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Abstract In their paper, Ali and Abdullah introduced new iterative methods based
on rotated(cross) five-point finite difference discretisation in solving a coupled system
of elliptic partial differential equations (p.d.e.’s) where these methods were found to be
more superior than common existing methods based on the centred five-point difference
schemes. In this paper, the application of a new iterative schemes derived from the
rotated finite difference discretisation to the numerical solution of the nonlinear steady
two dimensional Burgers’ equation is considered. Some numerical experiments are
presented and we will show that the new methods are accurate and comparable to the
existing finite difference method.

Keywords Numerical methods; Burgers’ equation; rotated finite difference; explicit
decoupled group (EDG) method

Abstrak Dalam kertas kerja mereka, Ali dan Abdullah telah memperkenalkan kaedah-
kaedah lelaran baru berdasarkan pendiskretan beza terhingga lima titik putaran dalam
menyelesaikan sistem berpasangan persamaan pembezaan separa eliptik di mana kaedah-
kaedah ini telah didapati lebih baik daripada kaedah sedia ada yang berdasarkan skema
beza terhingga ke tengah. Dalam kertas ini, aplikasi skema lelaran baru yang diter-
bitkan daripada pendiskretan beza terhingga putaran ini kepada penyelesaian berangka
persamaan Burgers dua dimensi tak linear telah ditinjau. Beberapa ujikaji berangka
akan dibentangkan dan kami akan menunjukkan bahawa kaedah-kaedah baru ini adalah
jitu dan setanding dengan kaedah beza terhingga yang sedia ada.

Katakunci Kaedah berangka; persamaan Burgers; beza terhingga putaran; kaedah
kumpulan nyah pasangan tak tersirat (KNPTT)

1 Introduction

The algebraic equations produced by discretising fluid dynamics governing equations are
usually nonlinear due to the nature of the convective terms. To cope with the nonlinearity
of the discretised equations, some form of outer-inner iterative procedure is consequently
inevitable. This type of procedure has long been investigated by researchers to solve such
problems particularly the Navier-Stokes and biharmonic equations ( [6], [7], [9], [10], [11]).
Recently a new outer-inner iterative procedure derived from the rotated (skewed) finite
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difference formulae ( [4], [8], [12] ) was successfully formulated in solving the two dimensional
steady Navier-Stokes equation ([2], [3]). In this paper, we extend the application of this type
of outer-inner iterative procedure to the Burgers’ equation; one of the most fundamental
nonlinear problem in computational fluid dynamics. We proceed as follows. In Section 2,
a point iterative scheme based on the rotated five-point formula in solving this equation is
developed. In Section 3, its group-wise counterpart, i.e. the four-point Explicit Decoupled
Group (EDG) scheme, which was firstly introduced in solving the Poisson equation [1],
will be described. The numerical experiments of these methods are discussed in Section 4,
followed by the theoretical complexity analysis and discussion of results in Sections 5 and
6 respectively.

2 Rotated Point Iterative Algorithm

The problem to be considered will be formulated as follows. Consider the steady two-
dimensional Burgers’ equations

u
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− 1
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= 0 [2.2]

with Dirichlet boundary conditions on u and v. This equation is considered to be a simplified
form of the Navier-Stokes equation, where the pressure term is neglected. Here, Re is the
Reynolds number. For our discussion, the solutions u and v that satisfy these equations are
sought in the interior region S as shown in Figure 1.

Let n be a fixed positive integer. Determine the grid size h = 2/n so that a uniformly
spaced square network (∆x =∆y = h) with xi = −1 + ih, yi = jh, i,j = 0,1,2,...,n, is imposed
on S. Using the centred difference approximation, Equations [2.1] and [2.2] can now be
discretised at the grid point (xi, yj) by the following finite difference equations:
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uij

(
ui+1,j−ui−1,j

2h

)
+ vij

(
ui,j+1−ui,j−1

2h

)
− 1

Re

(
ui−1,j+ui+1,j+ui,j−1+ui,j+1−4uij

h2

)
+

h2

3!

(
1

2Re
∂4u
∂x4 + 1

2Re
∂4u
∂y4 − uij

∂3u
∂x3 − vij

∂3u
∂y3 − ...

)
= 0

[2.3]

uij

(
vi+1,j−vi−1,j

2h

)
+ vij

(
vi,j+1−vi,j−1

2h

)
− 1

Re

(
vi−1,j+vi+1,j+vi,j−1+vi,j+1−4vij

h2

)
+

h2

3!

