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Abstract The performance of the Block Generalised Multistep Adams and Backward
Differentiation Formulae (BGMBDF) as compared with Generalised Multistep Adams
and Backward Differentiation Formulae (GMBDF) is presented. These methods are
used to solve initial value problems (IVPs) for stiff and nonstiff systems of ordinary
differential equations (ODEs). The results obtained show that the BGMBDF reduces
the total number of steps in computation.
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1 Introduction to Block Methods

A block method is understood to be a method that computes concurrently solution values
at different points on the x-axis. The block method to be developed and analyzed in
this paper is based on the idea of simultaneously producing a “block” of approximations
yn+1, yn+2, yn+3,.....,yn+k. Hence given the previous (yn−1, yn)t we modified the algorithm by
Suleiman [14] to include the next block (yn+1, yn+2)

t in its iteration scheme. This approach
was developed by a number of researchers such as Shampine and Watts [12], Butcher[3],
Chu and Hamilton [4], Fatunla [5], D.Voss and S.Abbas[15]. In a related study, Omar[10]
had considered block method for the solution of nonstiff problem. First, we introduce the
basic definition of a block method described by [4].

Definition 1.1

Let Ym and Fm be vectors defined by

Ym = [yn, yn+1, yn+2, ....., yn+r−1] t, (1)

Fm = [fn, fn+1, fn+2, ......, fn+r−1] t. (2)
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Then a general k-block, r-point method is a matrix of finite difference equation of the form

Ym =
k∑

i=1

AiYm−i + h
k∑

i=0

BiFm−i (3)

where all the Ai’s and Bi’s are properly chosen r × r matrix coefficients and m = 0, 1, 2, ...
represents the block number, n = mr the first step number in the m-th block and r is the
proposed block size.

2 Block Generalised Multistep Adams and Backward Differentia-
tion Formulae

In this section, we briefly describe the Generalised Multistep Adams and Backward Dif-
ferentiation Formulae. A GMBDF uses a family of BDF, in variable order, variable step
to numerically solve stiff IVPs. We consider BDF methods for the numerical solution of
systems of first order ODEs of the form

y′
i = fi

(
x, Ỹ

)
, i = 1, 2, ..., s, (4)

given initial values Ỹ (a) = η, where Ỹ T (x) = (y1, y2, ..., ys) and η̃T (x) = (η1, η2, ..., ηs) .
Our aim is to produce a block backward differentiation method for the numerical solution
of the first order IVP of the form

y′ = f (x, y) , y (a) = η, a ≤ x ≤ b (5)

where η is a given initial value at the initial point x = a and f is continuous and satisfies
a Lipschitz condition on the region [a, b] × (−∞,∞) . Let yn and y (xn) be the computed
approximation and the exact solution respectively to (5) at point xn.

The family of BDF used can be represented by implicit multistep formulas of the form

q∑

i=0

(αn,iyn−i + hnβn,if (xn, yn)) = 0 (6)

and the coefficients αn,i and βn,i are determined by an integration formula.

Definition 2.1

Define the interpolating polynomial Pk,n (x) which interpolates the values fn, fn−1, ..., fn−k

of a function f at the points xn, xn−1, ..., xn−k in terms of k-th divided differences denoted
by f[n,n−1,...,n−i] as follows

Pk,n (x) = fn + (x − xn) f[n,n−1] + ..., (x − xn) ... (x − xn−k+2) f[n,n−1,...,n−k+1], (7)

and

f[n,n−1,...,n−i] =
f[n,n−1,...,n−i+1] − f[n−1,n−2,...,n−i]

xn − xn−i
.
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Definition 2.2

Define the integration coefficients gi,t, t > 0 to be the t-fold integral

gi,t =
∫ xn+1

xn

∫ x

xn

...

∫ x

xn

Pn,i (x) dx

and
gi,0 = Pn,i (xn+1) .

Definition 2.3

Define the differentiation coefficients di,t, t > 0 by

di,t =
dt

dxt
Pn,i (x)

∣∣∣∣
x=xn+1

.

Both the integration and the differentiation coefficients can be generated by simple recur-
rence relation which were derived in Suleiman [14].

The predictor formulae is constructed by first integrating (5) . This leads to

y (xn+d) = y (xn) +

xn+d∫

xn

f
(
x, Ỹ (x)

)
dx (8)

Replace (8) using (7)

yn+d = yn +

x∫

xn

Pk,n (x) dx (9)

It follows that the predictor formulae are given by

Pn+d = yn +
k−1∑
i=0

gi,1f[n,n−1,...,n−i]

P ′
n+d =

k−1∑
i=0

gi,0f[n,n−1,...,n−i]

(10)

The corrector formulae are constructed to provide values that satisfy

y′ = f (xn+d, yn+d) . (11)

The corrected values are given by

1yn+d = Pn+d +
g
(d)
k,t

g
(d)
k,0

ed

1y′
n+d = P ′

n+d + ed

(12)

where ed = f
(
xn+d, P̃n+d

)
− P ′

n+d and 1yn+d denote the first iterative value of yn+d.

In accordance with the terminology used in the linear multistep case, the evaluation was
done in PECE mode. P and C indicate one application of the predictor or the corrector
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respectively, and E indicates one evaluation of the function f, given x and y. PECE modes
for block methods described by [4] is defined as follows:

P :
Pn+d = yn +

k−1∑
i=0

gi,1f[n,n−1,...,n−i]

P ′
n+d =

k−1∑
i=0

gi,0f[n,n−1,...,n−i]

E : 1y′ = f
(
xn+d, 0yn+d

)
, where 0yn+d = Pn+d

C :
1yn+d = Pn+d +

g
(d)
k,t

g
(d)
k,0

ed

1y′
n+d = P ′

n+d + ed

E : y′
n+d = f

(
xn+d,

1yn+d

)

The simultaneous sequence of computation for the first point in the block BDF is

→ yp
n+1 → fp

n+1 → yc
n+1 → fc

n+1

and the computation for the second point is

→ yp
n+2 → fp

n+2 → yc
n+2 → fc

n+2.

3 Numerical Results

The numerical method described in the previous sections was applied to six problems from
the literature. Each problem is defined by a differential equation and an error tolerance.
The existing code INTEGRATE2 by Suleiman [14] was modified and redesigned to include
the new block algorithm in its iteration scheme.

Test Problems

These problems were solved numerically using the BGMBDF and GMBDF of variable step
size and order using three different tolerances 10−2, 10−4 and 10−6.

For the numerical results we recorded the following quantities:

Tol : The upper bound for the local error estimate
Nreject : The total number of rejected steps due to

convergence failure or local error control
Nsuccess : The total number of accepted steps
Ntotal : The total number of steps to the integration
Maxerror : Maximum error
Stepr : Percentage total step reduction

In Table 3.1–3.6 we present the performance measures such as the number of success
steps, number of fail steps, the maximum error and the total number of steps taken. Note
that the BGMBDF requires less number of steps compared to the GMBDF method.
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4 Conclusions

The numerical results obtained using the block method described in this paper gives ac-
ceptable results. Comparing BGMBDF with GMBDF, we conclude that the former method
is more efficient since the reductions in total step is almost one quarter for some tolerance
chosen.
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