
Matematika, 2003, Jilid 19, bil. 2, hlm. 107–119
c©Jabatan Matematik, UTM.

Numerical Experiments with Matrices Storage

Free BFGS Method for Large Scale

Unconstrained Optimization

Malik Hj. Abu Hassan, Mansor Monsi & Leong Wah June
Department of Mathematics
University Putra Malaysia

43400 Serdang
Selangor, Malaysia

Abstract We study the numerical performance of a matrices storage free quasi-
Newton method for large-scale optimization, which we call the F-BFGS method.
We compare its performance with that of the limited memory BFGS, L-BFGS
methods developed by Nocedal (1980) and the conjugate gradient methods.
The F-BFGS method is very competitive due to its low storage requirement
and computational labor and also able to solve large-scale problems with 106

variables successfully while other methods fail.

Keywords Large scale optimization, matrices storage free methods, limited
memory methods, conjugate gradient methods.

Abstrak Kami mengaji prestasi berangka bagi suatu kaedah kuasi-Newton
yang bebas storan matriks untuk pengoptimuman berskala besar, yang kami
panggil kaedah F-BFGS. Kami membandingkan prestasinya dengan kaedah mem-
ori terhad BFGS, iaitu kaedah L-BFGS yang dibangunkan oleh Nocedal (1980)
dan kaedah kecerunan konjugat. Faedah F-BFGS mempunyai saingan yang inggi
disebabkan oleh keperluan storan dan kerja pengiraan yang rendah serta beru-
paya menyelesaikan masalah berskala besar dengan 106 pembolehubah dengan
jayanya sedangkan kaedah lain gagal.

Katakunci Pengoptimuman berskala besar, kaedah bebas storan matriks, kaedah
memori terhad, kaedah kecerunan konjugat.

AMS subject classification. 65K10, 65H10

1 Introduction

Research in large scale optimization has been, in recent years, a major subject of interest
within the mathematical programming community, in particular the large scale uncon-

108 Malik Hj. Abu Hassan, Mansor Monsi & Leong Wah June

strained optimization:
minimize

x∈Rn
f(x) (1)

where the number of variables n is large, and the analytic expressions for the function f and
the gradient g are available. This paper is devoted to the numerical study of some methods
for large scale optimization. We briefly review the methods to be tested in §2, where we also
describe the problems used in our experiments. We present the numerical results of F-BFGS
method and limited memory methods, paying particular attention to storage locations in §3.
In §4 we compare the F-BFGS method with two well-known conjugate gradient methods.
In §5 we explore the performance of these methods on very large variables number of the
tested examples.

2 Preliminaries

2.1 F-BFGS Method

The matrices storage free BFGS method is an adaptation of the BFGS method to large
problems. If we denote the iterate by xk, and define sk = xk+1 −xk and yk = gk+1−gk, the
implementation described by Malik et al. (2000) is almost identical to that of the standard
BFGS method—the only difference is in the matrix update. Instead of storing the matrices
Hk, one stores the latest pair of {si, yi} that defines them implicitly. The product Hkgk is
obtained by performing a sequence of inner products involving gk and the most recent vector
pair {si, yi}. After computing the new iterate, the older pair is deleted, and is replaced
by the newest one. The algorithm therefore always keeps only the recent pair {si, yi} to
define the iteration matrix. This approach is suitable for large scale problems because it
only requires vector storage for each sk and yk. Let us describe the updating process in
more detail as follows.

Algorithm 2.1. F-BFGS method

Step 1. Choose x0, 0 < β′ < 1
2 , β′ < β < 1, and initial matrix H0 = H

(0)
0 = I .

Compute
d0 = −g0

and
x1 = x0 + λ0d0

where λ0 satisfies the Wolfe conditions (3)–(4) (the steplength λ = 1 is tried first).

Step 2. For k > 0, compute sT
k−1yk−1, yT

k−1yk−1, sT
k−1gk and also

ρk−1 = 1/yT
k−1sk−1,

δk = sT
k−1yk−1/yT

k−1yk−1, (2)

p = ρ2
k−1(1/ρk−1 + δkyT

k−1yk−1)(sT
k−1gk) − ρk−1δkyT

k−1gk − ρk−1s
T
k−1gk

Step 3. Compute

Hkgk = δkgk + [sk−1 δk−1yk−1]p

Numerical Experiments with Matrices Storage Free BFGS Method 109

dk = −Hkgk

Then, compute

xk+1 = xk + λkdk

where λk satisfies the Wolfe conditions:

f(xk + λkdk) ≤ f(xk) + β′λkgT
k dk (3)

g(xk + λkdk)T dk ≥ βgT
k dk (4)

Step 4. Set H
(0)
k = δkI, k := k + 1, and go to step 2.