(
1

2Re
∂4v
∂x4 + 1

2Re
∂4v
∂y4 − uij

∂3v
∂x3 − vij

∂3v
∂y3 − ...

)
= 0

[2.4]

Neglecting the error terms, the following forms can be obtained from [2.3] and [2.4]
[(
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2h

)
+

4
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]
uij
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Reh2 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1) − vij

(
ui,j+1 − ui,j−1

2h

)
, [2.5]
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i,j = 1,2,3, ..., n.

Observe that if v is known, then we can solve [2.5] iteratively for u, while if u is known,
we can solve [2.6] iteratively for v, and vice versa. Analogous to the schemes presented
for the Navier-Stokes problem ([2], [3]), we can devise a similar algorithm by first making
initial guesses u(0)

ij and v(0)
ij , and then generate an alternating sequence of outer iterates:

The iteration is continued until for some k,
∣∣∣u(k+1)

ij − u(k)
ij

∣∣∣ < δ and
∣∣∣v(k+1)

ij − v(k)
ij

∣∣∣ < δ

for some given tolerance δ. The solutions u(k+1)
ij and v(k+1)

ij generated are then taken to be
the numerical solutions of the given problem.

Another approximation may be obtained by exploiting the four points (i±1, j±1) and
(i∓1, j±1) located on the skewed (rotated) stencil ([4], [8], [12]). The resulting difference
approximations for the Burgers’ equations can thus be shown to be as the following:

[
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A point iterative scheme based on the rotated difference equations [2.7] and [2.8] can
now be constructed for the solution of the given problem. Lets consider all alternate points
on the x-y plane as shown in Figure 3. Because the evaluations in [2.7] (and also [2.8])
involve points of type © only, iterations can be carried out using the points of this type
only.

There are 16 interior grid points to be computed. The iterations on u (assuming v
is known) using Equation [2.7] are done only on points of type ©. Iterations on v using
Equation [2.8] are also done in a similar way using the values of u just computed. The
iterations can also be done in reverse order, i.e. do the iterations on v first using Equation
[2.8], then use these most recent values of v to iterate on u using Equation [2.7]. These
points undergo iterations until a chosen convergence criteria is met. Only after the iterations
have converged, the values of the solutions at the remaining points (of the type �) will be
computed directly once using formula [2.5] (or [2.6]) of centred difference approximations.
In our example, the computation of the eight points of type © using Equation [2.7] can be
represented in matrix form [2.9]-[2.10]. The computation of the eight points using Equation

[2.8] can also be represented in a similar way. Here, we let c =
1
4h

and d = 1
2Reh2 . We can now

formulate the rotated point outer-inner iterative method in solving the problem [2.1]-[2.2]
as follows:
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Algorithm 1: Rotated point outer-inner iterative method
(i) Divide the solution domain into grid lines by choosing h =

2
n

. Define the group of

points which will be involved in the iterative computations (i.e. points of type © and
�).

(ii) Set u(0)
ij = v(0)

ij = 0 as initial approximation for the outer iterates.

(iii) Generate approximations v(k+1)
ij and u(k+1)

ij for k = 0,1,2,... as follows:

(a) Generate v(k+1)
ij (or u(k+1)

ij ) of Equation [2.8] (of Equation [2.7]) using the rotated
point iterative scheme described previously for a prescribed tolerance ε.

(b) Generate u(k+1)
ij (or v(k+1)

ij ) of Equation [2.7] (of Equation [2.8]) using the rotated
point iterative scheme for the prescribed tolerance ε.

(Here, use the recently obtained v(k+1)
ij (or u(k+1)

ij ) in (a) for the values vij(or uij)
in the formulae ).

(c) Store the converged values of both inner iterative schemes u(k+1)
ij → outer u(r)

ij

andv(k+1)
ij → outer v(r)

ij .

