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Abstract The derivation of a new parallel 2-point explicit block (2PEB) method for
solving dth order ordinary differential equations (ODEs) directly is made. Computa-
tional advantages are presented comparing the results obtained by the new method
with that of conventional 1-point method. Numerical results suggest that the parallel
2PEB method is recommended for solving second order ODEs directly using finer step
sizes.
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1 Introduction

We shall consider the following dth order ODE

vt = fy vy oy, v Pa) =, a<a<b. (1)
Equation (1) can be solved by using either direct or first order methods. In order to use
the latter methods, Equation (1) must be reduced to the equivalent first order system.
The direct methods available are mostly sequential in nature, meaning that the numerical
solution to (1) is computed at one point at a time. Some of these methods can be found
in [4], [5], [6], [7], [12] and [13]. There have been quite a number of parallel methods for
solving first order ODEs. One of the methods is parallel block method as discussed in [1],
[2], [11] and [14].

In a parallel block method, a set of new values that are obtained by each application of
the formula is referred as “block”. For instance, in a r-point block method, r new equally
spaced solution values i.e

Yn+1sYn+25 -y Yn+r

are obtained simultaneously at each iteration of the algorithm. There are two types of block
methods; one-step block and multi-block. In one-step block method, the new block

Yn+i b = 1,2,...,7,

is computed from the value y,. On the other hand, in multi-block method, the information
from one or more previous blocks is used in the computation of the next block.
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Though there has been much effort and discussion on solving first order ODEs in parallel,
not much attention is given on solving higher order ODES directly using parallel methods.
The general theory of special second order initial value problems has been discussed by
Fatunla [3].

In a 2-point block method (refer to Figure 1), the interval [a, b] is divided into series of
blocks with each block containing two points, i.e x,,—1 and z,, in the first block while 1
and 2,42 in the second block where solutions to (1) are to be computed.
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Figure 1: 2-FPoint Method

The computation which proceeds in blocks is based on the computed values at the earlier
blocks. If the computed values at the previous k blocks are used to compute the current
block containing r points, then the method is called r-point k-block method. For example,
in Figure 2 the values used at the previous three blocks are

Tn—5,Tn—4,Tn—-3,Tn—-2,Tn—1,TLn

to compute the solutions of (1) at ,,41 and 5, 42. This method is known as a 2-point 3-block
method.
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Figure 2: 2-Point 3-Block MMethod

Since the computational tasks at each point within a block are independent, it is pos-
sible to assign the tasks to different processors so that the computations can be performed
simultaneously.

2 Derivation of the Parallel 2-Point Explicit Block Method

Let x4t = oy + th, t = 1,2. Integrating Equation (1) p times gives

Tn+t T T T Tn+t T T T

T T T @y oy daeda= [ [ [ ] ff:cyy,...,yd_l)dac...d:v

Ty Tp Tp Tn Tn Ty Ty Ty Tn
< p times —
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Define Py_1,(z) as the interpolation polynomial which interpolates f(x,y, v/, ...,y? 1)

at the k back values namely {z,_;|i =0,1,2,....k — 1} as follows

k—1
Pen(z) =Y (- ( )men

m=0

T —x,

where s =

Approximating f(z,y,y") with Py_1,(x), we then have

(n—p) (n p) (n—p+1) (n—p+2)
Yn+1 n ) + h2 Yn ) +
n n— n— ! n—
yn+2p) ( p) 2y7(1 p+1) 21 22y7(1 p+2) )
o @)
pP—1 Yn
SRRARTY
where
T HHEer s
and
Replacing dz = hds and changmg the limit of integration in (2) leads to
yfﬁrlp) B (n p) i yr(lnprrll) n2 7(171 p+2)2 N
n n— n— T n—
y7(1+2p) ( p) 2y7(1 p+1) 2T | 92 7(1 p+2)
k—1
hP—1 yn 4 hP m=0
(p—=D! | 9p— 1y k—1 ®)
> 0w VT fy
m=0
where )
1—s)P ! [ —s
w _ (_qym [ d
= )/(p—l)' (m)s
0
and
2—s)P7 1 [ s
5P) m/( d
0 o U m )
Let the generating functions G)(¢) and S®)(t) defined as follows
GO = 3 A 0
m=0
SOy =Y sPm (5)
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which leads to the following relationships

YN 1(p—1) _ (p— 1)|Gp 1)( )

