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Abstract The derivation of a new parallel 2-point explicit block (2PEB) method for
solving dth order ordinary differential equations (ODEs) directly is made. Computa-
tional advantages are presented comparing the results obtained by the new method
with that of conventional 1-point method. Numerical results suggest that the parallel
2PEB method is recommended for solving second order ODEs directly using finer step
sizes.
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1 Introduction

We shall consider the following dth order ODE

yd = f(x, y, y′, y′′, ..., yd−1), y(i)(a) = ηi, a ≤ x ≤ b. (1)

Equation (1) can be solved by using either direct or first order methods. In order to use
the latter methods, Equation (1) must be reduced to the equivalent first order system.
The direct methods available are mostly sequential in nature, meaning that the numerical
solution to (1) is computed at one point at a time. Some of these methods can be found
in [4], [5], [6], [7], [12] and [13]. There have been quite a number of parallel methods for
solving first order ODEs. One of the methods is parallel block method as discussed in [1],
[2], [11] and [14].

In a parallel block method, a set of new values that are obtained by each application of
the formula is referred as “block”. For instance, in a r-point block method, r new equally
spaced solution values i.e

yn+1, yn+2, ..., yn+r

are obtained simultaneously at each iteration of the algorithm. There are two types of block
methods; one-step block and multi-block. In one-step block method, the new block

yn+i, i = 1, 2, ..., r,

is computed from the value yn. On the other hand, in multi-block method, the information
from one or more previous blocks is used in the computation of the next block.
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Though there has been much effort and discussion on solving first order ODEs in parallel,
not much attention is given on solving higher order ODES directly using parallel methods.
The general theory of special second order initial value problems has been discussed by
Fatunla [3].

In a 2-point block method (refer to Figure 1), the interval [a, b] is divided into series of
blocks with each block containing two points, i.e xn−1 and xn in the first block while xn+1

and xn+2 in the second block where solutions to (1) are to be computed.

The computation which proceeds in blocks is based on the computed values at the earlier
blocks. If the computed values at the previous k blocks are used to compute the current
block containing r points, then the method is called r-point k-block method. For example,
in Figure 2 the values used at the previous three blocks are

xn−5, xn−4, xn−3, xn−2, xn−1, xn

to compute the solutions of (1) at xn+1 and xn+2. This method is known as a 2-point 3-block
method.

Since the computational tasks at each point within a block are independent, it is pos-
sible to assign the tasks to different processors so that the computations can be performed
simultaneously.

2 Derivation of the Parallel 2-Point Explicit Block Method

Let xn+t = xn + th, t = 1, 2. Integrating Equation (1) p times gives

xn+t∫
xn

x∫
xn

x∫
xn

x∫
xn

...
x∫

xn

yd(x, y, y′, ..., yd−1)dx...dx=
xn+t∫
xn

x∫
xn

x∫
xn

x∫
xn

...
x∫

xn

f(x, y, y′, ..., yd−1)dx...dx

← p times→
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Define Pk−1,n(x) as the interpolation polynomial which interpolates f(x, y, y′, ..., yd−1)
at the k back values namely {xn−i |i = 0, 1, 2, ..., k − 1} as follows

Pk,n(x) =
k−1∑

m=0

(−1)m

(
−s
m

)
∇mfn

where s =
x− xn

h
Approximating f(x, y, y′) with Pk−1,n(x), we then have
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Replacing dx = h ds and changing the limit of integration in (2) leads to
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(3)

where

γ(p)
m = (−1)m

1∫
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Let the generating functions G(p)(t) and S(p)(t) defined as follows

G(p)(t) =
∞∑

m=0

γ(p)
m tm (4)

S(p)(t) =
∞∑

m=0

δ(p)
m tm (5)
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which leads to the following relationships

G(p)(t) =
1(p−1) − (p− 1)!G(p−1)(t)

(p− 1)! log(1− t)
(6)

S(p)(t) =
2(p−1) − (p− 1)!S(p−1)(t)