(iv) Check the convergence of the outer iteration over the whole interior mesh points, i.e.
check whether

max
{ ∣∣∣outer u(r+1)

ij − outer u(r)
ij

∣∣∣ ,
∣∣∣outer v(r+1)

ij − outer v(r)
ij

∣∣∣
}
≤ δ,

for a prescribed termination criteria δ. If yes, the numerical solution of the given
problem is given by outer v(r+1)

ij and outer u(r+1)
ij . Otherwise go back to Step (iii).
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b22
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b13

b33

b24
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, [2.9]

where

b11= (cv11+d)u20−(cv11−d)u02+(cv11+d)u00

b31= (cv31+d)u40+(cv31+d)u20

b22= 0
b42= (cv42+d)u51−(cv42−d)u53

b13= (cv13+d)u02−(cv13−d)u04

b33= 0
b24= −(cv24−d)u15−(cv24−d)u35

b44= (cv44+d)u53−(cv44−d)u55−(cv44−d)u35

[2.10]
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3 Four-Point Edg Iterative Algorithm

Adopting the same idea as the four-point EDG in [2] and [3], the four-point EDG for
solving the problem [2.1]-[2.2] can now be formulated. Without loss of generality, assume
the generation of v(k+1)

ij is done first using Equation [2.8] followed by the generation of

u(k+1)
ij using Equation [2.7]. Using the rotated finite difference approximation [2.8] for vij,

any group of four points on a discretised solution domain can be solved resulting in a (4x4)
system of equations as shown in [3.1]-[3.2].

B ×




vij

vi+1,j+1

vi+1,j

vi,j+1




=




rhsij

rhsi+1,j+1

rhsi+1,j

rhsi,j+1




[3.1]

where

rhsij= (cuij+d)vi−1,j+1+(−cuij+d)vi+1,j−1+(cuij+d)vi−1,j−1

rhsi+1,j+1= (cui+1,j+1+d)vi,j+2+(−cui+1,j+1+d)vi+2,j+(−cui+1,j+1+d)vi+2,j+2

rhsi+1,j= (−cui+1,j+d)vi+2,j+1+(−cui+1,j+d)vi+2,j−1+(cui+1,j+d)vi,j−1

rhsi,j+1= (cui,j+1+d)vi−1,j+2+(−cui,j+1+d)vi+1,j+2+(cui,j+1+d)vi−1,j.

[3.2]
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The system [3.1]-[3.2] leads to a decoupled system of (2x2) equations which can be made
explicit as follows:
[

vij
vi+1,j+1

](k+1)
=

(4Reh2)2[
Reh(v(k)

i+1,j+1−vi−1,j−1−vi+1,j−1+vi−1,j+1)+8
] [
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i,j −vi+2,j+vi,j+2)+8

]
+ (Rehui+1,j+1+2)(Rehuij−2)
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ij −vi+2,j+vi,j+2)+8
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4Reh2




rhsij

rhsi+1,j+1


[3.3]

and
[

vij
vi+1,j+1

](k+1)
=

(4Reh2)2[
Reh(v(k)

i+1,j+1−vi−1,j−1−vi+1,j−1+vi−1,j+1)+8
] [
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i,j −vi+2,j+vi,j+2)+8

]
+ (Rehui+1,j+1+2)(Rehuij−2)

×


Reh(vi+1,j+2−v(k)

i+1,j−vi−1,j+vi−1,j+2)+8

4Reh2 cui+1,j + d

−cui,j+1 + d
Reh(v(k)

i,j+1−vi,j−1−vi+2,j−1+vi+2,j+1)+8

4Reh2




rhsi+1,j

rhsi,j+1

 . [3.4]

Similarly, from the generation of uij using Equation [2.7], a (4x4) system of equations
can be formed as shown in [3.5]-[3.6]:
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C×




uij

ui+1,j+1

ui+1,j

ui,j+1




=




rhsij∗

rhsi+1,j+1
∗

rhsi+1,j
∗

rhsi,j+1
∗




[3.5]

where

rhsij∗= (−cvij+d)ui−1,j+1+(cvij+d)ui+1,j−1+(cvij+d)ui−1,j−1

rhsi+1,j+1
∗= (−cvi+1,j+1+d)ui,j+2+(cvi+1,j+1+d)ui+2,j+(−cvi+1,j+1+d)ui+2,j+2

rhsi+1,j
∗= (−cvi+1,j+d)ui+2,j+1+(cvi+1,j+d)ui+2,j−1+(cvi+1,j+d)ui,j−1

rhsi,j+1
∗= (−cui,j+1+d)ui−1,j+2+(−cvi,j+1+d)ui+1,j+2+(cvi,j+1+d)ui−1,j

[3.6]

The system [3.5]-[3.6] leads to a decoupled system of (2x2) equations whose explicit
forms are given by:
[

uij
ui+1,j+1

](k+1)
=

(4Reh2)2[
Reh(ui+1,j−1−ui−1,j+1+u(k)

i+1,j+1−ui−1,j−1) + 8
] [

Reh(ui+2,j−ui,j+2+ui+2,j+2−u(k)
ij ) + 8

]
+ (Rehvi+1,j+1 + 2)(Rehvij − 2)

