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Abstract In 1968, Volicko defined the concept of supper-continuity between topolog-
ical spaces. In this paper supper-continuity is characterised relating to several other
well-known variations of continuity, and sufficient and necessary conditions for any of
them to imply supper-continuous are also provided. Moreover, many constructions of
super-continuity are studied.
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1 Introduction

Several generalizations of continuity were studied in order to provide new characterizations
and decompositions of continuous maps. Levine [5] introduced weak continuity; Fomin [2]
and Andrew and Whittlesy [1] introduced, independently, the notion of closure continuity.
Since then, closure continuity was studied by Saleemi, Shahzad and Alghamdi [9] and they
were the authors who provided sufficient conditions for almost continuous maps in the sense
of Husain which implies closure continuity. Later Saleh [10] provided several decompositions
of closure continuity.

Let (X, T) be a topological space and A ⊆ X. Following Volicko [11], define the supper-
closure and the supper-interior of A by A+ = {x ∈ X : Ū ∩ A 6= ∅ for every open
set U containing x} and A− = {x ∈ A : Ū ⊆ A for some open set U containing x},
respectively. Thus A is supper-closed if A+ = A and supper-open if A− = A. Equivalently,
A is supper-open if and only if X\A is supper-closed. A map f from a topological space X
into a topological space Y is supper-continuous if the inverse image of every closed subset
of Y is supper-closed in X or equivalently, the inverse image of every open subset of Y
is supper-open in X. In this paper, we characterize supper-continuity, relate it to several
other well-known variations of continuity and provide sufficient and necessary conditions
for any of these to be super-continuous. Moreover, we study many constructions of supper-
continuity. All throughout this paper, X, Y , Z and W will stand for arbitrary topological
spaces unless otherwise mentioned.

2 Supper-continuity versus other variations of continuity

We begin this section by recalling a few definitions. A map f : X → Y is strongly-
continuous if f(Ā) ⊆ f(A) for every subset A of X, see Levine [6]. A map f : X → Y is
closure-continuous if it is closure continuous at every point of its domain, that is for every
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x ∈ X and every open set V in Y such that f(x) ∈ V, there exists an open set U in X
containing x and satisfies f(Ū) ⊆ V̄ , see Fomin [2]. A subset A of X is called semi-open
if there exists an open set U such that U ⊆ A ⊆ Ū . The semi-closure of A is defined
analogously to Ā and A is semi-closed if A= A. A map f : X → Y is semi-continuous if the
inverse image of every open subset of Y is semi-open in X. Clearly, every continuous map
is semi-continuous but the converse needs not be true, see for example Levine [4].

Note that A ⊆A ⊆ Ā ⊆ A+. Therefore, any supper-closed set is both closed and semi-
closed but the converse need not be true as shown in the following example.

Example 1 Consider the topological space X = {a, b, c} and T = {∅, X, {a, b}}. Set
A = {c}. Then A is closed, hence semi-closed, but not supper-closed.

Similarly, every supper-open set is both open and semi-open, but the converse need
not be true. It follows that every supper-continuous map is both continuous and semi-
continuous. In the next example, we show that continuity need not imply supper-continuity.
Thus using the well-known fact that semi-continuity needs not imply continuity, we conclude
that semi-continuity needs not imply supper-continuity.

Example 2 Consider the topological spaces X = {a, b, c} = Y , TX = {∅, X, {a}, {a, b}}
and TY = {∅, Y, {a, b}}. Then the identity map f from X onto Y is continuous. Since {c}
is closed in Y and not supper-closed in X, then f is not supper-continuous.

Theorem 1 Strong continuity implies continuity.
Proof. Let f : X → Y be strongly continuous. Then for every A ⊆ X, f(Ā) ⊆ f(A) and
since f(A) ⊆ f(A), f(Ā) ⊆ f(A) and hence f is continuous.

Therefore, strong continuity implies semi-continuity while if semi-continuity implies
strong continuity, it implies continuity, a contradiction. Example 2 indicates that conti-
nuity needs not imply strong-continuity since {b} = {b, c} is not a subset of {b}. Next, we
show that supper-continuity and strong continuity are independent notions.

