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Abstract The paper describes one possible robustification process on Bayes esti-
mators and studies how a robust estimator can work with prior information. This
robustification procedure, as one of possible sensitivity analysis, enables us to study
the effect of the outlying observations together with sensitivity to a chosen prior dis-
tribution or to a chosen loss function. Consider i.i.d. d-dimensional random vectors
X1, ..., Xn with a distribution Pθ depending on an unknown parameter θ

∼
∈ Θ ⊂ Rl.

We deal with robust counterparts of maximum posterior likelihood estimators and
Bayes estimators in the inference on θ. Asymptotic properties of these robust versions,
including their asymptotic equivalence of order op(n

−1), are proven.
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1 Introduction

Let X1, ..., Xn be i.d.d. d-dimensional random vectors with a common d.f. F (x, θ
∼
), where

θ
∼

∈ Θ ⊂ Rl is an unknown parameter. Let π(θ
∼
) be a density of θ

∼
vanishing outside Θ.

Denote by θ0 the “true” value of θ
∼
; for the sake of simplicity we shall use the notation

θ = θ
∼
.

In this paper we shall deal with Bayes and Bayes-type estimators. That is, we are
interested in a suitable approximation of the integral ratio of the form

∫
w(θ). exp{L(θ)}dθ∫
v(θ). exp{L(θ)}dθ

, (1)

with appropriate w and v.
Specifically, if w(θ) = θ.v(θ) and v(θ) is a prior distribution for θ, then (1) becomes the

posterior mean of θ. The question of the effect of distribution of X1, ..., Xn, or robustness
with respect to data, can be discussed when we put

L(θ) = −
n∑

i=1

ρ(Xi, θ),

where ρ varies over a class of appropriate functions [4]. This model also includes as a special
case ln f(x, θ) = −ρ(x, θ). Before starting to evaluate acceptable estimators for this theoret-
ical setup, we note that this situation has important practical aspects. Applied statisticians
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often wonder whether or not we can use prior information in the case when the data contain
gross errors or when they are contaminated by a heavy tailed distribution. To solve this
practical problem, we combine robust and Bayesian approaches. Namely, we want to find
a class of robust estimators that take into account preliminary information. Analogously,
from Bayesian point of view we look for Bayes-type estimators being sufficiently insensitive
to deviation from a classical model. Accordingly, we need an estimator that puts Bayesian
and robust viewpoints together. Following these ideas, two main steps are to be taken:

1. Identification of the outliers and a subsequent application of the classical Bayes analysis
to the remaining data set.

2. Modification of the robust methods, consisting either of plugging the prior information
inside the estimators or of altering the Bayes method by using the robust approach.

One possible construction of a robust method is to start with the classical method and
replace the density in the definition of the estimator with the function c. exp{−ρ(X)} that
makes the resulting estimator more robust.

– The generalized maximum-likelihood type or M-estimator Mn is defined as

Mn ∈ arg min
θ∈Θ

n∑

i=1

ρ(Xi, θ) (2)

– The Bayes type or B-estimator Tn is defined as

Tn =

∫
Θ θ. exp{−

n∑
i=1

ρ(Xi, θ)}π(θ)dθ

∫
Θ exp{−

n∑
i=1

ρ(X, θ)}π(θ)dθ
(3)

if both the integrals exist ([1], [3], [5]).

Analogously to (2), one can define a robust version of maximum posterior likelihood esti-
mators θ̂n as

θ̂n ∈ argmin
θ∈Θ

{
n∑

i=1

ρ(Xi, θ) − ln π(θ)} (4)

Clearly, (4) is MLE with respect to posterior density ([2], [7]).
Notice that Tn and θ̂n are obtained as generalizations of Bayes estimators and maximum

posterior likelihood estimators, respectively. Indeed, putting,

ρ(X, θ) = − ln f(x, θ) (5)

The main technical tool is a Laplace type approximation and the fact that θ̂n is a saddle
point of both integrals in (3). From this point of view, one can look at θ̂n as a computational
version of Tn. Indeed, we can prove that asymptotically, under certain assumptions, [6]

Tn = θ̂n + op(n−1). (6)

The choice ρ = − ln f again leads to a relation between Bayes posterior mean and maximum
posterior likelihood estimator.
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2 The Results

The asymptotic properties of the introduced estimators will be proven under the following
sets of conditions:

(a)

(a1) Θ ⊂ Rl is an open connected set.