×


Reh(ui+2,j−ui,j+2+ui+2,j+2−uij)+8

4Reh2 −cvij + d

cvi+1,j+1+d
Reh(ui+1,j−1−ui−1,j+1+ui+1,j+1−ui−1,j−1)+8

4Reh2




rhsij∗

rhsi+1,j+1∗


[3.7]
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and
[

ui+1,j
ui,j+1

](k+1)
=

(4Reh2)2[
Reh(ui+2,j−1+ui+2,j+1−u(k)

i,j+1−ui,j−1) + 8
] [

Reh(u(k)
i+1,j−ui−1,j+2−ui−1,j+ui+1,j+2) + 8

]
+ (Rehvi,j+1 + 2)(Rehvi+1,j − 2)

×


Reh(ui+1,j−ui−1,j+2+ui+1,j+2−ui−1,j)+8

4Reh2 −cvi+1,j + d

cvi,j+1+d
Reh(ui+2,j−1−ui,j+1+ui+2,j+1−ui,j−1)+8

4Reh2




rhsi+1,j∗

rhsi,j+1∗

 [3.8]

Suppose we choose to do the iterations at half of the points on the solution domain
using [3.3] and [3.7]. Hence, we can define the four-point EDG outer-inner scheme to solve
the Burgers’ Equations [2.1]-[2.2] as follows:

Algorithm 2: Four-point EDG outer-inner iterative method

(i) Divide the solution domain into grids with even number of lines. Define the groups
of points © and �.

(ii) Choose h and set u(0)
ij = v(0)

ij = 0 as initial approximations for the outer iterates.

(iii) Generate sequences v(k+1)
ij and u(k+1)

ij for k = 0,1,2,... as follows:

(a) Generate v(k+1)
ij by the four-point EDG inner iterative scheme using Equation

[3.3] on half of the total nodal points (namely the points of type ©), for a
prescribed termination criterion ε. After the inner iteration converges, compute
the v’s on the remaining points (of the type �) directly using Equation [2.6].
(For the term uij in [3.3], use the most recent value available for uij’s.)

(b) Generate u(k+1)
ij by the four-point EDG inner iterative scheme using Equation

[3.7] also on half of the total nodal points (type ©) for a prescribed tolerance ε.
Similarly, compute the uij’s on the points of type � directly once using Equation
[2.5] after the inner iteration converges. (Here, use the recently obtained v(k+1)

ij

in (a) for the values in Equation [3.7] ).

(c) Store the converged values of both inner iterative schemes

u(k+1)
ij → outer u(r)

ij andv(k+1)
ij → outer v(r)

ij .

(iv) Check the convergence of the outer iteration over the whole interior mesh points
checking whether the following condition is satisfied:

max
{ ∣∣∣outer u(r+1)

ij − outer u(r)
ij

∣∣∣ ,
∣∣∣outer v(r+1)

ij − outer v(r)
ij

∣∣∣
}
≤ δ,

for a specific tolerance δ. If its converges, stop the outer iterative process and the
solutions to the problem are given by outer v(r+1)

ij and outer u(r+1)
ij . Otherwise, go

back to Step (iii).
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Observe that the computational molecule for this scheme is similar to the ones described
in the EDG method for problems in [1]. The iterative evaluation of [3.3] and [3.7] involve
points of type © only, while Equations [3.4] and [3.8] can be evaluated using points of type
� only. As a result, the iteration for each case can be carried out on either one of the two
types of points. After convergence is achieved, the solution at the other half of the points
is evaluated directly once using the centred difference formulae [2.5] or [2.6].

