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Abstract In their paper, Ali and Abdullah introduced new iterative methods based
on rotated(cross) five-point finite difference discretisation in solving a coupled system
of elliptic partial differential equations (p.d.e.’s) where these methods were found to be
more superior than common existing methods based on the centred five-point difference
schemes. In this paper, the application of a new iterative schemes derived from the
rotated finite difference discretisation to the numerical solution of the nonlinear steady
two dimensional Burgers’ equation is considered. Some numerical experiments are
presented and we will show that the new methods are accurate and comparable to the
existing finite difference method.

Keywords Numerical methods; Burgers’ equation; rotated finite difference; explicit
decoupled group (EDG) method

Abstrak Dalam kertas kerja mereka, Ali dan Abdullah telah memperkenalkan kaedah-
kaedah lelaran baru berdasarkan pendiskretan beza terhingga lima titik putaran dalam
menyelesaikan sistem berpasangan persamaan pembezaan separa eliptik di mana kaedah-
kaedah ini telah didapati lebih baik daripada kaedah sedia ada yang berdasarkan skema
beza terhingga ke tengah. Dalam kertas ini, aplikasi skema lelaran baru yang diter-
bitkan daripada pendiskretan beza terhingga putaran ini kepada penyelesaian berangka
persamaan Burgers dua dimensi tak linear telah ditinjau. Beberapa ujikaji berangka
akan dibentangkan dan kami akan menunjukkan bahawa kaedah-kaedah baru ini adalah
jitu dan setanding dengan kaedah beza terhingga yang sedia ada.

Katakunci Kaedah berangka; persamaan Burgers; beza terhingga putaran; kaedah
kumpulan nyah pasangan tak tersirat (KNPTT)

1 Introduction

The algebraic equations produced by discretising fluid dynamics governing equations are
usually nonlinear due to the nature of the convective terms. To cope with the nonlinearity
of the discretised equations, some form of outer-inner iterative procedure is consequently
inevitable. This type of procedure has long been investigated by researchers to solve such
problems particularly the Navier-Stokes and biharmonic equations ( [6], [7], [9], [10], [11]).
Recently a new outer-inner iterative procedure derived from the rotated (skewed) finite
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difference formulae ( [4], [8], [12] ) was successfully formulated in solving the two dimensional
steady Navier-Stokes equation ([2], [3]). In this paper, we extend the application of this type
of outer-inner iterative procedure to the Burgers’ equation; one of the most fundamental
nonlinear problem in computational fluid dynamics. We proceed as follows. In Section 2,
a point iterative scheme based on the rotated five-point formula in solving this equation is
developed. In Section 3, its group-wise counterpart, i.e. the four-point Explicit Decoupled
Group (EDG) scheme, which was firstly introduced in solving the Poisson equation [1],
will be described. The numerical experiments of these methods are discussed in Section 4,
followed by the theoretical complexity analysis and discussion of results in Sections 5 and
6 respectively.

2 Rotated Point Iterative Algorithm

The problem to be considered will be formulated as follows. Consider the steady two-
dimensional Burgers’ equations
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with Dirichlet boundary conditions on u and v. This equation is considered to be a simplified
form of the Navier-Stokes equation, where the pressure term is neglected. Here, Re is the
Reynolds number. For our discussion, the solutions u and v that satisfy these equations are
sought in the interior region S as shown in Figure 1.

U= ux ya), v = (X yo)

¥ =yo
u=u1y 5 u=u(l.yl
v=v-1y) v=v(1y]
y=0
x=-1 u=ufx0), v=x0 x=1

Figure | Solution domain of the Burgers™ equations

Let n be a fixed positive integer. Determine the grid size h = 2/n so that a uniformly
spaced square network (Ax =Ay = h) with x; = —1 +ih,y; = jh, 1,j = 0,1,2,...,n, is imposed
on S. Using the centred difference approximation, Equations [2.1] and [2.2] can now be
discretised at the grid point (xi,y;) by the following finite difference equations:
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Neglecting the error terms, the following forms can be obtained from [2.3] and [2.4]

