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Abstract In this paper, a 2 point implicit block one-step method for solving
a system of ordinary differential equations (ODEs) using variable step size is
developed. This method will estimate the solutions of initial value problems at
2 point simultaneously based on equidistant block method. Numerical results
are given to compare the efficiency of the new method and that of the 2 point
implicit block one-step method by Rosser (1967).
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1 Introduction

Differential equations are often used to model problems in science and engineering. In most
practical problems, these differential equations are highly nonlinear and cannot be solved
analytically. Hence, we need an appropriate numerical integration method to solve the
problems. This work is the early investigation of our research in solving ODEs using block
method. Block method for numerical solutions of first order and higher order ODEs have
been proposed by several researchers such as Milne (1953) who used them only as a starting
value for predictor-corrector algorithm, Rosser (1967) developed Milne’s proposal into a set
of implicit formulas, Shampine and Watts (1969), Worland (1976), Franklin (1978), Burrage
(1993), Sommeijer (1993), and Omar (1999). In this paper, the form of initial value problem
(IVP) for a system of first order ODEs

y′ = f(x, y), y(a) = y0 a ≤ x ≤ b (1)

where a and b are finite is solved using the 2 point implicit block one-step method.
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In Figure 1, the interval [a, b] is divided into a series of blocks with each block containing
2 points and 2 steps. The 2 point method will simultaneously produces two new equally
spaced solution values within a block. The solution at the point xn is used to start the k
block while the solution at the point xn+2 is the last point in the k block will be used to
start the k + 1 block and the same process continues for the next block.

The evaluation information from the previous step in a block can be called from other
steps of the same block. This method will be formulated in terms of linear multistep method
but the method is equivalent to one step method.

Rosser (1967) introduced the 2 point implicit block one-step method based on the inte-
gration formula which is basically of the Newton-Cotes type. The values of yn+1 and yn+2

were approximated by integrating Equation (1) over the interval [xn, xn+1] and [xn, xn+2]
respectively.

In this paper, the 2 point implicit block method will be formulated based on Newton
backward divided difference formula. The new method used the closest point in the interval
to integrate Equation (1) in order to approximate yn+1 and yn+2. The approximation of
yn+1 and yn+2 is by integrating Equation (1) over the interval [xn, xn+1] and [xn+1, xn+2]
respectively.

2 2-Point Implicit Block One-Step Method

The two values, yn+1 and yn+2 are simultaneously found in a block. Let xn+1 = xn + h,
therefore,

∫ xn+1

xn

y′dx =
∫ xn+1

xn

f (x, y) dx

or
y (xn+1) = y (xn) +

∫ xn+1

xn

f (x, y) dx (2)

We replace f (x, y) in Equation (2) with polynomial interpolation as follows,

Pn+2 (x) =
k∑

m=0

(−1)m
(

−s
m

)
∇mfn+2 where s =

x − xn+2

h
.
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By replacing dx = hds and changing the limit of integration, we obtain

y (xn+1) = y (xn) + h

k∑

m=0

γm∇mfn+2 where γm = (−1)m
∫ −1

−2

(
−s
m

)
ds (3)

The generating function G (t) for the γm is given by,

G(t) =
∞∑

m=0

γmtm =
∞∑

m=0

(−t)m

∫ −1

−2

(
−s
m

)
ds =

∫ −1

−2

[ ∞∑

m=0

(−t)m

(
−s
m

)]
ds

We see that

G (t) =
−t (1 − t)
ln (1 − t)

or
∞∑

m=0

γmtm
(

ln(1 − t)
−t

)
= 1 − t

and it follows that

(γ0t
0 + γ1t

1 + γ2t
2 + γ3t

3 + · · · )(1 +
t

2
+

t2

3
+

t3

4
+ · · · ) = (1 − t).

Grouping and comparing coefficients yields

γ0 = 1, γ1 = −1− γ0

2
, γm = −

m−1∑

r=0

γr

m + 1 − r
m = 2, 3, 4, . . . (4)

and the values of γm when m = 0, 1 and 2 are as follows,

γ0 = 1, γ1 = −3
2
, γ2 =

5
12

.