4 Numerical Results

For our experimental work, we consider the Burgers’ Equations [2.1]-[2.2] with the exact
solutions [5]

u =
−2(a2 + a4y + λa5 cosλy(eλ(x−x0) − e−λ(x−x0)))

Re(a1 + a2x + a3y + a4xy + a5(eλ(x−x0) + e−λ(x−x0)) cosλy)

v =
−2(a3 + a4x − λa5 sin λy(eλ(x−x0) + e−λ(x−x0)))

Re(a1 + a2x + a3y + a4xy + a5(eλ(x−x0) + e−λ(x−x0)) cos λy)
, − 1 ≤ x ≤ 1, 0 ≤ y ≤ 2

[4.1]

with the boundary conditions satisfying the exact solutions. Here, a1, a2, a3, a4, a5, λ and xo

can be chosen to produce different behaviour of the exact solutions. For our experiments,
we randomly chose a1 = a2 = 1.0, a3 = a4 = 0.0, a5 = xo = 1.0, and λ = 0.3 for Re
= 10, 100 and 1000. The numerical results obtained from the rotated point outer-inner
scheme and four-point EDG are compared with the centred difference outer-inner scheme,
i.e. the inner iterative procedure is based on the centred difference formula [2.5]-[2.6] where
iterations are done using all the nodal points. The programming language used was Fortran.
Throughout the experiment, δ = ε = 10−11 was used as the termination criteria for both
the outer and inner iterations. Also, for all the methods, the relaxation parameter, ω,
was obtained experimentally to within ±0.01 which gives the most rapid convergence. The
results obtained from the three methods with various sizes of n and for Re = 10, 100 and
1000 are shown in TABLES 1 - 3.

5 Computational Complexity

In order to measure the computational complexity of the three methods, we shall obtain an
estimate of the amount of computational work required from each inner iteration process
on v and u. Assume that there are m2 internal mesh points (where m = n−1) and the
execution times for the adds, mults and divs operations are roughly the same. We estimate
the computational work in terms of arithmetic operations performed per inner iteration on
v and u.

The Point Centred Difference Scheme

Consider Equation [2.6] for the inner iteration on v. From the simplification of this equation,
we obtain

s1 = a1/(8 + a∗2(v
(k)
i,j+1 − v(k+1)

i,j−1 ))

s2 = a3 + a∗4uij s3 = a3 − a∗4uij

[5.1]
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where a1 = 2Reh2, a2 = Reh, a3 = 1/Reh2 and a4 = 1/(2h) are assumed stored before-
hand. The Gauss-Seidel form of [2.6] is given by

ṽ(k+1)
ij = s1 ∗ (a3 ∗ (v(k+1)

i,j−1 + v(k)
i,j+1) + s2 ∗ v(k+1)

i−1,j + s3 ∗ v(k)
i+1,j). [5.2]

Therefore, the number of operations required for m2 internal mesh points including the
over-relaxation process

v(k+1)
ij =ω∗(ṽ(k+1)

ij − v(k)
ij )+v(k)

ij , ( i,j = 1,2,...,m) [5.3]

(but excluding the convergence test) is

18m2 operations per inner iteration, [5.4]

since there are 9 adds, 8 mults and 1 div per point per inner iteration. In a similar manner,
we can estimate the operation counts for the inner iteration on u from Equation [2.5], which
was found to be the same as for v.

The Rotated Point Difference Scheme

The rotated formula [2.8] for the iteration on v, can be written in explicit form as

v(k+1)
ij = 4Reh2

[Re(v
(k)
i+1,j+1−v

(k+1)
i−1,j−1−v

(k+1)
i+1,j−1+v

(k)
i−1,j+1)+8]

×
[(

1
2Reh2−uij

4h

) (
v(k+1)
i+1,j−1 + v(k)

i+1,j+1

)
+

(
1

2Reh2 +uij
4h

) (
v(k)
i−1,j+1 + v(k+1)

i−1,j−1

)]
.

[5.5]

Recall that the iteration is carried out on half of the mesh points, the other m2/2 are solved
directly once using the centred difference formula [2.6].

Let
a1 = 4Reh2, a2 = Reh,a3 = 1/2Reh2, a4 = 1/(4h),

b1 = a1/(a2∗(v(k)
i+1,j+1 − v(k+1)

i−1,j−1 − v(k+1)
i+1,j−1 + v(k)

i−1,j+1) + 8)

b2 = a3 − a∗4uij

b3 = a3 + a∗4uij.