2.2 L-BFGS Method

The limited memory BFGS method (L-BFGS) is described by Nocedal (1980), where it is
called the SQN method. The user specifies the number m of BFGS corrections that are to be
kept, and provides a sparse symmetric and positive definite matrix H0, which approximates
the inverse Hessian of f . During the first m iterations the method is identical to the BFGS
method. For k > m, Hk is obtained by applying m BFGS updates to H0 using information
from the m previous iterations. The method uses the inverse BFGS formula in the form

Hk+1 = V T
k HkVk + ρksksT

k (5)

where
ρk = 1/yT

k sk, Vk = I − ρkyksT
k (6)

(see Dennis and Schnabel, 1983.)

Algorithm 2.2. L-BFGS method

Step 1. Choose X0, 0 < β′ < 1
2 , β′ < β < 1, and initial matrix H0 = I . Set k = 0

Step 2. Compute

dk = −Hkgk

and

xk+1 = xk + λkdk

where λk satisfies (3)-(4) (the steplength λ = 1 is tried first).

Step 3. Let m̂ = min{k, m − 1}. Update H0 for m̂ + 1 times by using the pairs
{yi, sj}k

j=k−m̂, i.e let

110 Malik Hj. Abu Hassan, Mansor Monsi & Leong Wah June

Hk+1 = (V T
k · · ·V T

k−m̂)H0(Vk−m̂ · · ·Vk)

+ ρk−m̂(V T
k · · ·V T

k−m̂+1) sk−m̂sT
k−m̂(Vk−m̂+1 · · ·Vk)

+ ρk−m̂+1(V T
k · · ·V T

k−m̂+2) sk−m̂+1(Vk−m̂+2 · · ·Vk)
...
ρksksT

k (7)

Step 4. Set k := k + 1, and go to Step 2

2.3 Conjugate Gradient Methods

In connection with unconstrained problems we consider conjugate gradient algorithms of
the form

xk+1 = xk + λkdk

with

di =
{

−gk for k = 0
−gk + αkdk−1 for k ≥ 1 (8)

where αk is a scalar representing different methods.
The best-known formulae for αk are

αFR
k =

‖gk‖2

‖gk−1‖2
(9)

introduced by Fletcher and Reeve, FR(1964)
and

αFR
k =

gT
k (gk − gk−1)
‖gk−1‖2

(10)

is introduced by Polak and Ribire, PR(1969). A very simple device for enforcing global
convergence is that of using a periodic restart (regular restart) along the negative gradient
direction.

2.4 Test Problems and Termination

The evaluation of optimization algorithms on large scale test problems is more difficult
than in the small dimensional case. When the number of variables is very large (in the
hundreds and thousands), the computational effort of the iteration sometimes dominates
the cost of evaluating the function and gradient. However there are also many practical
large scale problems for which the function evaluation is exceedingly expensive. In most
of our test problems, the function evaluation is inexpensive. The 6 test problems we used
with dimensions of 8, 200 and 1000, are Penalty I (Gill and Murray, 1979); Trigonometric,
Extended Rosenbrook, Powell, Beale and Wood (Mor et al., 1981).

For all the problems we used the standard starting points given in the references. The
termination criteria for all iterations is

Numerical Experiments with Matrices Storage Free BFGS Method 111

‖gk‖ < 10−5 × max (1, ‖xk‖) (11)

3 Comparison with the Limited Memory BFGS Method

In this section we compare the L-BFGS method with the F-BFGS method. In L-BFGS
method the user specifies the amount of storage to be used, by giving a number m, which
determines the number of matrix updates that can be stored. Harwell subroutine VA15 is
used to implement the L-BFGS method. In both procedures the line search is terminated
when (2.2) and

|g(xk + λkdk)T dk| ≤ βgT
k dk (12)

are satisfied ((12) is stronger than (4), which is useful in practice). We use the values
β′ = 10−4 and β = 0.9, which are recommended by Nocedal (1980). All other parameters
in the Nocedal procedure were set to their default values, and therefore the method was
tested precisely as they recommend. In both methods we use a line search routine based
on the cubic interpolation, developed by Mor and Thuente (1994). The initial Hessian is
approximated by the identity matrix, and after one iteration is completed, all methods
update γ0I instead of I , where

γ0 = yT
0 s0/‖y0‖2 (13)

This is a simple and effective way of introducing a scale in the algorithm (see Shanno
and Phua, 1978). Table 1 gives the amount of storage required by the limited memory
methods for various values of m and n, and compares it to the storage required by the
F-BFGS method.

