2h+1)t = 0 (20)

where h = h\ and the stability region is shown in Figure 2, 3 and 4.
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Figure 2: Stability Region for 2PZ at » = 0.
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Figure 3: Stability Region for 2PZ at » = 1.
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Stability Region for2FE Mahod .7—2 Im
PR -

1

0.5

-0.5

_d<1_2 -1 -0.8 -0.6 -0.4 -0.2

-1

I =t
Figure 4: Stability Region for 2PZ at » =2.

The stability region of method 2PZ is inside the boundary of the circle. It is observed
from Figure 2-4 that the stability region is bigger as we increase the number of iteration.

6 Numerical Results

The tables below show the numerical results for the three given problems when solved using
the method obtained from the previous section compare with the 2 point implicit block
one-step method in Rosser (1967).

The following notations are used in the tables:

TOL Tolerance

MTD Method Employed

TSTEP Total Steps Taken

FS Total Failure Step

MAXERR Magnitude of the maximum error of the computed solution

FCN Total Function Calls

TIME The execution time taken (in microseconds)

2P7 Implementation of the 2 point implicit block one-step method by using Jacobi
iteration

2PR Implementation of the 2 point implicit block one-step method by Rosser using

Jacobi iteration
2PZhG Implementation of the 2 point implicit block one-step method by using half
Gauss Seidel iteration

Tested Problems:
Problem 1: ¢} = —Ay, — By, vyh =By —Ays, A=1, B=+3
Y1 (0) =1, Y2 (O) =0, [07 20]

Exact Solution:

y1(z) = e A% cos Bz, yo(x) = e A% sin Bz
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Source: Tam, H. W. (1992)
Problem 2: ¢} =y2, v5 = 2y2 — y1,
Y1 (O) =0, v (O) =1, [07 20]

Exact Solution:
1 () = ze®,  y2(z) = (1+2)e”,
Source: Bronson (1973)

Problem 3:y; = y2, ¥5 = —¥3, ¥3 =11, Y4 =Yy2+2e"
Y1 (O) = Oa Y2 (O) = _27 Y3 (0) = 07 Ya (0) = 27 [Oa 10]

Exact Solution:

yi1(z) =—e"+e ", p(r)=—e"—e" y(x)=e"—e " ys(x)=e"Fe 7,

Source: Bronson (1973)

Table 1: Comparison between the 2PZ, 2PR and 2PZhG methods for solving Problem 1

TOL MTD TSTEP FS MAXERR ENC TIME
2PZ 48 6 4.91205(-4) 385 5818
10-2 2PR 55 3 5.78554(-4) 441 6701
2P7hG 51 9 4.26915(-4) 409 6007
2PZ 175 3 1.09711(-3) 1401 22180
10 2PR 172 2 1.04141(-6) 1377 21313
2P7hG 143 2 5.43487(-6) 1145 17932
2PZ 784 4 4.79824(-7) 6273 99539
106 2PR 612 2 4.86775(-9) 4897 76125
2PZhG 518 3 2.27365(-8) 4145 65027
2PZ 3634 1 1.69271(-8) 29073 462879
10-8 2PR 3406 3 1.43191(-11) 27249 423379
2P7hG 1866 2 1.15143(-10) 14929 234709
2PZ 17388 5 8.74602(-10) 139105 2211383
1010 2PR 12661 3 5.02730(-14) 101289 1576134
2PZhG 10404 3 2.64557(-13) 83233 1310179

In all tested problems, the 2PZ is very inefficient and costly in terms of total number of
steps and execution time especially when tested for finer tolerances. The maximum error
of 2PZhG is comparable or one decimal places less than 2PR and still within the given



2-Point Implicit Block One-Step Method Half Gauss-Seidel For Solving First Order ODE

Table 2: Comparison between the 2PZ, 2PR and 2PZhG methods for solving Problem 2

99

TOL MTD TSTEP FS MAXERR FNC TIME
2P7 157 3 1.36866(-3) 1257 8572
10 2PR 153 2 5.84725(-3) 1225 7881
2PZhG 153 2 5.84725(-5) 1225 8072
2p7 535 5 1.75043(-4) 4281 29271
10~ 2PR 955 3 1.92036(-7) 7641 49436
2PZhG 524 3 5.80968(-7) 4193 27777
2P7 3122 7 5.09251(-6) 24977 171984
107 2PR 3798 5 3.19441(-10) 30385 196135
2PZhG 3094 4 7.64143(-10) 24753 164357
2p7 11100 8 4.700261(-7) 88801 610284
10 2PR 20123 6 6.12502(-12) 160983 1040890
2PZhG 11040 5 3.02368(-12) 88321 587304
2p7 62902 10 1.286325(-8) 503217 3461814
101 2PR 92019 8 1.37597(-11) 736153 4734659
2PZhG 62863 7 1.31379(-11) 502905 3345296

Table 3; Comparison between the 2PZ, 2PR and 2PZhG methods for solving Problem 3

TOL MTD TSTEP ES MAXERR FNC TIME
2pZ 43 2 1.32609(-4) 345 5703
10~ 2PR 39 1 4.59025(-5) 313 4965
2PZhG 39 2 4.59025(-5) 313 5165
2PZ 240 2 1.47953(-5) 1921 32548
10~ 2PR 120 1 5.26513(-7) 961 15349
2PZhG 120 1 5.26513(-7) 961 15967
2pZ 1508 3 3.85967(-7) 12065 205049
10 2PR 755 2 3.46349(-10) 6041 96778
2PZhG 378 1 5.48902(-9) 3025 50426
2pZ 4760 3 3.88082(-8) 38081 643384
10- 2PR 2381 2 3.42486(-12) 19049 305250
2PZhG 2381 2 3.24632(-12) 19049 317678
2pZ 30089 4 9.73023(-10) 240713 4093234
101 2PR 15046 3 1.69442(-12) 120369 1928971
2PZhG 7524 2 1.18945(-12) 60193 1003358




100 Zanariah Abdul Majid, Mohamed Suleiman, Fudziah Ismail & Mohamed Othman

tolerances. At the same total number of steps, the execution times taken by the 2PR is
slightly better than 2PZhG. This could be justified by the fact that the time spent on
performing extra computations required in 2PZhG has affected the execution times. It
could be observed that the reduction in the number of steps in the 2PZhG gives better
execution time than the 2PR.

7 Conclusion

Method 2PZhG is more efficient than method 2PR and 2PZ as the tolerance getting smaller.
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