[ (i1 — iy 4 ]
_(u +1,32hu LJ) i | s
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ij=123, .., n

Observe that if v is known, then we can solve [2.5] iteratively for u, while if u is known,
we can solve [2.6] iteratively for v, and vice versa. Analogous to the schemes presented

for the Navier-Stokes problem ([2], [3]), we can devise a similar algorithm by first making

initial guesses ui(j0 ) and VUO , and then generate an alternating sequence of outer iterates:
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Figure 2 Alternating sequence of outer iterates

The iteration is continued until for some k, k) (k)} < 4 and } (kt1) _ (k) )

Uij
for some given tolerance . The solutions u( +1) (k1)

the numerical solutions of the given problem

Another approximation may be obtained by exploiting the four points (i+1, j+1) and
(iF1, j£1) located on the skewed (rotated) stencil ([4], [8], [12]). The resulting difference
approximations for the Burgers’ equations can thus be shown to be as the following;:

and v;; generated are then taken to be

Reh(u; 5 —Wi—1jt1+HUip1,j41—Wi-1,i-1)+8 vij 1
{ 4Reh? wy + (7 — sRe?) Worie1t 2.7]

Vij 1 —vij 1 vij 1 o
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A point iterative scheme based on the rotated difference equations [2.7] and [2.8] can
now be constructed for the solution of the given problem. Lets consider all alternate points
on the x-y plane as shown in Figure 3. Because the evaluations in [2.7] (and also [2.8])
involve points of type () only, iterations can be carried out using the points of this type
only.
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Figure 3 FRofafed point iterative scheme for n=5

There are 16 interior grid points to be computed. The iterations on u (assuming v
is known) using Equation [2.7] are done only on points of type (). Iterations on v using
Equation [2.8] are also done in a similar way using the values of u just computed. The
iterations can also be done in reverse order, i.e. do the iterations on v first using Equation
[2.8], then use these most recent values of v to iterate on u using Equation [2.7]. These
points undergo iterations until a chosen convergence criteria is met. Only after the iterations
have converged, the values of the solutions at the remaining points (of the type [I) will be
computed directly once using formula [2.5] (or [2.6]) of centred difference approximations.
In our example, the computation of the eight points of type O using Equation [2.7] can be
represented in matrix form [2.9]-[2.10]. The computation of the eight points using Equation

[2.8] can also be represented in a similar way. Here, we let ¢ = and d :ﬁ. We can now

formulate the rotated point outer-inner iterative method in solving the problem [2.1]-[2.2]
as follows:
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Algorithm 1: Rotated point outer-inner iterative method 5
(i) Divide the solution domain into grid lines by choosing h = —. Define the group of
n

points which will be involved in the iterative computations (i.e. points of type () and

Set 5 0 ( )= = 0 as initial approximation for the outer iterates.
Vij

(iii) Generate approximations v( ) and u(k+1) for k = 0,1,2,... as follows:

b b A

(k+1) ( (k+1)

(a) Generate v;; oru; ) of Equation [2.8] (of Equation [2.7]) using the rotated

point 1terat1ve scheme described previously for a prescribed tolerance ¢.

(b) Generate ul(Jk+1) (or V(k+1)) of Equation [2.7] (of Equation [2.8]) using the rotated
point iterative scheme for the prescribed tolerance €.

(Here, use the recently obtained V( 1) ( (kH))

in the formulae ).

oru (a) for the values vij(or ;)

(k+1) ()

(c) Store the converged values of both inner iterative schemes w; — outer_u;

(k+1) ()

andv — outer_vij

(iv) Check the convergence of the outer iteration over the whole interior mesh points, i.e.
check whether

max{ ’outer u(J r+1)