= T T Toe (T — 1 )
@) 2(P=1) — (p — 1)1S?P=1)(¢) _

SP)(¢) = 1)loa(1 =) , p=2,3,..,d. (7)

The above relationships can easily be verified using mathematical induction. Solving (6)
and (7) gives the following solution

(») (p—-1)

Yo TN
1 m (p)
'71(5321 '77(5+2) Z mlTer
= ®)
s =g
6(1)) —gle-1 _ 5P

m+1 = Ym+42 ZO m+2—r
r=

The solution of (3) when p = 1 is given by (refer to [9])

1 m (1)
”Y( =1 Vr(nzrl =1- Z m’Jy:er
1) o <) U m o (9)
6 =2,0,0,=(m+3)— X

r=0

m—+2—r

Note that formula (3) can be written in the form

(n—p) (n—p) (n—p+1) (n—p+2)

yy(lfﬂp) = y?n*p) +h yn(n*erl) + }5_? gn(nﬂﬂr?) +o

yn+2 Yn ) 2 Yn
i (n—1) E ﬁk 1mfn—m (10)

n p
(p—1)! 9p 1y(n71) + h
" E ) @ fm
where
k—1 k—1

i = (D" < > and o), = (~1)" <£>W> (11)

3 Test Problems

The following problems were tested on the Sequent Symmetry S27 using the 2-point explicit
block method.
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Problem 1: ¢ =2y" —4,y(0) =1,y'(0) =2,4"(0) =6,0<z <1
Solution: y(x) = 22 4 €2*
Artificial Problem.

Problem 2: ¢ =y +3e®,y(0) =0,y/(0) =1,y"(0) =2, 0<z <1
Solution: y(x) = xe®
Source: Krogh [8].

Problem 3:  ¢" =8y’ — 3y —4e”,y(0) =2,y'(0) = —-2,y”(0) = 10,0 <2 <1
Solution: y(x) = €% + e~ 3%
Source: Suleiman [13].

Problem 4: (") = (z* + 142® 4 4922 + 322 — 12)e”,
y(0) = '(0) = 0,4"(0) = 2,y(0) = =6,0 <z <1
Solution: y(x) = 22(1 — x)2e®.
Source: Russel and Shampine [10].

4 Numerical Results

The numerical tests were performed on the shared memory parallel computer, Sequent S27
which has 6 processors. The programs for explicit 1-point (E1P) method and the sequential
implementation of the 2PEB method was written in C language whereas parallel C language
was used for the parallel implementation. Both languages were supported by the Sequent
C library. Each method used 5 back values in its computation. The abbreviations and
notations are defined as follows:

h Step size used

STEPS Total number of steps taken to obtain the solution

MTD Method employed

MAXE  Magnitude of the maximum error of the computed solution

TIME The execution time in microseconds needed to complete the
integration in a given range.

S2PEB  Sequential implementation of the 2-point explicit block method

P2PEB Parallel implementation of the 2-point explicit block method.

The maximum error is defined as follows

MAXE = - . (lys — y(x:)])

The comparison of the 2PEB method with the E1P method for solving the test problems
in terms of the total number of steps, maximum error and execution times are tabulated in
Tables 1-4. Table 5 shows the ratio of steps and times of the 2PEB method to E1P method.
The ratios of the two parameters are obtained by dividing the parameters of the latter
method with the corresponding parameters of the former methods. Hence, the ratios (also

known as speedup) which are greater than one for both parameters indicate the efficiency
of the 2PEB method.
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Table 1
Comparizon Between the E1P and 2PEE Methods for Solving
Problem 1
H MTD STEPS MAKE TDME
EIP 100 441035(-2) | 122372
10% | S2PEE 533 8.356810-2) | 126930
P2PEE 53 8. 30681(-2) | 232066
E1P 1000 439119(-3) | 1142734
107 | S2ZPEB 503 4.86177(-3) | 1151880
PZPEE 503 4. 86177(-3) | 909987
EIP 10000 4 3892704y | 11430453
10 | S2FEE 5003 4 4370%9(-4) | 11501547
FZFEE 5003 4 43709(-4) | 8201020
E1P 100000 | 4.38%08(-5) | 114082053
10 | SZPEE 0003 4 30387(-0) | 114518453
PZPEE 20003 4 39387(-0) | 87486778

5 Comments on the Results and Conclusion

It is apparent from the results that the 2PEB method outperforms the E1P method in
term of the total number of steps. As the step size becomes finer, the 2PEB method
reduces the number of steps to almost one half. These results are expected since the 2PEB
method approximate the numerical solution at two points respectively at the same time,
thus reducing the number of steps taken by the method.