Example 3 Consider the topological spaces X = {a, b, c} = Y , TX = {∅, X, {a}, {a, b}}
and TY = {∅, Y }. Then the map f : X → Y defined by f(a) = f(c) = b and f(b) = a is
clearly supper-continuous. As f({b}) = {a, b} * f({b}), f is not strongly-continuous.

Example 4 Consider the topological spaces X = {a, b, c} = Y , TX = {∅, X, {a}, {c, b}}
and TY = {∅, Y, {c}}. Then the map f : X → Y defined by f(a) = a and f(b) = f(c) = b is
clearly strongly-continuous. As {b} is closed in Y and as (f−1({b}))+ = {c, b} 6= f−1({b}),
f is not supper-continuous.

We now prove our first main result.

Theorem 2 A surjective strongly-continuous map is supper-continuous.
Proof. Let f : X → Y be a surjective strongly-continuous map. For every closed subset
F ⊆ Y, f−1(F ) ⊆ (f−1(F ))+. Suppose there exists x ∈ (f−1(F ))+\f−1(F ). Since f is
continuous, f−1(F ) is closed in X and x ∈ X\f−1(F ) which is open. As x ∈ (f−1(F ))+,
(f−1(F )) ∩ X\f−1(F ) 6= ∅. Thus there exists z ∈ (f−1(F )) ∩ X\f−1(F ). Hence

f(z) ∈ F ∩ f(X\f−1(F )) ⊆ F ∩ f(X\f−1(F )
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since f is strongly-continuous. Thus as f is surjective, f(z) ∈ F ∩ (Y \F ) = ∅ which is
impossible. Therefore, (f−1(F ))+ ⊆ f−1(F ) ⊆ (f−1(F ))+ and so f is supper-continuous.

Theorem 3 Every supper-continuous map is closure-continuous.
Proof. Let f : X → Y be a supper-continuous map. Let x ∈ X and V be an open set in
Y such that f(x) ∈ V. As f is continuous, there exists open U in X such that x ∈ U and
f(U) ⊆ V. Thus f(U) ⊆ V . Again as f is continuous, f(U) ⊆ f(U) and hence f(U) ⊆ V .
Therefore f is closure-continuous.

We recall the following example from Saleh [10].

Example 5 Consider the topological space Y = {a, b, c, d} and

T = {∅, Y, {a, b}, {b}, {d}, {b, d}, {a, b, d}, {b, c, d}},

R with the usual topology and the map f : R → Y defined by f(x) = b if x ∈ Q and f(x) = d
if x /∈ Q. Then f is closure-continuous but is not continuous.

Since every supper-continuous is continuous, it follows that a closure-continuous map
needs not be supper-continuous.

Next, we state several definitions. A map f : X → Y is called almost continuous at x
in the sense of Singal and Singal (respectively, Husain at x) if for each open subset V ⊆ Y

containing f(x), there exists an open set U containing x such that f(U) ⊆
o

V (respectively,
the closure of f−1(V ) is a neighborhood of x). A map f is almost continuous in the sense
of Singal and Singal (simply, a.c.S.) (respectively, Husain (simply, a.c.H.)) if it is a.c.S.
(respectively, a.c.H.) at each point x ∈ X. A map f is called almost continuous in the sense
of Stallings (simply, a.c.St.) if given any open set W ⊆ X × Y containing the graph of f ,
there exists a continuous map g : X → Y such that the graph of g is a subset of W . A map f
is called weakly continuous at x if for each open subset V ⊆ Y containing f(x), there exists
an open set U containing x such that f(U) ⊆ V . A map f is weakly continuous (simply
w.c.) if it is weakly continuous at each x ∈ X. A map f is said to be w*.c. if for each open
subset V ⊆ Y , we have f−1(Bd(V )) is closed in X , where Bd(V ) is the boundary of V .
For the preceeding definitions, see for example Long and Carnahan [7] and Noiri [8]. It was
shown that continuity implies all these five variations, but none of them implies continuity.
For the proof of the following three results, see Saleh [10].

Theorem 4 Let f : X → Y be an a.c.H. Then
(1) f is closure-continuous iff f−1(V ) ⊆ f−1(V ) for every open subset V ⊆ Y.
(2) If f is w.c., then f is closure-continuous.