[5.6]

Thus, the (k+1)th iterate of the SOR iterative scheme is defined by

v(k+1)
ij =ω∗(ṽ(k+1)

ij − v(k)
ij )+v(k)

ij , (i,j = 1,(2),n-1) [5.7]

ṽ(k+1)
ij represents the components of the (k+1)th Gauss-Seidel iteration defined by

ṽ(k+1)
ij = b1 ∗ (b2 ∗ (v(k+1)

i+1,j−1+v(k)
i+1,j+1) + b3 ∗ (v(k)

i−1,j+1+v(k+1)
i−1,j−1)). [5.8]

This process requires 11 adds, 7 mults and 1 divs (19 operations ) for one mesh point per
inner iteration, assuming the constants a1, a2, a3 and a4 are stored beforehand. Referring
to [5.1]-[5.2], we can also estimate the number of operations after convergence is achieved.
Specifically, 15 operations per point are needed to calculate the remaining points after
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convergence. Hence, the number of operations required ( excluding the convergence test )
for the rotated point method is

9.5m2 operations per inner iteration
+

7.5m2 operations after convergence.

[5.9]

Once again, the estimates for u using Equation [2.7] coincides with v.

The Four-point EDG Scheme

Referring to Equation [3.3] for the iteration on v, let

a1 = 4Reh2, a2 = Reh,a3 = 1/2Reh2, a4 = 1/(4h),a5 = 2Reh2, a6 = 1/Reh2, a7 = 1/(2h),

b1= a2 ∗ (v(k)
i+1,j+1 − v(k+1)

i−1,j−1 − v(k+1)
i+1,j−1 + v(k+1)

i−1,j+1) + 8

b2 = a2 ∗ (v(k)
i+2,j+2 − v(k)

i,j − v(k)
i+2,j + v(k)

i,j+2) + 8

b3 = a∗2ui+1,j+1 + 2
b4 = a∗2uij − 2
b5 = a1/(b∗

1b2 + b∗
3b4)

c1 = a∗4uij

c2 = a∗4ui+1,j+1

s1= (c1 + a3) ∗ (v(k+1)
i−1,j+1 + v(k+1)

i−1,j−1)+(a3 − c1) ∗ v(k+1)
i+1,j−1

s2 = (a3 − c2) ∗ (v(k)
i+2,j + v(k)

i+2,j+2) + (a3 + c2) ∗ v(k)
i,j+2.

[5.10]
Here, we assume all the ai’s (i = 1,2,...7) are stored beforehand. Then, Equation [3.3]

becomes [
ṽ(k+1)
ij

ṽ(k+1)
i+1,j+1

]
=

[
b5 ∗ (b2 ∗ s1 − b4 ∗ s2)
b5 ∗ (b3 ∗ s1 + b1 ∗ s2

]
, i,j = 1,(2),n-1. [5.11]

The (k+1)th iterate of the SOR variant is then given by

v(k+1)
ij =ω∗(ṽ(k+1)

ij − v(k)
ij )+v(k)

ij ,

v(k+1)
i+1,j+1 = ω ∗

(
ṽ(k+1)
i+1,j+1 − v(k)

i+1,j+1

)
+ v(k)

i+1,j+1.
[5.12]

There are 25 adds, 20 mults and 1 div per block per inner iteration. Hence, the number of
operations required ( excluding the convergence test ) for the four-point EDG inner iterative
scheme is

11.5m2 operations per inner iteration
+

7.5m2 operations after convergence.

[5.13]

This estimate also holds for the inner iteration on u.
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6 Discussion and Conclusion

In this paper, two types of iterative schemes based on the rotated finite difference discretisa-
tion were presented in solving the two dimensional steady Burgers’ equation. By combining
the results for the experimental number of iterations (inner and outer) shown in TABLES
1- 3 with the number of operations required in each inner iteration by each method, we
can get the total number of arithmetic operations for the three methods in order to get the
solution of the problem. The estimations are tabulated in TABLE 4.

From the results obtained, it is apparent that both rotated schemes are faster than the
scheme based on the centred difference formula since their iterations involve only half of
the total nodal points in the solution domain. In terms of accuracy, both rotated schemes
are relatively as good as the latter method since they are of second order accuracies. It can
also be observed that as Re gets larger, the convergence gets to be faster with the number
of iterations in each inner iteration process tends to decrease. One possible explaination
for this could be that as Re gets larger, the matrices resulted from [2.7] and [2.8], which
contain variable elements uij and vij, may have become more diagonally dominant with the
computed uij and vij in the inner iteration processes.

The best results were obtained when the model problem was solved using the four-point
EDG inner iterative scheme. From TABLE 4, clearly it can be observed that the four-point
EDG method requires the least amount of computational work and the total computational
operations in the rotated point scheme is slightly higher than the four-point EDG which
coincides with the pattern of timing results obtained in our experiments. In conclusion, the
new iterative schemes serve as viable alternatives in solving the two dimensional Burger’s
equation.
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