(a2) ρ : Rd × Θ → R+ is a continuous function.

Moreover,
∂2ρ

∂θ2
exists and for every θ

∼
∈ θ there exist δ > 0, β ≥ 0 such that for

every ξ, η ∈ Θ, ‖ξ − θ‖ < δ, ‖η − θ‖ < δ and every x ∈ Rd it holds,
∥∥∥∥

∂2ρ

∂θ2
(x, ξ) − ∂2ρ

∂θ2
(x, η)

∥∥∥∥ ≤ β. ‖ξ − η‖ .

(a3) π : Θ → R+ is bounded and ln π is well-defined with a continuous derivative
∂ ln π

∂θ
.

(a4) The integral
∫
Θ
‖θ‖ exp(−ρ(x, θ))π(θ)dθ exists for every x ∈ Rd.

(b)

(b1) For every n ∈ N

∫
Mn(x)dF (x, θ0) < +∞, where Mn(x) = sup

‖θ‖≤n
θ∈Θ

∥∥∥∥
∂2ρ

∂θ2
(x, θ)

∥∥∥∥ .

(b2) There exists a point θ∗ ∈ Rl such that
∫

ρ(x, θ∗)dF (x, θ0) and
∫

∂ρ

∂θ
ρ(x, θ∗)dF (x, θ0)

is finite.

(c)

(c1) We assume that the function

h(θ) =
∫

ρ(x, θ)dF (x, θ0) (7)

has a unique absolute minimum at θ = θ0, i.e.

θ0 ∈ argmin
θ∈Θ

h(θ) (8)

(c2) If sup
θ∈Θ

‖θ‖ = +∞ then

h(θ0) < ρ̄
df.
= inf

K>0
lim

‖θ‖→+∞
inf

‖x‖≤K
ρ(x, θ) (9)
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(c3)
∂2h

∂θ2
(θ0) is a positive definite matrix

(c4)
∫

∂ρ

∂θ
(x, θ0).

(
∂ρ

∂θ
(x, θ0)

)T

dF (x, θ0) is a real matrix.

The group (a) contains conditions on the loss function ρ and on prior information, which
is represented by the function π and by the set Θ. Changing the order of derivation and
integration is guaranteed by the conditions of the group (b). Finally, the group (c) requires
θ0 to be an optimal solution of (8) with nice properties. There is only the condition (a2)
which needs a special discussion, the others are quite natural. The condition (a2) weakens

an existence of continuous
∂3ρ

∂θ3
. But omitting (a2) we would lose the rate n−1 of Tn − θ̂n.

Theorem 1

Suppose the groups of conditions (a), (b), and (c) are satisfied. Then, for n → +∞,

√
n
∥∥∥θ̂n − θ0

∥∥∥ = op(1).

Later this theorem serves as additional and supporting tool for Theorem 2.

Theorem 2

Suppose the groups of conditions (a), (b), and (c) are satisfied. Then, for n → +∞,

√
n ‖Tn − θ0‖ = op(1)

and
n
∥∥∥Tn − θ̂n

∥∥∥ = op(1).