Table 1. Storage Location

n F-BFGS L-BFGS(m=3) L-BFGS(m=7)
8 42 78 140
200 1002 1806 3414
1000 5002 9006 17014

In the following tables, n denotes the number of variables, nI the number of iterations,
nf the number of function evaluations, ng the number of gradient evaluations, m the number
of updates allowed. ”runtime” includes the time needed to generate the search direction,
perform the line search and test convergence and the time to evaluate the function and
gradient. For all methods the number of gradient evaluations equals the number of function
evaluations. We also define the index of computational labor per iteration, ICL (Wolfe,
1978) as

ICL =
nf + nng

nI
=

(n + 1)nf

nI
.

In Table 2 we compare the performance of the limited memory methods when m = 3, 7
and the F-BFGS.

For m = 3 the two methods are comparable, and we see that as m increases, the dif-
ferences between the two become large. However for Powell and Wood, functions with

112 Malik Hj. Abu Hassan, Mansor Monsi & Leong Wah June

Table 2. F-BFGS vs L-BFGS

F-BFGS F-BFGS, m = 3 F-BFGS m = 7
nI nf runtime nI nf runtime nI nf runtime

Penalty I
n = 8 39 51 0.16 53 74 0.21 48 60 0.21
n = 200 57 74 0.21 61 74 0.32 57 69 0.32
n = 1000 68 87 0.36 64 75 0.43 63 75 0.49
Trigonometric
n = 8 29 41 0.10 27 33 0.16 23 28 0.16
n = 200 48 58 0.21 56 64 0.32 49 58 0.27
n = 1000 50 61 0.43 54 64 0.54 44 51 0.49
RosenBrook
n = 8 42 59 0.16 37 47 0.21 36 45 0.21
n = 200 39 61 0.16 37 53 0.21 37 48 0.27
n = 1000 36 61 0.21 35 49 0.27 36 45 0.32
Powell
n = 8 184 239 0.65 46 54 0.21 40 44 0.16
n = 200 221 278 0.82 42 53 0.21 139 293 0.60
n = 1000 131 166 0.71 – – – – – –
Wood
n = 8 135 167 0.49 65 88 0.27 48 59 0.21
n = 200 181 226 0.65 65 89 0.27 114 137 0.49
n = 1000 125 162 0.71 – – – – – –
Beale
n = 8 18 21 0.10 15 18 0.16 14 16 0.16
n = 200 20 27 0.16 13 14 0.16 16 17 0.16
n = 1000 16 19 0.16 13 15 0.16 15 16 0.16

Numerical Experiments with Matrices Storage Free BFGS Method 113

Table 3

Index of Computational Labour (ICL)
F-BFGS L-BFGS m = 3 L-BFGS m = 7

Penalty I
n = 8 11.77 12.23 11.25
n = 200 206.95 243.84 243.32
n = 1000 1280.69 1173.05 1191.67
Trigonometric
n = 8 12.72 11.00 10.96
n = 200 242.88 229.71 237.92
n = 1000 1221.22 1186.37 1160.25
RosenBook
n = 8 12.64 11.43 11.25
n = 200 314.39 242.23 260.76
n = 1000 1696.14 1140.67 1251.25
Powell
n = 8 11.69 10.57 9.90
n = 200 254.84 253.64 423.69
n = 1000 1268.44 – –
Wood
n = 8 11.13 12.18 11.06
n = 200 250.97 275.22 241.55
n = 1000 1297.30 – –
Beale
n = 8 10.50 10.80 10.29
n = 200 271.35 216.46 213.56
n = 1000 1188.69 1155.00 1067.73

114 Malik Hj. Abu Hassan, Mansor Monsi & Leong Wah June

n = 1000, both L-BFGS methods fail to converge to the minimizer. In terms of computa-
tional effort per iteration, F-BFGS is competitive with the two L-BFGS methods because
their ICL do not differ much from each other. To investigate the effect of increasing the
storage in L-BFGS methods compared with the F-BFGS method, we define ’storage-up’ as
the ratio of

storage locations for F-BFGS : storage locations for L-BFGS (m = 3, 7),

We also define ’speed-up’ in terms of nI and nf to be the ratios of

Total nI(F-BFGS) : Total nI(L-BFGS m = 3, 7) and Total nf (F-BFGS)/ Total nf (L-
BFGS m = 3, 7).