()

outer_uij

, outer_vi(er) - outer_vi(jr)’ } <4,

for a prescribed termination criteria §. If yes the numerical solution of the given
(r+1)

problem is given by outer_vii and outer_ u . Otherwise go back to Step (iii).
[ uii 1 i b11
us1 bs1
Uz2 bao
Ug2 b4z
A x = , 2.9
ui3 b1 [29]
uss b33
U24 bag
| Waa | | bas |

where

bi1= (cvy;+d)uyy—(cvy; —d)ugy+(cvy;+d)uy,
bg1= (cvy;+d)uy+(cvy +d)uy,

baa= 0

baa= (ev p+d)us, — (v, —d)ug, [2.10]
biz= (cv z+d)ugy—(cv 3 —d)uy,

bs3=0

boy= —(cvy,—d)uy;—(cvy, —d)ug,
baa= (v +d)ugs—(cvyy—d)uss—(evy —d)ug;
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3 Four-Point Edg Iterative Algorithm

Adopting the same idea as the four-point EDG in [2] and [3], the four-point EDG for
solving the problem [2.1]-[2.2] can now be formulated. Without loss of generality, assume

i(ij) is done first using Equation [2.8] followed by the generation of
ui(ij) using Equation [2.7]. Using the rotated finite difference approximation [2.8] for vi;,
any group of four points on a discretised solution domain can be solved resulting in a (4x4)

system of equations as shown in [3.1]-[3.2].

the generation of v

Vi_]' [ I‘hSi_]'
Vit1,j+1 rhsit1,j+1
Vit,j rhsitq,j
Vij+l | thsijh

where

rhsjj= (cug+d)vi_y jq+(=cu+d)vi gy 5o Hew+d)vi 5

rhsip 1= (G 51 +A)V; ot (=g 5 +d)V, (=g 5 +d)Vig, 1o 3.2]
rhsip1j= (—cuy ) j+d)vig i H(—cu, s+ d)vio ey j+d)vi .
rhsijra= (e jq+d)vi_y juotH(—cu; o +d)vi ooy +d)vi g 5
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The system [3.1]-[3.2] leads to a decoupled system of (2x2) equations which can be made
explicit as follows:

k+1
vii (et1)
Vidl,j+1

(4Reh2 )2

k k
[“Ch(V;(+)1,j+1*Vi—l,j—l*Vi+1,j—1+Vi—1,j+1J+8] [Rch(VHz,Hrvi(,j) “Vit2,jHVij42)+8] + (Rehujpq ju1+2)(Rehujj—2)

k rhs::

Reh(vi o5 o—v{) —vipn j+vijia)+8 w4 a e

x 4Reh? ) R
‘ a Reh(vii) j4q—Vie1,j—1"Vit1,j—1FVi—1,j+1)+8 rhsjpa j41
Ui+ T IReh?
[3.3]
and
k+1
vii (et1)
Vit 1,j+1

(4Reh?2)2

k k
[RCh(Vi(Jr)l,jJrl7Vi*1,j*17Vi+1;J*1+Vi*1;J+1)+8} [R'°h<Vi+2,j+2*V;(,j)*Vi+2,j+Vi,j+2>+8 + (Rehujy g j4q+2)(Rebuj;—2)

(%) heitq
Re}‘(\’i+1,j+2*\’i+]7j*vifl,j+Vi71,j+2)+8 ) 4 rhsjiq;
1Reh? Uit T
X ) [3.4]
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—oUij+1 + IReh2

Similarly, from the generation of u;; using Equation [2.7], a (4x4) system of equations
can be formed as shown in [3.5]-[3.6]:
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The system [3.5]-[3.6] leads to a decoupled system of (2x2) equations whose explicit

forms are given by:

“ (k+1)
{ Uig1,541 ] -

(4Reh2 )2

k k
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rhsj; *
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4Reh?Z Y
X
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[3.7]
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and
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Yij41
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Suppose we choose to do the iterations at half of the points on the solution domain
using [3.3] and [3.7]. Hence, we can define the four-point EDG outer-inner scheme to solve
the Burgers’ Equations [2.1]-[2.2] as follows:

Algorithm 2: Four-point EDG outer-inner iterative method

(i) Divide the solution domain into grids with even number of lines. Define the groups
of points () and O

(ii) Choose h and set ui(jo): vi(jo): 0 as initial approximations for the outer iterates.