Assuming, moreover, that
∂3ρ

∂θ3
exists and that,

1
n

n∑

i=1

∂3ρ

∂θ3

(
Xi, θ0 +

1√
n

θ

)
a.s.−→

∂3h

∂θ3
(θ0)

uniformly for ‖θ‖ ≤ δ0, we have

Tn = θ̂n + n−1.
A

B
+ op(n−1),

where

A = −1
6

∫

Rl

θ

l∑

l1,l2,l3=1

θl1θl2θl3

∂3h

∂θl1∂θl2∂θl3

(θ0). exp
(
−1

2
θT ∂2h

∂θ2
(θ0)θ

)
dθ

and

B =
∫

Rl

exp
(
−1

2
θT ∂2h

∂θ2
(θ0)θ

)
dθ.
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Note that one may obtain Tn = θ̂n+op(n−1) in a number of cases. Consider an estimator
of location, where ρ(x, θ) = η(x − θ). Having η symmetric at zero and assuming that the
true distribution is symmetric at θ0, i.e.

F (x, θ0) = 1 − F (2θ0 − x, θ0),

one deduces
∂3h

∂θ3
(θ0) = 0. Consequently, A = 0 and Tn = θ̂n + op(n−1).

3 Proof of Theorems

The steps of the proof of Theorems use the following auxiliary lemmas,

Lemma 1

Let conditions (a1) - (a2), (b1) - (b2) be fulfilled. Then for every θ ∈ Θ the integrals

h(θ) =
∫

ρ(x, θ)dF (x) (10)

∂h

∂θ
(θ) =

∫
∂ρ

∂θ
(x, θ)dF (x) (11)

∂2h

∂θ2
(θ) =

∫
∂2ρ

∂θ2
(x, θ)dF (x) (12)

are finite.

Lemma 2

Let conditions (a1), (a2), (b) be fulfilled. Then there exists a set A ∈ λ̄, P (A) = 1 such that
for every ω ∈ A and θ ∈ Θ.

1
n

n∑

i=1

∂2ρ

∂θ2
(Xi(ω), θ) → ∂2h

∂θ2
(θ), (13)

1
n

n∑

i=1

∂ρ

∂θ
(Xi(ω), θ) → ∂h

∂θ
(θ), (14)

and
1
n

n∑

i=1

ρ(Xi(ω), θ) → h(θ) (15)

hold.

Lemma 3

Let assumptions (a), (b), (c) be fulfilled. Then for every δ > 0 there exists ∆ > 0 such that,

inf
‖θ−θ0‖≥δ

{
1
n

n∑

i=1

ρ (Xi, θ)

}
≥ 1

n

n∑

i=1

ρ (Xi, θ0) −
1
n

ln π(θ0) + ∆

holds for n sufficiently large with probability 1.
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Corollary 1

Under assumptions (a), (b), (c) we have θ̂n
a.s.−→ θ0.

Proof of Theorem 1

Let A ∈ λ̄, P (A) = 1 be such that the assertions of Lemma 2 and Lemma 3 hold. Denote

by α the smallest eigenvalue of
∂2h

∂θ2
(θ2); α > 0 by assumption (c3). Θ being open, there is

δ1 > 0 such that,
u1 =

{
θ ∈ Rl| ‖θ − θ0‖ < δ1

}
⊂ Θ.

For every ω ∈ A,

1
n

n∑

i=1

∂2ρ

∂θ2
(Xi(ω), θ) → ∂2h

∂θ2
(θ)

uniformly on u1 because of (a2). Therefore, by (a2) there is 0 < δ < δ1 such that for every
y ∈ Rk and a sufficiently large n,

inf
‖θ−θ0‖<δ

yT 1
n

n∑

i=1

∂2ρ

∂θ2
(Xi(ω), θ) y >

α

2
‖y‖2.