Formulae (3) can be written in the form

yn+1 = yn + h
k∑

m=0

βk,mfn+2−m (5)

where k is the number of interpolation points and

βk,m = (−1)m
k∑

r=m

(
r
m

)
γr. (6)

Let k = 2 in Equation (5) and Equation(6), will give the formulae of the first point in the
2 point block as follows,

yn+1 = yn +
h

12
(5fn + 8fn+1 − fn+2).

Now taking xn+2 = xn+1 + h and integrating f once from xn+1 to xn+2 in Equation (2)
gives

y (xn+2) = y (xn+1) +
∫ xn+2

xn+1

k∑

m=0

(−1)m

(
−s
m

)
∇mfn+2dx (7)
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By replacing dx = hds and changing the limit of integration, gives

y (xn+2) = y (xn+1) + h

k∑

m=0

δm∇mfn+2 where δm = (−1)m

∫ 0

−1

(
−s
m

)
ds. (8)

The generating function M (t) for the δm is given by,

M (t) =
∞∑

m=0

δmtm =
∞∑

m=0

(−t)m
∫ 0

−1

(
−s
m

)
ds =

∫ 0

−1

[ ∞∑

m=0

(−t)m

(
−s
m

)]
ds

We see that M(t) =
−t

ln(1 − t)
or

∞∑

m=0

δmtm
(

ln(1 − t)
−t

)
= 1

which can be written as

(δ0 + δ1t + δ2t
2 + δ3t

3 + · · · )(1 +
t

2
+

t2

3
+

t3

4
+ · · · ) = 1.

Grouping and comparing the terms yields,

δ0 = 1, δm = −
m−1∑

r=0

δm

m + 1 − r
m = 1, 2, . . . (9)

The value of δm, when m = 0, 1 and 2 are as follows

δ0 = 1, δ1 = −1
2
, δ2 = − 1

12
.

Formulae (8) can be written in the form

yn+2 = yn+1 + h

k∑

m=0

αk,mfn+2−m (10)

where k is the number of interpolation points and

αk,m = (−1)m
k∑

r=m

(
r
m

)
δr. (11)

Let k = 2 in Equation (10) and Equation (11), will give the formulae of the second point
in the 2 point block as follows,

yn+2 = yn+1 +
h

12
(5fn+2 + 8fn+1 − fn).

Hence, the formulae of the 2 point implicit block method are

yn+1 = yn +
h

12
(5fn + 8fn+1 − fn+2)

and yn+2 = yn+1 +
h

12
(5fn+2 + 8fn+1 − fn). (12)
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3 Implementation of 2-Point Implicit Block One-Step
Method

We will approximate yn+1 and yn+2 in Equation (12) by the iteration process as follows:

yn+m,r = yn + mhfn m = 1, 2. r = 0. (13)

yn+1,r+1 = yn +
h

12
(5fn + 8fn+1,r − fn+2,r) (14)

yn+2,r+1 = yn+1,r +
h

12
(−fn + 8fn+1,r + 5fn+2,r) r = 0, 1, 2, 3 (15)

Define Equation (13) as the initial approximation, each yn+m,r is an approximation to yn+m

of order r + 2. Hence, fn+m,r is an approximation to fn+m of order r +2. Since fn+m,r are
multiplied by coefficients of order h in Equation (14) and Equation (15), and it turns out
that yn+m,r+1 will be an approximation of order r + 3. At r = 1 will give method of order
3 and if r > 1 can improves the accuracy but still at the same order. In the program, we
use r = 2 and the convergent test will be

‖yn+2,r+1 − yn+2,r‖ < 0.1× TOLERANCE.

