On Supper Continuity of Topological Spaces

Talal Ali Al-Hawary
Department of Mathematics & Statistics, Mu'tah University
P. O. Box 6, Karak–Jordan. talal@mutah.edu.jo

Abstract
In 1968, Volicko defined the concept of supper-continuity between topological spaces. In this paper supper-continuity is characterised relating to several other well-known variations of continuity, and sufficient and necessary conditions for any of them to imply supper-continuous are also provided. Moreover, many constructions of supper-continuity are studied.

Keywords
Continuity, supper-closed, characterization, closure.

1 Introduction

Several generalizations of continuity were studied in order to provide new characterizations and decompositions of continuous maps. Levine [5] introduced weak continuity; Fomin [2] and Andrew and Whittlesy [1] introduced, independently, the notion of closure continuity. Since then, closure continuity was studied by Saleemi, Shahzad and Alghamdi [9] and they were the authors who provided sufficient conditions for almost continuous maps in the sense of Husain which implies closure continuity. Later Saleh [10] provided several decompositions of closure continuity.

Let \((X, \mathcal{I})\) be a topological space and \(A \subseteq X\). Following Volicko [11], define the supper-closure and the supper-interior of \(A\) by \(A^+ = \{x \in X : \overline{U} \cap A \neq \emptyset\ \text{for every open set } U \text{ containing } x\}\) and \(A^- = \{x \in A : \overline{U} \subseteq A \ \text{for some open set } U \text{ containing } x\}\), respectively. Thus \(A\) is supper-closed if \(A^+ = A\) and supper-open if \(A^- = A\). Equivalently, \(A\) is supper-open if and only if \(X \setminus A\) is supper-closed. A map \(f\) from a topological space \(X\) into a topological space \(Y\) is supper-continuous if the inverse image of every closed subset of \(Y\) is supper-closed in \(X\) or equivalently, the inverse image of every open subset of \(Y\) is supper-open in \(X\). In this paper, we characterize supper-continuity, relate it to several other well-known variations of continuity and provide sufficient and necessary conditions for any of these to be super-continuous. Moreover, we study many constructions of supper-continuity. All throughout this paper, \(X, Y, Z\) and \(W\) will stand for arbitrary topological spaces unless otherwise mentioned.

2 Supper-continuity versus other variations of continuity

We begin this section by recalling a few definitions. A map \(f : X \rightarrow Y\) is strongly-continuous if \(f(\overline{A}) \subseteq f(A)\) for every subset \(A\) of \(X\), see Levine [6]. A map \(f : X \rightarrow Y\) is closure-continuous if it is closure continuous at every point of its domain, that is for every
Consider the topological spaces \(X \subseteq Y \subseteq \mathbb{A} \subseteq \mathbb{A}^+ \). Thus using the well-known fact that semi-continuity needs not imply continuity, we conclude \(X \) is semi-continuous but the converse need not be true, see for example Levine [4].

Example 1 Consider the topological space \(X = \{a, b, c\} \) and \(\mathfrak{T} = \{\emptyset, X, \{a, b\}\} \). Set \(A = \{c\}. \) Then \(A \) is closed, hence semi-closed, but not supper-closed.

Similarly, every supper-open set is both open and semi-open, but the converse need not be true as shown in the following example.

Example 2 Consider the topological spaces \(X = \{a, b, c\} \) and \(\mathfrak{T}_X = \{\emptyset, X, \{a\}, \{a, b\}\} \) and \(\mathfrak{T}_Y = \{\emptyset, Y, \{a\}\} \). Then the identity map \(f \) from \(X \) onto \(Y \) is continuous. Since \(\{c\} \) is closed in \(Y \) and not supper-closed in \(X \), then \(f \) is not supper-continuous.

Theorem 1 Strong continuity implies continuity.

Proof. Let \(f : X \to Y \) be strongly continuous. Then for every \(A \subseteq X \), \(f(A) \subseteq f(A) \) and since \(f(A) \subseteq f(A) \), \(f(A) \subseteq f(A) \) and hence \(f \) is continuous.

Therefore, strong continuity implies semi-continuity while if semi-continuity implies strong continuity, it implies continuity, a contradiction. Example 2 indicates that continuity need not imply strong-continuity since \(\{b\} = \{b, c\} \) is not a subset of \(\{b\} \). Next, we show that supper-continuity and strong continuity are independent notions.

Example 3 Consider the topological spaces \(X = \{a, b, c\} \) and \(\mathfrak{T}_X = \{\emptyset, X, \{a\}, \{a, b\}\} \) and \(\mathfrak{T}_Y = \{\emptyset, Y, \{a\}\} \). Then the map \(f : X \to Y \) defined by \(f(a) = f(c) = b \) and \(f(b) = a \) is clearly supper-continuous. As \(f(\{b\}) = \{a, b\} \notin f(\{b\}) \), \(f \) is not strongly-continuous.