(iii) Generate sequences Vi(ij) and ui(ij) for k = 0,1,2,... as follows:

(a) Generate Vl(]k +b) by the four-point EDG inner iterative scheme using Equation

[3.3] on half of the total nodal points (namely the points of type (), for a
prescribed termination criterion €. After the inner iteration converges, compute
the v’s on the remaining points (of the type OJ) directly using Equation [2.6].
(For the term w; in [3.3], use the most recent value available for uy;’s.)

(b) Generate ui(.k +1) by the four-point EDG inner iterative scheme using Equation

[3.7] also on half of the total nodal points (type () for a prescribed tolerance e.

Similarly, compute the uj;’s on the points of type [ directly once using Equation
[2.5] after the inner iteration converges. (Here, use the recently obtained vi(jk+1)

in (a) for the values in Equation [3.7] ).

(c) Store the converged values of both inner iterative schemes

(k+1)
Wy

— outer_ui(jr) (k+1)

ij

(r)

andv — outer_vij

(iv) Check the convergence of the outer iteration over the whole interior mesh points
checking whether the following condition is satisfied:

max{ ‘outer_ui(jrﬂ) - outer_ui(jr)‘ , ‘outer_vi(jrﬂ) - outer_vi(jr)‘ } <4,
for a specific tolerance 0. If its converges, stop the outer iterative process and the
i(].rH) i(].rH). Otherwise, go

solutions to the problem are given by outer_v and outer_u

back to Step (iii).
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Observe that the computational molecule for this scheme is similar to the ones described
in the EDG method for problems in [1]. The iterative evaluation of [3.3] and [3.7] involve
points of type O only, while Equations [3.4] and [3.8] can be evaluated using points of type
O only. As a result, the iteration for each case can be carried out on either one of the two
types of points. After convergence is achieved, the solution at the other half of the points
is evaluated directly once using the centred difference formulae [2.5] or [2.6].

4 Numerical Results

For our experimental work, we consider the Burgers’ Equations [2.1]-[2.2] with the exact
solutions [5]

—2(ag + a4y + Aas cos Ay (eMF—r0) — g=A@—w0))
Re(ay + asr + azy + agzy + as(eX@=20) 4 e=Aa—zo
—2(a3 + asx — Aas sin Ay (eM==%0) 4 e~ AMz—zo
Re(ay + asx + asy + asxy + as(er@=20) 4 e=A@—20)

, —1<2<1,0<y<2

[4.1]

with the boundary conditions satisfying the exact solutions. Here, a1, as, as, aq, a5, A and x,
can be chosen to produce different behaviour of the exact solutions. For our experiments,
we randomly chose a1 = a2 = 1.0,a3 = a4 = 0.0,a5 = z, = 1.0, and A = 0.3 for Re
= 10, 100 and 1000. The numerical results obtained from the rotated point outer-inner
scheme and four-point EDG are compared with the centred difference outer-inner scheme,
i.e. the inner iterative procedure is based on the centred difference formula [2.5]-[2.6] where
iterations are done using all the nodal points. The programming language used was Fortran.
Throughout the experiment, § = ¢ = 10~'! was used as the termination criteria for both
the outer and inner iterations. Also, for all the methods, the relaxation parameter, w,
was obtained experimentally to within +0.01 which gives the most rapid convergence. The
results obtained from the three methods with various sizes of n and for Re = 10, 100 and
1000 are shown in TABLES 1 - 3.

5 Computational Complexity

In order to measure the computational complexity of the three methods, we shall obtain an
estimate of the amount of computational work required from each inner iteration process
on v and u. Assume that there are m? internal mesh points (where m = n—1) and the
execution times for the adds, mults and divs operations are roughly the same. We estimate
the computational work in terms of arithmetic operations performed per inner iteration on
v and u.