4 2-Point Implicit Block One-Step Method Half Gauss
Seidel

In Equation (14) and Equation(15), the approach is similar to the Jacobi iteration. At the
r + 1th iteration, the approximate value of yn+1,r in Equation (15) is from the previous
iteration and the order is one less. Hence, we replace the algorithm by Equation (16) as
follows,

yn+1,r+1 = yn +
h

12
(5fn + 8fn+1,r − fn+2,r)

yn+2,r+1 = yn+1,r+1 +
h

12
(−fn + 8fn+1,r + 5fn+2,r) r = 0, 1, 2 (16)

In Equation (16), the approximate value of yn+1,r+1 is from the same iteration to replace
yn+1,r from the previous iteration and this is the Gauss Seidel style. We observed that the
numerical results are much better.

5 Stability region

The stability of the 2-point implicit block one step method derived in the previous section
on a linear first order problem when the method is applied to the test equation

y′ = f = λy (17)

The formula of the 2-point block one step method is given by Equation (13)–(15). For r = 0,
substitute fn+1,0 and fn+2,0 from Equation (13) into the right hand side of Equation (14)
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and Equation (15). When r = 1, substitute fn+1,1 and fn+2,1 into the right hand side of
Equation (14) and Equation (15) and the process continue. The characteristics polynomials
of the method at r = 0, 1, 2 are as follows,

At r = 0,

t2 −
(
2h

2
+ 2h + 1

)
t = 0 (18)

At r = 1,

t2 − (
4
3
h

3
+ 2h

2
+ 2h + 1)t = 0 (19)

At r = 2,

t2 − (
2
3
h

4
+

4
3
h

3
+ 2h

2
+ 2h + 1)t = 0 (20)

where h = hλ and the stability region is shown in Figure 2, 3 and 4.
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The stability region of method 2PZ is inside the boundary of the circle. It is observed
from Figure 2-4 that the stability region is bigger as we increase the number of iteration.

6 Numerical Results

The tables below show the numerical results for the three given problems when solved using
the method obtained from the previous section compare with the 2 point implicit block
one-step method in Rosser (1967).

The following notations are used in the tables:

TOL Tolerance
MTD Method Employed
TSTEP Total Steps Taken
FS Total Failure Step
MAXERR Magnitude of the maximum error of the computed solution
FCN Total Function Calls
TIME The execution time taken (in microseconds)
2PZ Implementation of the 2 point implicit block one-step method by using Jacobi

iteration
2PR Implementation of the 2 point implicit block one-step method by Rosser using

Jacobi iteration
2PZhG Implementation of the 2 point implicit block one-step method by using half

Gauss Seidel iteration

Tested Problems:

Problem 1: y′
1 = −Ay1 − By2, y′

2 = By1 − Ay2, A = 1, B =
√

3

y1 (0) = 1, y2 (0) = 0, [0, 20]

Exact Solution:

y1(x) = e−Ax cosBx, y2(x) = e−Ax sin Bx



98 Zanariah Abdul Majid, Mohamed Suleiman, Fudziah Ismail & Mohamed Othman

Source: Tam, H. W. (1992)

Problem 2: y′
1 = y2, y′

2 = 2y2 − y1,

y1 (0) = 0, y2 (0) = 1, [0, 20]

Exact Solution:
y1 (x) = xex, y2 (x) = (1 + x)ex,

Source: Bronson (1973)

Problem 3:y′
1 = y2, y′

2 = −y3, y′
3 = y4, y′

4 = y2 + 2ex

y1 (0) = 0, y2 (0) = −2, y3 (0) = 0, y4 (0) = 2, [0, 10]

Exact Solution:

y1 (x) = −ex + e−x, y2 (x) = −ex − e−x, y3 (x) = ex − e−x, y4 (x) = ex + e−x,

Source: Bronson (1973)

In all tested problems, the 2PZ is very inefficient and costly in terms of total number of
steps and execution time especially when tested for finer tolerances. The maximum error
of 2PZhG is comparable or one decimal places less than 2PR and still within the given
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tolerances. At the same total number of steps, the execution times taken by the 2PR is
slightly better than 2PZhG. This could be justified by the fact that the time spent on
performing extra computations required in 2PZhG has affected the execution times. It
could be observed that the reduction in the number of steps in the 2PZhG gives better
execution time than the 2PR.

7 Conclusion

Method 2PZhG is more efficient than method 2PR and 2PZ as the tolerance getting smaller.
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