Example 4 Consider the topological spaces \(X = \{a, b, c\} \) and \(\mathfrak{T}_X = \{\emptyset, X, \{a\}, \{a, b\}\} \) and \(\mathfrak{T}_Y = \{\emptyset, Y, \{a\}\} \). Then the map \(f : X \to Y \) defined by \(f(a) = a \) and \(f(b) = f(c) = b \) is clearly strongly-continuous. As \(\{b\} \) is closed in \(Y \) and as \((f^{-1}(\{b\}))^+ = \{c, b\} \neq f^{-1}(\{b\}) \), \(f \) is not supper-continuous.

We now prove our first main result.

Theorem 2 A surjective strongly-continuous map is supper-continuous.

Proof. Let \(f : X \to Y \) be a surjective strongly-continuous map. For every closed subset \(F \subseteq Y \), \(f^{-1}(F) \subseteq (f^{-1}(F))^+ \) and \(f^{-1}(F) \). Since \(f \) is continuous, \(f^{-1}(F) \) is closed in \(X \) and \(x \in X \setminus f^{-1}(F) \) which is open. As \(x \in f^{-1}(F)^+ \), \(f^{-1}(F)) \cap X \setminus f^{-1}(F) \neq \emptyset. \) Thus there exists \(z \in (f^{-1}(F)) \cap X \setminus f^{-1}(F). \) Hence \(f(z) \in F \cap f(X \setminus f^{-1}(F)) \subseteq F \cap f(X \setminus f^{-1}(F)) \).
Let f is strongly-continuous. Thus as f is surjective, $f(z) \in F \cap (Y \setminus F) = \emptyset$ which is impossible. Therefore, $(f^{-1}(F))^+ \subseteq f^{-1}(F) \subseteq (f^{-1}(F))^+$ and so f is supper-continuous.

Theorem 3 Every supper-continuous map is closure-continuous.

Proof. Let $f : X \to Y$ be a supper-continuous map. Let $x \in X$ and V be an open set in Y such that $f(x) \in V$. As f is continuous, there exists open U in X such that $x \in U$ and $f(U) \subseteq V$. Hence $f(U) \subseteq V$. Again as f is continuous, $f(U) \subseteq f(U)$ and hence $f(U) \subseteq V$. Therefore f is closure-continuous.

We recall the following example from Saleh [10].

Example 5 Consider the topological space $Y = \{a, b, c, d\}$ and

$$\mathcal{T} = \{\emptyset, Y, \{a, b\}, \{b\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\},$$

\mathbb{R} with the usual topology and the map $f : \mathbb{R} \to Y$ defined by $f(x) = b$ if $x \in \mathbb{Q}$ and $f(x) = d$ if $x \notin \mathbb{Q}$. Then f is closure-continuous but is not continuous.

Since every supper-continuous is continuous, it follows that a closure-continuous map needs not be supper-continuous.

Next, we state several definitions. A map $f : X \to Y$ is called *almost continuous at x in the sense of Singal and Singal* (respectively, *Husain at x*) if for each open subset $V \subseteq Y$ containing $f(x)$, there exists an open set U containing x such that $f(U) \subseteq \overline{V}$ (respectively, the closure of $f^{-1}(V)$ is a neighborhood of x). A map f is *almost continuous in the sense of Singal and Singal* (simply, *a.c.S.* (respectively, *Husain* (simply, *a.c.H.*))) if it is a.c.S. (respectively, a.c.H.) at each point $x \in X$. A map f is called *almost continuous in the sense of Stallings* (simply, *a.c.St.*) if given any open set $W \subseteq X \times Y$ containing the graph of f, there exists a continuous map $g : X \to Y$ such that the graph of g is a subset of W. A map f is called *weakly continuous at x* if for each open subset $V \subseteq Y$ containing $f(x)$, there exists an open set U containing x such that $f(U) \subseteq \overline{V}$. A map f is *weakly continuous* (simply *w.c.*) if it is weakly continuous at each $x \in X$. A map f is said to be *w*.c. if for each open subset $V \subseteq Y$, we have $f^{-1}(\text{Bd}(V))$ is closed in X, where $\text{Bd}(V)$ is the boundary of V. For the preceeding definitions, see for example Long and Carnahan [7] and Noiri [8]. It was shown that continuity implies all these five variations, but none of them implies continuity. For the proof of the following three results, see Saleh [10].

Theorem 4 Let $f : X \to Y$ be an a.c.H. Then

1. f is closure-continuous iff $f^{-1}(\overline{V}) \subseteq f^{-1}(\overline{V})$ for every open subset $V \subseteq Y$.
2. If f is w.c., then f is closure-continuous.