The Point Centred Difference Scheme

Consider Equation [2.6] for the inner iteration on v. From the simplification of this equation,

we obtain (X) (k+1)
st =a1/(8+a5(Vijh — vij_1'))

. . [5.1]
So = ag + a,Ujj S3 = a3 — a4 Ujj
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where a; = 2Reh?, a; = Reh, a3 = 1/Reh? and a; = 1/(2h) are assumed stored before-
hand. The Gauss-Seidel form of [2.6] is given by
(k+1)

v =81 * (ag * (

U V(k-i-l) (k) (k+1)

K
A vi7j+1) + 8ok Vi +83% vi(Jr)Lj). [5.2]

Therefore, the number of operations required for m2 internal mesh points including the
over-relaxation process

Vi =0x (@Y — vl (1) = 1,2,...m) [5.3]

(but excluding the convergence test) is

18m? operations per inner iteration, [5.4]

since there are 9 adds, 8 mults and 1 div per point per inner iteration. In a similar manner,
we can estimate the operation counts for the inner iteration on u from Equation [2.5], which
was found to be the same as for v.

The Rotated Point Difference Scheme

The rotated formula [2.8] for the iteration on v, can be written in explicit form as

(k+1) 4Reh? %
ij - (k) (k+1) (k+1) (k)
Y [Re(viy) ja1=Vio1,j—1 7 Vig1,j—1TVio1,j41) 8

i (k+1) (k) ij (k) (k+1)
[(2R1eh2 —) (Vi+1,j71 + Vi+1,j+1) + (R + 1) (Vifl,jﬂ +Vifl,jfl)} :

[5.5]

Recall that the iteration is carried out on half of the mesh points, the other m?/2 are solved
directly once using the centred difference formula [2.6].

Let
a; = 4Reh? ay = Reh,ag = 1/2Reh? a, = 1/(4h),
* k k+1 k+1 k
by = a;/(a2 (Vi(+)1,j+1 - Vi(fl,j)fl - Vi(+1,j)71 + Vi(f)l,jJrl) +8) [5.6]
b2 = a3 — aZuij
bz = a3 + ajuij.
Thus, the (k+1)th iterate of the SOR iterative scheme is defined by
v T =en (i -, (1 = @) 5.7
fzi(jk+1) represents the components of the (k+1)th Gauss-Seidel iteration defined by
~ (k41 k+1 k k k+1
Vi(j =y (b * (V1(+J1r,j)71+vi(+)1,j+1) + by * (Vi(f)l,j+1+vi(fJ1r,j)fl))' [5.8]

This process requires 11 adds, 7 mults and 1 divs (19 operations ) for one mesh point per
inner iteration, assuming the constants al, a2, a3 and a4 are stored beforehand. Referring
to [5.1]-[5.2], we can also estimate the number of operations after convergence is achieved.
Specifically, 15 operations per point are needed to calculate the remaining points after
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TABLE 1: Iterative count and CPU measure of the camfred difference
outer-inner schetne

n Ea w Aove-fbs | Avedbs | Humber | Mamber | Humber | Tume
Emmrfor | Enorfor | ofodder | of omer | of omer | [secs)
u v iterates iter. for iter. for
v 1
a5 10 1rs 146E07 [T 1 102 105 G833
2 a3 v}
3 10 a5
4 1 1
100 1rs 1 46E02 G /AsER 1 100 101 5812
2 70 54
3 35 G
4 1 1
1000 1rs 146K 458K 10 1 T8 a2 EEFEES
2 58 A0
3 4 1
4 1 1
3T 10 125 & 8TE-0R 313K 1 152 154 218 54
2 120 an
3 a8 33
4 1 1
100 125 G 25E-00 313K 1 149 150 19109
2 107 TG
3 42 3
4 1 1
1000 124 &6 75E-10 204E-10 1 127 138 145 46
2 aQ T
3 32 1
4 1 1
49 10 128 IOTERR 1 20E-e 1 199 201 402 56
2 146 120
3 a1 30
4 1 1
100 122 EE ] 1T9ER 1 196 192 436 40
2 136 102
3 63 1
4 1 1
1000 133 3A4E-10 155E-10 1 150 176 354095
2 114 a7
3 38 1
4 1 1
61 10 181 2 58E03 113E-08 1 243 253 93365
2 196 147
3 109 45
4 1 1
100 181 1 56E-09 113E0% 1 246 243 25007
2 169 123
3 T3 1
4 1 1
1000 190 A35E-10 TRAE11 1 201 432 Tli68
2 155 108
3 43 1
4 1 1
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TABLEZ: Tterattre count and CPU measure of the rofefed point
outer-inner schere