Thus,

1
n

n∑
i=1

ρ
(
Xi(ω), θ0 + θ√

n

)
+ 1

n ln π
(
θ0 + θ√

n

)

= 1
n

n∑
i=1

ρ (Xi(ω), θ0) − 1
n ln π (θ0) + 1

nθT 1√
n

n∑
i=1

∂ρ

∂θ
(Xi(ω), θ0)

+ 1
n

∫ 1

0

∫ s

0

θT

(
1
n

n∑

i=1

∂2υ

∂θ2

(
Xi(ω), θ0 +

θ√
n

t

)
θ dt ds − 1

n

[
ln π

(
θ0 +

θ√
n

)
− ln π(θ0)

])

≥ 1
n

n∑
i=1

ρ (Xi(ω), θ0) − 1
n

n∑
i=1

ρ (Xi(ω), θ0) − 1
n ln π (θ0)

+ 1
n

(
α
4 ‖θ‖2 + 1√

n

n∑
i=1

θT ∂ρ
∂θ (Xi(ω), θ0)− ln

(
π(θ0 + θ√

n

π(θ0)

))

≥ 1
n

n∑
i=1

ρ (Xi(ω), θ0) − 1
n ln π(θ0) + 1

n

(
α
4 ‖θ‖2 + 1√

n

n∑
i=1

θT ∂ρ
∂θ (Xi(ω), θ0) − Q

)

for every θ with the property ‖θ‖ ≤
√

nδ;

Q = sup
‖η−θ0‖≤δ

ln
(

π(η)
π(θ0)

)

is finite since π is continuous and positive by (a3). Notice that

∂ρ

∂θ
(X1, θ0), ...,

∂ρ

∂θ
(Xn, θ0)

are i.i.d. random vectors with zero mean and a finite variance according to (c1), (c4).
Therefore

1√
n

n∑

i=1

∂ρ

∂θ
(Xi, θ0)

d−→ Y,
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(d: total differentiation), where Y is a Gaussian random vector with zero mean and

var(Y ) =
∫

∂ρ

∂θ
(x, θ0).

(
∂ρ

∂θ
(x, θ0)

)T

dF (x, θ0).

Finally, we have,

P
(√

n
∥∥∥θ̂n − θ0

∥∥∥ > H
)
≤ P

(∥∥∥θ̂n − θ0

∥∥∥ > δ
)

+P

(
α
4 n
∥∥∥θ̂n − θ0

∥∥∥
2

− Q < − 1
n

n∑
i=1

√
n(θ̂n − θ0)

∂ρ
∂θ (Xi, θ0), δ ≥

∥∥∥θ̂n − θ0

∥∥∥ >
1√
n

H

)

≤ P
(∥∥∥θ̂n − θ0

∥∥∥ > δ
)

+P

(
α
4 n
∥∥∥θ̂n − θ0

∥∥∥
2

− Q <
√

n
∥∥∥θ̂n − θ0

∥∥∥
∥∥∥∥∥

1√
n

n∑

i=1

∂ρ

∂θ
(Xi, θ0)

∥∥∥∥∥ ,
∥∥∥θ̂n − θ0

∥∥∥ >
1√
n

H

)

≤ P
(∥∥∥θ̂n − θ0

∥∥∥ > δ
)

+ P

(
1√
n

∥∥∥∥∥
n∑

i=1

∂ρ

∂θ
(Xi, θ0)

∥∥∥∥∥ >
α

4
H − Q

H

)

therefore

lim P
(√

n
∥∥∥θ̂n − θ0

∥∥∥ > H
)
≤ P

(
‖Y ‖ >

α

4
H −

Q

H

)

because of Corollary 1, ‖Y ‖ is a random variable, and H can be chosen such that the
right-hand side is arbitrarily small. Theorem 1 is thus completely proven.

Theorem 1 is a first step in the proof of Theorem 2. The remaining part of the proof is
divided into the following auxiliary lemmas,

Lemma 4

Let the groups of assumptions (a), (b), (c) be fulfilled. Then for every δ > 0 there exists
∆ > 0 such that

∥∥∥∥∥∥

∫

‖θ−θ0‖>δ
θ∈Θ

θ. exp

{
−

n∑

i=1

ρ(Xi, θ) + ln π(θ)

}
dθ

∥∥∥∥∥∥
≤ Bn(∆).op(1)

and ∥∥∥∥∥∥

∫

‖θ−θ0‖>δ
θ∈Θ

exp

{
−

n∑

i=1

ρ(Xi, θ) + ln π(θ)