Thus if the ’speed-up’ factors are less than the ’storage-up’ factors, the L-BFGS methods
do not gain much from additional storage, whereas a larger number means a substantial
improvement. These effects are measured in Figures 1 and 2.

Figure 1: ‘Storage-up’ vs ‘Speed-up’ with F-BFGS and L-BFGS(m = 3)

From Figures 1 and 2 we see that except for m = 3, n = 200 neither of the ’speed-up’
factors are greater than the ’storage-up’. This means that although there is improvement
when we switch from F-BFGS method to L-BFGS methods, the gain is not dramatic.
Therefore we can conclude that the F-BFGS method is efficient if the resource in storage is
low.

Numerical Experiments with Matrices Storage Free BFGS Method 115

Figure 2: ‘Storage-up’ vs ‘Speed-up’ with F-BFGS and L-BFGS(m = 7)

116 Malik Hj. Abu Hassan, Mansor Monsi & Leong Wah June

4 Comparison with Conjugate Gradient Methods

We compare the F-BFGS method with some of the well-known conjugate gradient methods.
We tested three methods: F-BFGS method; the conjugate gradient methods (CG) using
the Fletcher-Reeve and Polak-Ribiére formula, restarting every n steps, and with β′ = 10−4

and β = 0.9 in (3) and (12). For the CG methods, a modified Moré’s line search subroutine
CVSMOD is used. The modification is suggested by Liu et. al. (1998) in subroutine
CGFAM. Both CG codes (as described in CGFAM) used in the experiments require 5n
storage spaces, which are 2 storages unit less than the F-BFGS method.

Table 4 compares the results of F-BFGS and the two conjugate gradient methods.

Table 4. F-BFGS vs CG

F-BFGS CG Fletcher-Reeve CG Polak-Riebere
nI nf runtime nI nf runtime nI nf runtime

Penalty I
n = 8 39 51 0.16 118 308 0.44 64 239 0.27
n = 200 57 74 0.21 226 489 0.88 47 178 0.22
n = 1000 68 87 0.36 626 1307 3.07 38 159 0.27
Trigonometric
n = 8 29 41 0.10 26 56 0.16 27 59 0.16
n = 200 48 58 0.21 187 379 0.93 33 75 0.21
n = 1000 50 61 0.43 231 467 2.19 40 92 0.44
RosenBrook
n = 8 42 59 0.16 43 118 0.21 26 77 0.12
n = 200 39 61 0.16 77 181 0.32 18 62 0.10
n = 1000 36 61 0.21 79 185 0.43 26 73 0.16
Powell
n = 8 132 167 0.43 59 137 0.27 47 117 0.21
n = 200 125 158 0.43 206 421 0.82 218 478 0.87
n = 1000 142 184 0.76 1002 2010 4.83 78 183 0.38
Wood
n = 8 221 286 0.76 33 82 0.16 106 282 0.43
n = 200 195 259 0.71 74 159 0.32 133 338 0.54
n = 1000 258 351 1.48 1019 2060 5.16 40 96 0.27
Beale
n = 8 18 21 0.10 21 52 0.10 10 27 0.10
n = 200 20 27 0.16 55 117 0.22 11 30 0.10
n = 1000 16 19 0.16 41 91 0.27 11 30 0.10

The performance in terms of function calls is as expected: the F-BFGS with Moré’s line
search is generally the best. Table 5 compares the methods in term of ICL.

In term of ICL, a clear superiority for F-BFGS method over the two CG methods.