In terms of accuracy, both E1P and 2PEB methods have the same order. Except for
Problem 2, the execution times taken by the sequential implementation of 2PEB method for
solving other problems are less encouraging compared to the parallel counterpart and E1P
method. The extra time could be resulted from calculating the extra integration coefficients.
As expected, the execution times taken by the parallel implementation of the 2PEB method
are more than those taken by the sequential counterpart and the E1P method at h = 1072,
This is because the number of steps taken is small and most of the execution times are
dominated by the parallel overheads. However, the timings of the parallel version of the
2PEB method are better then other methods when h < 1072, The reason for these gains is
that as the step size gets smaller, more steps are taken to complete the computation. By
using 2 processors instead of 1, the computation can be performed quicker. In other words,
the parallelism in the 2PEB method could really be exploited. The results also suggest that
parallel 2PEB method is recommended for solving second order ODEs directly using finer
step sizes.
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Table 2

Comparizon Between the E1P and 2PEE Methods for Solving

Problem 2
H WMTD STEPRZ WMAKE TIME
E1P 100 T63447(-3) | 121066
102 | 5ZPEB 53 T.63448(-3) | 106065
PZPER 53 T.63448(-3) | 241380
E1F 1000 T62628(-4) | 1126827
107 | SZPER 503 TA2628(-4) | 951148
P2ZPER 503 T62628(-4) | 941787
E1F 10000 7.62546(-5) | 11270476
10~ | SZFEBR 003 T.62546(-0) | 9486304
PZPER 003 T.62546(-5) | 9129636
E1F 100000 | 7.62539(-6) | 112391084
10 | 3ZFEB 50003 T.62538(-6) | 94637445
PZPER 50003 7.62538(-6) | 20659201
Table 3

Comparizon Between the E1P and 2PEE Methods for Solving

Problem 3
H MTD ZTEPZ MAXE TME
E1F 100 118234(-1) 130511
102 SZPEE 53 116163(-1) 135833
P2PER 53 116165(-1) 256096
E1F 1000 LIT138(-2) 1223205
0% S2PEE 503 LIT115(-2) 1240065
PZPEE 503 LIT115(-2) 1034676
E1P 10000 1.17030(-3) 12235538
10t 32PEE 5003 1.17028(-3) 12371365
PZPER 5003 1.17028(-3) 10051687
E1F 100000 11701%(-4) 122141796
107 SZPEE 50003 T17019(-4) 123347394
P2PEE 50003 117019(-4) 99941712
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Table 4
Comparizon Between the E1P and 2PEB Methods for Solving
Problem 4
H WD STEPS  MAKE TIME
E1P 100 1L00778(-2) 210474
10%  SZ2PEEB 53 L00778(-2) 222259
PIPEB 53 L00778(-2) 296038
E1P 1000 1.00078(-3) 2006247
107 SZFEB 503 1.00078(-3) 2076058
P2PER 503 1.00078(-3) 1623001
E1P 10000 1.00008(-4) 20077275

107 SZPEB 5003 1.00008(-4) 20727420
P2PEB 5003 1.00008(-4) 155922113
ETP 100000 1.00001¢-5)  20030765%
10~ SZFEB 50003 1.00001¢-5) 206611648
PZPEE 50003 1.00001(-5) 158493054

Table 5
The Ratio Steps and Execution Times of the 2PEB Method to the E1P
Method for Solving Higher Order ODEs

TOL MTD  RATIO RATIO  TIME
STEF PROE.1 PROEBE.Z PROB.3 PFROB4

0% SZPEE 188679 0.96394 114143 096068  0.84698
FIPEE 188679 052528 050156  0.50%62 0.71097

102 SZPEE 198807 0.99206 118470 095640 0.96637
FZPEE 1098807 125577 119648 118221  1.23613

1™t SZPEE 199830 099382 118808 098902 096863
PZPEE 199830 129877 1.2344% 121726  1.26097

0¥ SZPEE 199938 0.99419 118740 093023 0.96543
PZPEE 104988 130399 123971 122313 1.26383
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