Theorem 5 An open a.c.H. map $f : X \to Y$ is closure-continuous iff $\overline{f^{-1}(V)} = f^{-1}(\overline{V})$ for every open subset $V \subseteq Y$.

Theorem 6 Every w.c. map is a.c.H.

Next, we give similar results for supper-continuity.
Theorem 7 Every supper-continuous map is a.c.S., a.c.H., a.c.St., w.c. and w*.c.

Proof. This follows from the fact that every supper-continuous map is continuous.

None of the converses of Theorem 7 is true as shown next.

Example 6 Consider $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x$ if $x \in \mathbb{Q}$ and $f(x) = -x$ otherwise. It was shown in Long and Carnahan [7] that f is a.c.H. but not continuous. Thus f is not supper-continuous.

Example 7 Consider the cofinite topology on \mathbb{R} and identity map from \mathbb{R} onto \mathbb{R}. This map is continuous and hence a.c.S., but it is not supper-continuous.

Example 8 Consider $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin(1/x)$ if $x \neq 0$ and $f(0) = 0$. It was shown in Long and Carnahan [7] that f is a.c.St. but not continuous. Thus f is not supper-continuous.

Example 9 Consider the topological spaces $X = Y = \{a, b\}$, $\mathcal{T}_X = \{\emptyset, X, \{a\}\}$ and $\mathcal{T}_Y = \{\emptyset, Y, \{b\}\}$. Then the identity map from X into Y is w.c., but not continuous at b and hence not supper-continuous.

Example 10 Consider the topological spaces $X = Y = \{a, b\}$, $\mathcal{T}_X = \{\emptyset, X\}$ and $\mathcal{T}_Y = \{\emptyset, Y, \{a\}, \{b\}\}$. Then the identity map from X into Y is w*.c., but not continuous at a and hence not supper-continuous.

3 On constructions of supper-continuity

In this section we present some results.

Lemma 1 If A and B are supper-closed sets in X, then $A \times B$ is supper-closed.

Proof. Let $A = A^+$ and $B = B^+$. Clearly $A \times B \subseteq (A \times B)^+$. On the other hand, for every $(x, y) \in (A \times B)^+$ and for every open sets U and V in X such that $(x, y) \in U \times V$, $U \times V \cap (A \times B) \neq \emptyset$. Hence $U \times V \cap (A \times B) \neq \emptyset$ and so $U \cap A \neq \emptyset$ and $V \cap B \neq \emptyset$. Then $(x, y) \in A^+ \times B^+$.

Corollary 1 If $f : X \to Y$ and $g : Z \to W$ are supper-continuous, then $f \times g$ is supper-continuous.

The proof of the following result follows immediately from the definition.

Lemma 2 If $A \subseteq B$, then $A^+ \subseteq B^+$.

Theorem 8 If $f : X \to Y$ is supper-continuous and A is a supper-closed subset of X, then $f|_A$ is supper-continuous.

Proof. For every open subset $V \subseteq Y$, $(f^{-1}(V))^+ = f^{-1}(V)$. Hence

$$(f|_A^{-1}(V))^+ = (A \cap f^{-1}(V))^+$$

and by Lemma 2 $(f|_A^{-1}(V))^+ \subseteq A \cap f^{-1}(V) = f|_A^{-1}(V) \subseteq (f|_A^{-1}(V))^+$.

Theorem 9 If $f : X \to Y$ is supper-continuous and $g : Y \to Z$ is continuous, then $g \circ f$ is supper-continuous.

Proof. For every closed subset $F \subseteq Z$, $g^{-1}(F)$ is closed in Y since g is continuous. Since f is supper-continuous, $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is supper-closed in X.

Corollary 2 The composition of two supper-continuous maps is supper-continuous.

Lemma 3 If A and B are supper-closed sets in X, then $A \cup B$ is supper-closed.

Proof. Let $A = A^+$ and $B = B^+$. Clearly $A \cup B \subseteq (A \cup B)^+$. On the other hand, for every $x \in (A \cup B)^+$ and for every open set U in X containing x, $\overline{U} \cap (A \cup B) \neq \emptyset$. Hence $\overline{U} \cap A \neq \emptyset$ or $\overline{U} \cap B \neq \emptyset$. Thus $x \in A^+ \cup B^+$.

Corollary 3 If $f : X \to Y$ and $g : Z \to W$ are supper-continuous maps such that $f|_{X \cap Z} = g|_{X \cap Z}$, then $f \cup g$ is supper-continuous.

Let $A \subseteq X$. If there exists a supper-continuous map $f : X \to A$ such that $f|_{A} = id_{A}$, then A is called a supper-retraction of X.

Theorem 10 If A is a supper-retraction of a T_2 space X, then A is closed.