n Ex w Srre-Bbe | Hpre-fbe | Miovber | Mionber | Mowber | Thne
Bmorfor | Emorfor | of onmer | of Toer | of rowr | (secs)
1 v iterates iter. for iter. for
v u
13 10 171 1 72E-07 109E-07 1 ¥l Ti 24T
1 it 4
3 il 1
L] 1 1
100 171 172F-0% 109F-0% 1 [ Tl FFE}]
1 5 3
3 2 7
] 1 1
1000 170 1 77E-08 109E-02 1 i} il 1942
1 7 3
3 1 1
+ 1 1
i7 1n 170 SE-03 T14E-02 1 111 111 ha
1 3] i
3 i m
L] 1 1
100 170 SIIE-00 S17E-00 1 Ex 101 Tl
. e e
3 3 7
1] 1 1
1000 170 S2TE-10 519F-10 1 = ] il
1 i 7
3 ¥l 1
L] 1 1
[X] 10 154 +IE-0Z 1EGE-02 1 143 10 19709
1 110 1]
3 i 31
1] 1 1
100 154 + Z0F-00 1oEE-00 1 117 153 1il M
1 o [
3 7 i}
L] 1 1
1000 154 + TRE-10 F0EE-10 1 115 112 15%40
1 o k1]
3 it 1
L] 1 1
i1 10 127 JLENT | INEDS 1 1% 137 37308
1 13 UK
3 T +l
+ 1 1
100 127 311E-02 14 E-09 1 1il liz T
1 123 1]
3 7 3
L] 1 1
1000 157 INFELD | 2DEE-I0 1 142 171 T
1 107 4]
3 i 1
L] 1 1
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convergence. Hence, the number of operations required ( excluding the convergence test )
for the rotated point method is

9.5m? operations per inner iteration
+ [5.9]

7.5m? operations after convergence.

Once again, the estimates for u using Equation [2.7] coincides with v.

The Four-point EDG Scheme

Referring to Equation [3.3] for the iteration on v, let

a; = 4Reh? ay = Reh,az = 1/2Reh?, ay = 1/(4h),a5 = 2Reh? ag = 1/Reh?, a; = 1/(2h),

B (k) (k+1) (k+1) (k+1)
b= as * (Vi+1,j+1 —Vi1,j—1 ~ Vigi,j-1 T Vi—l,j+1) +38

by = ag * (Vi(i(r)Q,j+2 - Vi(,l;) - Vl(«li)m + Vi(,l;3r2) +38
b3 = aguit1 41 + 2

by = ajuy; — 2

bs = a1 /(b¥by + biby)

c1 = ajuyj

C2 = ajlit1,j+1

k+1 k+1 k+1
s1= (¢ +ag) x (Vi(fl,jzrl + Vi(fl,j)fl)—i_(aB —c1) * Vi(+1,j)71

k k k
sy = (a3 — ca) * (Vi(+)2,j + Vi(+)2,.i+2> + (ag +c2) * Vi(,.ilz-

[5.10]
Here, we assume all the a;’s (i = 1,2,...7) are stored beforehand. Then, Equation [3.3]
becomes
- (k+1)
Vij _ b5*(b2*81—b4*S2)] 5= 1.(2 1 5.11
[ Wi ] [ by (baxsy +bywsy |7 0= BEL 5-11]
The (k+1)th iterate of the SOR variant is then given by
(k+1)_  —(k+1) &)y, (k)
vy =w (Vs — vy )V 5.1
k+1 ~(k+1 k k ‘
Vi(+1,jzr1 swx (Vi(+1,jzrl - Vi(+)17.i+l> + Vi(+)1,j+1'

There are 25 adds, 20 mults and 1 div per block per inner iteration. Hence, the number of
operations required ( excluding the convergence test ) for the four-point EDG inner iterative

scheme is
11.5m? operations per inner iteration

+ [5.13]

7.5m? operations after convergence.