}
dθ

∥∥∥∥∥∥
≤ Bn(∆).op(1)

where

Bn(∆) = exp(−n∆). exp

(
−

n∑

i=1

ρ(Xi, θ̂n) + ln π(θ̂n)

)
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Lemma 5

Under the assumptions of Theorem 2,
∫

Θ

exp
(
−

n∑
i=1

ρ(Xi, θ) + ln π(θ)
)

dθ

=
(

1√
n

)l

exp
(
−

n∑
i=1

ρ(Xi, θ̂n) + ln π(θ̂n)
)

.

(∫

Rl

exp
(
−1

2
θT ∂2h

∂θ2
(θ0)θ

)
dθ + op(1)

)

Lemma 6

Let all the assumptions (a), (b), (c) hold. Then,
∫

Θ

θ. exp
(
−

n∑
i=1

ρ(Xi, θ) + ln π(θ)
)

dθ

= θ̂n

∫

Θ

exp
(
−

n∑
i=1

ρ(Xi, θ) + ln π(θ)
)

dθ

+
1
n

.
(

1√
n

)l

exp
(
−

n∑
i=1

ρ(Xi, θ̂n) + ln π(θ̂n)
)

.An

where An = op(1) as n → ∞.

Additionally if
∂3ρ

∂θ3
is finite and

1
n

n∑

i=1

(
∂3ρ

∂θ3
( Xi, θ0) +

1√
n

θ

)
∂3h

∂θ3
(θ0)

uniformly for ‖θ‖ ≤ δ0 then An = A + op(1), where

A = −1
6

∫

Rl

θ

l∑

l1,l2,l3=1

θl1θl2θl3

∂3h

∂θl1∂θl2∂θl3

(θ0). exp
(
−1

2
θT ∂2h

∂θ2
(θ0)θ

)
dθ

Proof of Theorem 2

Using Lemma 5 and Lemma 6 one can derive

Tn =

∫

Θ

θ. exp

(
−

n∑

i=1

ρ(Xi, θ)

)
π(θ)dθ

∫

Θ

exp

(
−

n∑

i=1

ρ(Xi, θ)

)
π(θ)dθ

= θ̂n +

1
n

(
1√
n

)l

exp

(
−

n∑

i=1

ρ(Xi, θ̂n) + ln π(θ̂n)

)
An

(
1√
n

)l

exp

(
−

n∑

i=1

ρ(Xi, θ̂n) + ln π(θ̂n)

)
(B + op(1))

= θ̂n +
1
n

op(1)
B + op(1) = θ̂n +

1
n

op(1).
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Under the additional assumptions we have,

Tn = θ̂n +
1
n

.
A

B
+ op

(
1
n

)

References

[1] M. Akahira & K. Takeuchi, Asymptotic Efficiency of Statistical Estimators: Concepts
and Higher Order Asymptotic Efficiency, Lecture Notes in Statistics, 7, Springer-
Verlag, New York, 1981.

[2] J. Berger, The Robust Bayesian Viewpoint, In: Robustness in Bayesian Statistics
(J.Kadane, ed.), North-Holland, Amsterdam, 1984.

[3] N.G. De Bruijn, Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1961.

[4] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel, Robust Statistics: The
Approach Based on Influence Functions, J. Wiley, New York, 1986.

[5] I.A. Ibragimov and R.Z. Khaminskii, Statistical Estimation. Asymptotic Theory,
Springer-Verlag, Berlin, 1981.

[6] H. Strasser, Asymptotic Expansions for Bayes Procedures, In: Recent Development in
Statistics (J.R. Barra et al.Ed.), Amsterdam: North-Holland, Amsterdam, 1977, 9-35.

[7] L. Tierney & J Kadane, Accurate Approximations for Posterior Moments and Marginal
Densities, JASA, 81(1986), 82-86.