(p− 1)! log(1− t)
, p = 2, 3, ..., d. (7)

The above relationships can easily be verified using mathematical induction. Solving (6)
and (7) gives the following solution
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The solution of (3) when p = 1 is given by (refer to [9])
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Note that formula (3) can be written in the form
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where
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(
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3 Test Problems

The following problems were tested on the Sequent Symmetry S27 using the 2-point explicit
block method.
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Problem 1: y′′′ = 2y′′ − 4, y(0) = 1, y′(0) = 2, y′′(0) = 6, 0 ≤ x ≤ 1
Solution: y(x) = x2 + e2x

Artificial Problem.

Problem 2: y′′′ = y + 3ex, y(0) = 0, y′(0) = 1, y′′(0) = 2, 0 ≤ x ≤ 1
Solution: y(x) = xex

Source: Krogh [8].

Problem 3: y′′′ = 8y′ − 3y − 4ex, y(0) = 2, y′(0) = −2, y′′(0) = 10, 0 ≤ x ≤ 1
Solution: y(x) = ex + e−3x

Source: Suleiman [13].

Problem 4: y(iv) = (x4 + 14x3 + 49x2 + 32x− 12)ex,
y(0) = y′(0) = 0, y′′(0) = 2, y′′′(0) = −6, 0 ≤ x ≤ 1
Solution: y(x) = x2(1− x)2ex.
Source: Russel and Shampine [10].

4 Numerical Results

The numerical tests were performed on the shared memory parallel computer, Sequent S27
which has 6 processors. The programs for explicit 1-point (E1P) method and the sequential
implementation of the 2PEB method was written in C language whereas parallel C language
was used for the parallel implementation. Both languages were supported by the Sequent
C library. Each method used 5 back values in its computation. The abbreviations and
notations are defined as follows:

h Step size used
STEPS Total number of steps taken to obtain the solution
MTD Method employed
MAXE Magnitude of the maximum error of the computed solution
TIME The execution time in microseconds needed to complete the

integration in a given range.
S2PEB Sequential implementation of the 2-point explicit block method
P2PEB Parallel implementation of the 2-point explicit block method.

The maximum error is defined as follows

MAXE = max
1≤i≤STEPS

(|yi − y(xi)|)

The comparison of the 2PEB method with the E1P method for solving the test problems
in terms of the total number of steps, maximum error and execution times are tabulated in
Tables 1-4. Table 5 shows the ratio of steps and times of the 2PEB method to E1P method.
The ratios of the two parameters are obtained by dividing the parameters of the latter
method with the corresponding parameters of the former methods. Hence, the ratios (also
known as speedup) which are greater than one for both parameters indicate the efficiency
of the 2PEB method.



20 Zurni Omar & Mohamed Suleiman

5 Comments on the Results and Conclusion

It is apparent from the results that the 2PEB method outperforms the E1P method in
term of the total number of steps. As the step size becomes finer, the 2PEB method
reduces the number of steps to almost one half. These results are expected since the 2PEB
method approximate the numerical solution at two points respectively at the same time,
thus reducing the number of steps taken by the method.

In terms of accuracy, both E1P and 2PEB methods have the same order. Except for
Problem 2, the execution times taken by the sequential implementation of 2PEB method for
solving other problems are less encouraging compared to the parallel counterpart and E1P
method. The extra time could be resulted from calculating the extra integration coefficients.
As expected, the execution times taken by the parallel implementation of the 2PEB method
are more than those taken by the sequential counterpart and the E1P method at h = 10−2.
This is because the number of steps taken is small and most of the execution times are
dominated by the parallel overheads. However, the timings of the parallel version of the
2PEB method are better then other methods when h < 10−2. The reason for these gains is
that as the step size gets smaller, more steps are taken to complete the computation. By
using 2 processors instead of 1, the computation can be performed quicker. In other words,
the parallelism in the 2PEB method could really be exploited. The results also suggest that
parallel 2PEB method is recommended for solving second order ODEs directly using finer
step sizes.
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