This estimate also holds for the inner iteration on u.
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TABLE 3: Iteratrve count and CPU measre of the 44t EDG

outer-inner scherog
n Re W Bore-fhe | Bare-fbe | Mipwber | Minwber | Mampber | Time
Erorfor | Emorfir | of outer | of ewr | of Drer | (secs)
1 v Iterates iter. for | iter. for
v 1
13 10 13 175807 1 09E-07 1 S il nm
1 7 k]
b 13 19
} 1 1
100 1.i% 1 7ER-03 1 05E-03 1 51 55 1
1 §2 m
b 19 7
[) 1 1
1000 1% 1 7iE-09 1 05E-0%9 1 i 9 175
1 i 13
b 14 1
) 1 1
37 10 17 SHE-03 TIHE-03 1 3] o TERT
1 a7 ]
b i3] 19
4 1 1
100 17 SHIE-09 T1TE-0% 1 Ti o T
1 k1] 3]
b 17 1
[) 1 1
1000 17 S2EE-10 T0E-10 1 W7 1 o
1 [ i
b 12 1
} 1 1
[X] 10 13 [¥ 0] 1OZE-0Z 1 112 1Li 1817
1 k1) 7
b [ 4
[) 1 1
100 13 +IE-09 10009 1 101 108 19147
1 o] N
b 3 ]
) 1 1
1000 132 +TIE-10 3 09E-10 1 = o 11045
1 [ 7
b Fi] 1
[) 1 1
il 10 138 J1iE-0% 1 ME-0Z 1 143 173 M0
1 102 ]
b i 7
} 1 1
100 138 J11E-09 1 ME-09 1 133 133 19519
1 o (31
k] 38 1
[} 1 1
1000 138 J17E-10 T I4E-10 1 117 123 2013
1 gl 3
b 17 1
} 1 1
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6 Discussion and Conclusion

In this paper, two types of iterative schemes based on the rotated finite difference discretisa-
tion were presented in solving the two dimensional steady Burgers’ equation. By combining
the results for the experimental number of iterations (inner and outer) shown in TABLES
1- 3 with the number of operations required in each inner iteration by each method, we
can get the total number of arithmetic operations for the three methods in order to get the
solution of the problem. The estimations are tabulated in TABLE 4.

TABLE 4 Anthrnetic operations estirnates for the cenfred difference,
rofafed point and dgot EDG schemes

Cenfred Rodated dpt EDG
n Fe Difference FPoint Sche e
Sche me Scheme
25 10 Ti0rn” 208Am” 225 m?
100 A 2drn’ 2530r’ 2420y
1000 540901’ 2197 5m? 2026 51’
37 10 111428 A3 Al51rm?
100 04301 36153’ 3452 5m’
1000 2440’ 3100’ 2831 5m’
49 10 JENEEN 5627 5288 5’
100 12584 4420 Sm? 4407
1000 10224 3005’ 3604’
&l ] 120908 A91 0’ 6520 51’
100 15516m* A731 5m? 2511m?
1000 131 76w 4914 S’ 4448 S’

From the results obtained, it is apparent that both rotated schemes are faster than the
scheme based on the centred difference formula since their iterations involve only half of
the total nodal points in the solution domain. In terms of accuracy, both rotated schemes
are relatively as good as the latter method since they are of second order accuracies. It can
also be observed that as Re gets larger, the convergence gets to be faster with the number
of iterations in each inner iteration process tends to decrease. One possible explaination
for this could be that as Re gets larger, the matrices resulted from [2.7] and [2.8], which
contain variable elements uj; and vij, may have become more diagonally dominant with the
computed uj; and vij in the inner iteration processes.

The best results were obtained when the model problem was solved using the four-point
EDG inner iterative scheme. From TABLE 4, clearly it can be observed that the four-point
EDG method requires the least amount of computational work and the total computational
operations in the rotated point scheme is slightly higher than the four-point EDG which
coincides with the pattern of timing results obtained in our experiments. In conclusion, the
new iterative schemes serve as viable alternatives in solving the two dimensional Burger’s
equation.
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