Proof. Let $f : X \to A$ be a supper-continuous map such that $f|_{A} = id_{A}$. For every $x \in X \setminus A$, $f(x) \in A$ and $f(x) \neq x$ and as X is T_2, there exists disjoint open sets U and V such that $x \in U$ and $f(x) \in V$. Since f is continuous, there exists an open set W such that $x \in W \subseteq U$ and $f(W) \subseteq V$. If $y \in W \cap A$, then $f(y) \in V$ and since $y \in A$, $y = f(y) \in V$. On the other hand, $y \in W$ and hence $y \in U \cap V = \emptyset$, a contradiction. Thus $W \cap A = \emptyset$ and so $x \in W \subseteq X \setminus A$. Therefore $X \setminus A$ is open. Thus A is closed.

4 Characterizations of supper-continuity

Lemma 4 Let (X, \mathcal{A}) be a regular space. Then $A^+ = \overline{A}$ for all $A \subseteq X$.

Proof. Clearly $\overline{A} \subseteq A^+$. On the other hand, suppose there exists $x \in A^+ \setminus \overline{A}$. Then since X is regular, there exists disjoint open sets U and V such that $x \in U$ and $\overline{A} \subseteq V$. Since $x \in A^+$, $U \cap A \neq \emptyset$. But since $U \cap V = \emptyset$ and $\overline{A} \subseteq V$, $U \cap \overline{A} = \emptyset$. This implies that $U \cap A = \emptyset$, a contradiction.

Corollary 4 Every closed subset of a regular space is supper-closed.

Proof. $A = \overline{A} = A^+$.

Theorem 11 Let (X, \mathcal{A}) be a regular space. Then a map $f : X \to Y$ is supper-continuous iff f is continuous.

Proof. Supper-continuity implies continuity is trivial. Conversely, let f be continuous and let F be a closed subset of Y. Then $f^{-1}(F)$ is closed in X and as X is regular, by Corollary 4, $f^{-1}(F)$ is supper-closed. Therefore, f is supper-continuous.

Combining Theorem 2 and Theorem 11, we have the following result.

Corollary 5 A surjective map $f : X \to Y$ is supper-continuous iff f is strongly-continuous.
Next, we provide a characterization of supper-continuity.

Theorem 12 A^+ is the intersection of the closures of all open supper subsets of A.

Proof. Suppose there exists $x \in \overline{U}$ for all open sets U such that $A \subseteq U$ and $x \notin A^+$. Then there exists open V such that $x \in V$ and $\overline{V} \cap A = \emptyset$. Thus $A \subseteq X \setminus \overline{V}$ which is open. Hence $x \in X \setminus \overline{V}$. Since $x \in V$, $V \cap X \setminus \overline{V} \neq \emptyset$. Thus $X \setminus \overline{V} \subseteq X \setminus V$ and so $V \notin \overline{V}$, a contradiction.

On the other hand, suppose there exists $x \in A^+$ such that $x \notin \overline{U}$ for some open sets U such that $A \subseteq U$. Then $x \in X \setminus \overline{U}$ which is open and as $x \in A^+$, there exists $y \in A \cap X \setminus \overline{U}$. Since $A \subseteq U$, $U \cap X \setminus \overline{U} \neq \emptyset$. Thus $X \setminus \overline{U} \subseteq X \setminus U$ and so $U \notin \overline{V}$, a contradiction.

If A and B are subsets of X, we denote the supper-closure of B in the subspace topology of A by B^A. We get the following result.

Corollary 6 The intersection of any supper-closed set B with any set A is supper-closed in A.

Proof. By Theorem 12, $(B \cap A)^A = \cap \{ \overline{U} \cap \overline{A} : U \text{ open such that } B \subseteq U \}$ which contains $B \cap A$. If $x \in (B \cap A)^A$, then $x \in \overline{A} \cap \overline{U}$ for all open U such that $B \subseteq U$ and thus $x \in \{ \overline{A} \cap \overline{U} : U \text{ is open containing } B \} = \overline{A} \cap \{ \overline{U} : U \text{ is open containing } B \} = A \cap \overline{B} = A \cap B$. Therefore $(B \cap A)^A \subseteq B \cap A \subseteq (B \cap A)^A$.

Thus the intersection of two supper-closed sets is supper-closed. Finally, we provide a stronger result than Theorem 8.

Corollary 7 If $f : X \to Y$ is supper-continuous and $A \subseteq X$, then $f|_A$ is supper-continuous.

Proof. Let F be a closed subset of Y. Then $(f|_A)^{-1}(F) = f^{-1}(F) \cap A$ which is supper-closed by Corollary 6.

5 Conclusion

Several characterizations of supper-continuity are given and the relations of this notion to many other well-known variations of continuity are also provided. Moreover, sufficient and necessary conditions for any of these variations to imply supper-continuity are obtained and constructions of supper-continuity are explored.

References