Numerical Experiments with Matrices Storage Free BFGS Method 117

Table 5. F-BFGS vs CG

Index of Computational Labour (ICL)
F-BFGS CG-FR CG-PR

Penalty I
n = 8 11.77 23.49 33.61
n = 200 206.95 434.91 761.23
n = 1000 1280.69 2089.95 4188.40
Trigonometric
n = 8 12.72 19.39 19.67
n = 200 242.88 407.37 456.82
n = 1000 1221.22 2023.67 2302.3
RosenBook
n = 8 12.64 24.70 26.65
n = 200 314.39 472.48 692.33
n = 1000 1696.14 2344.11 2810.50
Powell
n = 8 11.39 20.90 22.51
n = 200 254.06 410.78 440.72
n = 1000 1297.07 2007.99 2348.50
Beale
n = 8 11.65 22.36 23.94
n = 200 266.97 431.88 510.81
n = 1000 1361.83 2023.61 2402.40
Wood
n = 8 10.50 22.29 24.30
n = 200 271.35 427.58 548.18
n = 1000 1188.69 2221.73 2730.00

118 Malik Hj. Abu Hassan, Mansor Monsi & Leong Wah June

5 Solving Extremely Large Problems

The largest number of variables for the problems tested so far is 1000 variables. In this
section, we describe the performance of all these methods on problems with 106 variables.
The machine used has the same configuration with that used in performing previous exper-
iments. Double precision arithmetic in this machine has a unit round off of approximately
10−16. The results are reported in Table 6.

Table 6. Results of F-BFGS (n = 106)

Test Problems nI nf runtime
Penalty I 33 40 213.79
Trigonometric – – –
Rosenbook 42 68 184.45
Powell 233 298 824.78
Beale 25 40 106.48
Wood 196 252 692.64

F-BFGS method is the only successful method in solving these extremely large scale
problems. Although F-BFGS only solved 5 over the total 6 test problems, it is enough
to prove the efficiency of the method when applied to extremely large problems. L-BFGS
cannot solve these extremely large problems due to the insufficiency of memory to start the
runs and they require high storages that are not suitable for extremely large problems. All
CG methods fail to converge for all the test problems.

6 Conclusions

In our numerical experiments, we found that L-BFGS methods require more storage and is
not suitable when the problem has very large number of variables or the resource in storage
is very low. The CG methods require only low storage but more function and gradient called.
This is very unsuitable if function and gradient evaluations are expensive or an inaccurate
line search is used. Moreover, there is no guarantee of convergence for CG methods globally
when applied to large scale problems. The F-BFGS method is appealing for several reasons:
it is very simple to implement, it requires moderate number of function and gradient called
and low storage requirement. In term of computational labor, F-BFGS is competitive with
L-BFGS and is clearly superior over the CG methods. Lastly but not less is that the F-
BFGS method successfully solves very large scale problems with 106 variables while other
methods fail.

References

[1] Dennis, J.E. Jr. and Schnabel, R.B., Numerical methods for unconstrained optimization
and nonlinear equations, Prentice-Hill Inc., New Jersey, 1983.

[2] Fletcher, R. and Reeves, C.M., Function minimization by conjugate gradients, Com-
puting Journal 7 (1964) 149-154.

Numerical Experiments with Matrices Storage Free BFGS Method 119

[3] Gill, P.E. and Murray, W., Conjugate-gradient methods for large scale nonlinear op-
timization, Technical report SOL 79-15, Department of Operation Research, Stanford
University, Stanford, 1979.

[4] Malik, Hj. A.H., Mansor, M. and Leong, W.J., Matrices-storage free BFGS method
in large scale nonlinear unconstrained optimization, Proceeding of International Con-
ference on Mathematics and its Application in the New Millennium, UPM (2000),
430-436.

[5] Liu, G., Nocedal, J. and Wartz, R, Subroutine CGFAM, Argonne National Lab., Ar-
gonne, Oct. 1998.

[6] Moré, J.J., Garbow, B.S. and Hillstrom, K.E., Testing unconstrained optimization soft-
ware, ACM Transaction on Mathematical Software 7 (1981) 17-41.

[7] Moré, J.J. and Thuente, D., Line search algorithms with guaranteed sufficient decrease,
ACM Transaction on Mathematical Software 20 (1994) 286-307.

[8] Nocedal, J., Updating quasi-Newton matrices with limited storage, Mathematics of
Computation 35 (1980) 773-782.

[9] Polak, E. and Ribiére, G., Note sur la convergence de méthods de directions conjuguées,
Revue Francaise d’Informatique et de Recherche Opérationnelle 16 (1969) 35-43.

[10] Shanno, D.F. and Phua, K.H., Matrix conditioning and nonlinear optimization, Math-
ematical Programming 14 (1978), 149-160.

[11] Wolfe, M.A., Numerical methods for unconstrained optimization, Van Nostrand Rein-
hold Company, 1978.