Theorem 5 An open a.c.H. map f : X → Y is closure-continuous iff f−1(V ) = f−1(V )
for every open subset V ⊆ Y.

Theorem 6 Every w.c. map is a.c.H.

Next, we give similar results for supper-continuity.
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Theorem 7 Every supper-continuous map is a.c.S., a.c.H., a.c.St., w.c. and w∗.c.
Proof. This follows from the fact that every supper-continuous map is continuous.

None of the converses of Theorem 7 is true as shown next.

Example 6 Consider f : R → R defined by f(x) = x if x ∈ Q and f(x) = −x otherwise.
It was shown in Long and Carnahan [7] that f is a.c.H. but not continuous. Thus f is not
supper-continuous.

Example 7 Consider the cofinite topology on R and identity map from R onto R. This
map is continuous and hence a.c.S., but it is not supper-continuous.

Example 8 Consider f : R → R defined by f(x) = sin(1/x) if x 6= 0 and f(0) = 0. It
was shown in Long and Carnahan [7] that f is a.c.St. but not continuous. Thus f is not
supper-continuous.

Example 9 Consider the topological spaces X = Y = {a, b}, TX = {∅, X, {a}} and
TY = {∅, Y, {b}}. Then the identity map from X into Y is w.c., but not continuous at
b and hence not supper-continuous.

Example 10 Consider the topological spaces X = Y = {a, b}, TX = {∅, X} and
TY = {∅, Y, {a}, {b}}. Then the identity map from X into Y is w∗.c., but not continu-
ous at a and hence not supper-continuous.

3 On constructions of supper-continuity

In this section we present some results.

Lemma 1 If A and B are supper-closed sets in X, then A × B is supper-closed.
Proof. Let A = A+ and B = B+. Clearly A × B ⊆ (A × B)+. On the other hand, for
every (x, y) ∈ (A × B)+ and for every open sets U and V in X such that (x, y) ∈ U × V,
U × V ∩ (A × B) 6= ∅. Hence U × V ∩ (A × B) 6= ∅ and so U ∩ A 6= ∅ and V ∩ B 6= ∅.
Then (x, y) ∈ A+ × B+.

Corollary 1 If f : X → Y and g : Z → W are supper-continuous, then f × g is supper-
continuous.

The proof of the following result follows immediately from the definition.

Lemma 2 If A ⊆ B, then A+ ⊆ B+.

Theorem 8 If f : X → Y is supper-continuous and A is a supper-closed subset of X, then
f |A is supper-continuous.
Proof. For every open subset V ⊆ Y, (f−1(V ))+ = f−1(V ). Hence

(f |−1
A (V ))+ = (A ∩ f−1(V ))+

and by Lemma 2 (f |−1
A (V ))+ ⊆ A ∩ f−1(V ) = f |−1

A (V ) ⊆ (f |−1
A (V ))+.



On Supper Continuity of Topological Spaces 47

Theorem 9 If f : X → Y is supper-continuous and g : Y → Z is continuous, then g ◦ f is
supper-continuous.
Proof. For every closed subset F ⊆ Z, g−1(F ) is closed in Y since g is continuous. Since
f is supper-continuous, (g ◦ f)−1(F ) = f−1(g−1(F )) is supper-closed in X.

Corollary 2 The composition of two supper-continuous maps is supper-continuous.

Lemma 3 If A and B are supper-closed sets in X, then A ∪ B is supper-closed.
Proof. Let A = A+ and B = B+. Clearly A ∪ B ⊆ (A ∪ B)+. On the other hand, for
every x ∈ (A ∪ B)+ and for every open set U in X containing x, U ∩ (A ∪ B) 6= ∅. Hence
U ∩ A 6= ∅ or U ∩ B 6= ∅. Thus x ∈ A+ ∪ B+.

Corollary 3 If f : X → Y and g : Z → W are supper-continuous maps such that
f |X∩Z = g|X∩Z , then f ∪ g is supper-continuous.

Let A ⊆ X. If there exists a supper-continuous map f : X → A such that f |A = idA,
then A is called a supper-retraction of X.

