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Abstract In manufacturing systems, the quantity of raw material needed in
production is dependent on the production size. In this paper we consider a man-
ufacturing system which procures raw materials from suppliers and processes
them to make a finished product. The problems are to determine an ordering
policy for raw materials (a lot with multiple instalments) and a production policy
for the finished product to satisfy a deterministic time-varying demand process.
We find an optimal solution for the model by using the Solver of Microsoft Excel.
We present some numerical examples for a discussion.
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1 Introduction

In reality, a quantity of raw materials (QR) needed in any production is dependent on a
production size (QM). It is desirable to consider QR and QM simultaneously. Sarker et al.
[3] have shown that this joint ordering policy provides lower cost under certain condition
compared with the separate ordering policies.

Sarker and Khan [4] have developed three joint ordering policy models. The first model
is lot-for-lot with there is no demand during a production time and the whole lot of product
will be delivered immediately after the production time for each batch finished. In the
second model, the ordering quantity of raw material is equal to the raw material required
for multiple lot of product. The last model is similar to the second, however in this model
the delivery of the finished product is considered in multiple instalments.

Recently, Omar and Smith [1] developed the joint ordering policy model for the case
where demand for finished product is deterministic linearly increasing. This is a general
model for lot-for-lot policy where the supply of raw material and demand for finished product
are continuous.
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In this paper we extend the Omar and Smith model [1] by considering a case where
one lot of raw material will be delivered with multiple instalments during the production
time due to either limitation in transportation or warehouse facilities, for a lot (or batch)
of production quantity. In this model we assumed that the number of instalment, m, is the
same for each batch production. For each batch we determine an economic ordering quantity
of raw material with m instalments together with an economic quantity of manufacturing
quantity which minimize the total cost. We used the spreadsheets Solver of Microsoft Excel
to find an optimal policy for the model.

2 Mathematical Formulation
In this section, a general cost model is developed. The following costs are considered;
e raw material ordering cost
e manufacturing set-up cost
e raw materials inventory carrying cost
e finished product inventory carrying cost
To develop the model, the following terminology is used:

e The demand rate of finished product at time ¢ in (0, H) is f(t). H is the time horizon
after which no demand will be met.

e The finite production rate is P units per unit time and P > f(t) (to ensure no
shortage).

e There is a fixed manufacturing set-up cost of ¢, for each production run.

e There is an ordering cost of ¢; for raw material j.

e There is a carrying inventory cost of h, per unit per unit time for finished goods.
e There is a carrying inventory cost of h; per unit per unit time for raw material j.
e QM; is the production quantity of the (i + 1)st batch.

o QR;ji is the raw material quantity for raw material j of the (i + 1)st batch and for &
instalment.

e n is the total number of batch replenishment (and therefore we define t,, = H).
e m; is the number of instalment for each batch where m; = m;1; = m.

e 7; is the amount/quantity of raw material j required in producing one unit of a finished
product.
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From Omar and Smith [1], for lot-for-lot model, the total cost for n-batch if f(t) = a+bt
and j =1is

TRC(n) = n(cp+cr)
n—1
(tit1 —t:)? b 1 b )
+hy ; 5 Mot 3@t + )] = plat 5t +t)]
hirt = b
21P1 2 (i1 — ti)*[a + (i + t:))? (1)

In our model, for each batch ¢, the raw material j will be delivered in m; instalments
(small lots) for a lot of production size where m; is positive integer. Generally m; might
be different for all ¢, however as mentioned before we assumed that m; = m;;1 = m for
some i. Figure 1 gives a graphical representation of the model for the (¢ + 1)st batch when
m = 2.

Inventory level

t; s tr tit1 time
Figure 1: Plot of stok of raw material and finished product against time

Figure 1 shows the graf of raw material and finished product against time for the (i+1)st
batch. The raw material will be fully consumed at the end of the production time. We
assumed that during production finished product becomes immediately available to meet
the demand process. For a finite P, the time-weighted stockholding for finished product is
given by the area of curve ¢;Ct;41 while for the raw material is the area of triangles t; As
and sBt].

Using a simple calculus, it can be shown that the area of triangles ¢;As and sBt} is
minimum when the interval between the first and the second instalment are the same. It is
similar for m = 3. From these results, we assumed that the interval between the consecutive
instalment are the same. Hence from Figure 1, we have

1
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It follows that a time-weighted stockholding of raw material j = 1 is

2, <%t ;ti%/t:“ f(t)dt>
tit1 2
— ([ roar) 3)
since P(tf — t;) = [/ f(t)dt.

Similarly, if m = 3, the time-weighted inventory is

1 tit1 2_ " tit1 2
i ([, o) = 5op ([ so0m)

For n-batch with m instalments, the total time-weight inventory is

n—1 tit1 2
71
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i

It follows that the total ordering and holding cost of raw material for n-batch with m
instalments is
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Hence the total cost of the model if f(t) = a + bt is
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2.1 Numerical Examples

To demonstrate the effectiveness of this model, we present some numerical examples. We
do a comparison with the lot-for-lot model to show the applicability of the model. Consider
the case where demand is linearly increasing, f(t) = a + bt, with a = 20 and b = 2 for
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Table 1: Comparison between lot-for-lot models with a single and multiple instalments

¢ || he || n | Lot for alot || n | m | Multiple lot for a lot
301 1 || 6 *156.8358 6|1 156.8358
271 1 || 6 *155.0358 6|1 155.0358
251 1| 6 *153.8358 6] 1 153.8358
154 11 6 147.8358 6| 2 *143.7220
10 1 |7 144.4283 6| 2 *137.7220
07 1 || 7 142.3283 6| 3 *133.9423

H = 5. The other parameters are ¢, = 10, h, = 2,71 =1 and P = 50. While parameters c,
and h, are varies as shown in the Tables 1 and 2.

Table 1 gives the optimal policy for the models with different values of ¢,.. As expected,
the model with multiple instalments become more superior than the model with a single
instalment when ¢, decrease. For example when ¢, = 0.7, an optimal number of batches
from the model with a single instalment is 7 with the production time starting at 0, 0.7585,
1.4988, 2.2234, 2.9343, 3.6331, 4.3213 and 5. The total cost for this optimal policy is
142.3283. On the other hand, the model with multiple instalments gives an optimal number
of batches is 6 with 3 instalments. The production time starting at 0, 0.8571, 1.7006, 2.5339,
3.3599, 4.1811 and 5, with the total minimum cost for this policy is 133.9423.

Table 2 gives an optimal policy for these models with different values of h,. The model
with multiple instalments is superior when the values of A, are 1.5, 1.8 and 2.0.

Table 2: Comparison between lot-for-lot models with a single and multiple instalments

¢ || hy || n | Lot for alot || n | m | Multiple lot for a lot
2 11011 *126.5284 51 1 126.5284
2 10216 *129.3344 6] 1 129.3344
2 10316 *132.4657 6] 1 132.4657
2 0516 *137.7220 6] 1 137.7220
2 || 15| 7 162.6467 6| 2 *156.2830
2 || 1.8 7 169.3707 6| 2 *160.2155
2 1201 7 173.8511 6| 2 *162.8358

3 Conclusion

A model lot-for-lot with multiple instalments has been proposed in this paper. To avoid
complexity and to make this model more applicable, we assumed that the number of instal-
ment is same for each batch. Our numerical results shown that the model with multiple
instalments is superior for some cases.
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