Theorem 10 If A is a supper-retraction of a T2 space X, then A is closed.
Proof. Let f : X → A be a supper-continuous map such that f |A = idA. For every
x ∈ X\A, f(x) ∈ A and f(x) 6= x and as X is T2, there exists disjoint open sets U and V
such that x ∈ U and f(x) ∈ V. Since f is continuous, there exists an open set W such that
x ∈ W ⊆ U and f(W ) ⊆ V. If y ∈ W ∩ A, then f(y) ∈ V and since y ∈ A, y = f(y) ∈ V.
On the other hand, y ∈ W and hence y ∈ U ∩ V = ∅, a contradiction. Thus W ∩ A = ∅
and so x ∈ W ⊆ X\A. Therefore X\A is open. Thus A is closed.

4 Characterizations of supper-continuity

Lemma 4 Let (X, T) b a regular space. Then A+ = A for all A ⊆ X.
Proof. Clearly A ⊆ A+. On the other hand, suppose there exists x ∈ A+\A. Then since
X is regular, there exists disjoint open sets U and V such that x ∈ U and A ⊆ V. Since
x ∈ A+, U ∩ A 6= ∅. But since U ∩ V = ∅ and A ⊆ V, U ∩ A 6= ∅. This implies that
U ∩ A = ∅, a contradiction.

Corollary 4 Every closed subset of a regular space is supper-closed.
Proof. A = A = A+.

Theorem 11 Let (X, T) be a regular space. Then a map f : X → Y is supper-continuous
iff f is continuous.
Proof. Supper-continuity implies continuity is trivial. Conversely, let f be continuous and
let F be a closed subset of Y. Then f−1(F ) is closed in X and as X is regular, by Corollary
4, f−1(F ) is supper-closed. Therefore, f is supper-continuous.

Combining Theorem 2 and Theorem 11, we have the following result.

Corollary 5 A surjective map f : X → Y is supper-continuous iff f is strongly-continuous.
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Next, we provide a characterization of supper-continuity.

Theorem 12 A+ is the intersection of the closures of all open supper subsets of A.
Proof. Suppose there exists x ∈ U for all open sets U such that A ⊆ U and x /∈ A+.

Then there exists open V such that x ∈ V and V ∩ A = ∅. Thus A ⊆ X\V which is open.
Hence x ∈ X\V . Since x ∈ V, V ∩ X\V 6= ∅. Thus X\V * X\V and so V * V , a
contradiction.

On the other hand, suppose there exists x ∈ A+ such that x /∈ U for some open sets U

such that A ⊆ U. Then x ∈ X\U which is open and as x ∈ A+, there exists y ∈ A ∩ X\U.
Since A ⊆ U, U ∩ X\U 6= ∅. Thus X\U * X\U and so U * U, a contradiction.

If A and B are subsets of X, we denote the supper-closure of B in the subspace topology
of A by BA+. We get the following result.

Corollary 6 The intersection of any supper-closed set B with any set A is supper-closed
in A.
Proof. By Theorem 12, (B ∩ A)A+ = ∩{U ∩ A ∩ A : U open such that B ⊆ U} which
contains B ∩ A. If x ∈ (B ∩ A)A+, then x ∈ A ∩ U for all open U such that B ⊆ U
and thus x ∈ ∩{A ∩ U : U is open containing B} = A ∩ ∩{U : U is open containing
B} = A ∩ BA+ = A ∩ B. Therefore (B ∩ A)A+ ⊆ B ∩ A ⊆ (B ∩ A)A+.

Thus the intersection of two supper-closed sets is supper-closed. Finally, we provide a
stronger result than Theorem 8.

Corollary 7 If f : X → Y is supper-continuous and A ⊆ X, then f |A is supper-continuous.

Proof. Let F be a closed subset of Y. Then (f |A)−1(F ) = f−1(F )∩A which is supper-closed
by Corollary 6.

5 Conclusion

Several characterizations of supper-continuity are given and the relations of this notion to
many other well-known variations of continuity are also provided. Moreover, sufficient and
necessary conditions for any of these variations to imply supper-continuity are obtained and
constructions of supper-continuity are explored.
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