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Abstract A new algebraic method to solve the axial two and three - index trans-
portation problem that is based on the Kronecker product of matrices is suggested. It
is applied to solve the axial N(IN > 2) - index transportation problem, as a general
case. Further, the optimal feasible solution of these problem is obtained. The proposed
method is considered algebraic, simple, robust and easily programmable.
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1 Introduction

The transportation problem is a special case of linear programming problem. It deals with
the shipment of goods from a set of sources to a collection of destination centers at a
minimum cost. This problem has applications in applied science, in economic planning,
and in many areas of the industry. There is a rich literature dealing with the balanced
transportation problem which is also called the two-index transportation problem solved
by various methods such as: Northwest corner method, least cost method, Vogel’s method,
and some other methods [ 4, 5].

The axial three-index transportation problem, which was considered by Schell [7] and has
been studied by various researchers [1,2,6,7] is a generalization of the axial two-index trans-
portation problem. Bammi [2] formulated the transportation problem with generalized-
indices and proved a theorem on the number of its basic variables. Korsnikov and Burkard
[6] showed some theorems concerning the regularity, representability and the index of such
problems. Recently Bulut [3] investigated some algebraic properties of the singular value de-
composition of basic variables and singular values in the two-index transportation problem.
Also Aysun Bulut [1] generalized the results in [3] and investigated the further relations
between the planar and axial transportation problems.

In this paper, we suggest a new efficient algebraic method to solve the axial N -index
transportation problem that is based on the Kronecker product of matrices. The method
is illustrated by formulating the problem as a linear programming involving the Kronecker
product of matrices and partitioned these matrices in order to get simple equations. By
solving these equations, we obtain the initial feasible solution of the problem, then we obtain
the optimal solution.

The following notations are used in this paper:
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R™*™ _ the set of all m x n real matrices.

AT - the transpose of matrix A.

rank(A) - the rank of matrix A.

e A® B - the Kronecker product of matrices A and B.

I, - the m x m identity matrix.
e 1,, - the 1 x m vector whose entries are all 1.

For any two matrices A = [a;;] € R™*" and B = [by;] € RP*?, the Kronecker product of
matrices A and B is defined as the partitioned matrix A ® B = [a;;B] € R™P*™,

2 Problem Statement

Consider a commodity which is available at m sources (numbered 1,2, --- ,m) and is re-
quired at n destination centers (numbered 1,2,---,n). Let a; be the amount of the com-
modity available at source 4, b; the amount of commodity required at destination center
J, and ¢;; the cost of transporting one unit of the commodity from source ¢ to destination
center j. Now if z;; is the amount of the commodity to be transported from source ¢ to

n m
destination center j, the ) z;; the total amount transported from source i, ) z;; the
j=1 =1

m
total amount received at destination center j, and ) a; the total amount available at all
i=1

n
the m sources, and ) b; the total amount required at all the n destination centers and
i=1
m n ’
>
i=1 j=
commodity which is available at m sources to n destination centers so that the objective

function: o
F(8) =" cijmi; (1)

i=1 j=1

cijzi; will be the total cost. Thus the problem is determined by transporting a
1

is to be minimized with the following assumptions:

Q) Y wij<ai,i=12 ., m (2)
j=1
m
i=1

(i) z; >0, i=1,2,.., m, j=1,2, .., n (4)

Notice the equation (2) states that we do not send more than the available quantity a;.
Similarly equation (3) states that the destination center j receives its minimum requirement
bj, and x;; , c;; , a; and b; are all positive integer numbers.
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Therefore, the transportation problem has a feasible solution if and only if

Z a; > Z b; (5)
i=1 j=1

This case is called the “unbalanced transportation problem”.

Any transportation problem in which the problem data satisfies equation (5) has at least
one optimal solution z;; where 0 < z;; < min(a;, b;).

If equation (5) is satisfied as equality, the transportation problem is called the “axial two-
index transportation problem”. This problem can be formulated as a linear programming
problem with:

m n
min E E CijTij
Tij

i=1 j=1
subject to:

Q) Y wij=a ,i=12.,m (6)
j=1
m

() Y mi=b; ,i=1,2..,n (7)
i=1

m n
(iii) ;; >0, for all ¢ and j, where Zai =Zb]- (8)

i=1 j=1

In section 4, we will discuss the general case of the axial N(IN > 2)-index transportation
problem.

3 Algebraic Method for Solving the Axial 2 -Index Transportation
Problem Based on the Kronecker Product of Matrices

Let us assume that the axial two-index transportation problem has m sources and n des-
tination centers. This problem can be formulated as a linear programming based on the
Kronecker product with:

min {cz : Az = g,1,a = 1,b,2 > 0}. 9)
x
Here,
I, I, . ... I, tm —rows
PR B oy see (LB ] Jmesowees 0
Tl 0 1 ... O n—rows | I,®1, | }n— destinations
0, O 1

lp=[1,1,..,]] € R"™*™  1,=][1,1, .., 1] € R**"

a=[a, az, ..., am]" € IR™ | b=[by,bs, ..., by]" € R**!
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— 1xmn
c= [011, C21y «vvy Cmly €22y coey Cm2y veeey Clpy wony Cmn] €ER
T mnx1
Tr = [.’1311, T21y woey Tly L2225 woey L2y eoeey Tlpy -ony .CEmn] €ER
_ T m+n)x1
g = a1, 2, ...y Qm, b1, ba, o, by] € R(m+n)

Note that if we rearrange z as:
_ T Rmnx1
T = [T11, T12, s Tiny T22, <oy T2ns -y Tmly oy Tmn] €

then the matrix A in (10) will have the following form :

1, 0 ... 0
0p, 1, ....0, m — rows I,®1, }m — sources
0, 0 1 = (11)

1, ®1I, | }n— destinations

I, I,....I, | }n—rows
Notice that the matrix A defined in (10) has the following properties:
(i) The order of A is (m + n) X mn.
(ii) A is {0,1} matrix, i.e., every entry of A is either 0 or 1.
(iii) Every column of A has precisely 2 ones.
)

(iv) A is a totally unmodular matrix, i.e., every square submatrix of A has determinant
—lor1or0.

(v) The rows of A are partitioned into two disjoint sets Ty and T», where T} is m-sources
which contains (n) ones and T is n - destination centers which contains (m) ones and
the repetition of number 1 in T} equals the repetition of number 1 in T5.

We note also that the matrix A, defined in equation (11) satisfies the properties (i) to (v).

3.1 Theorem

Let A and Ay be the matrices defined in (10) and in (11), respectively. Then the (m + n)
rows of A and A, are linearly dependent.

Proof

Let a®, (i =1,2,---,m) be the i row in T; and b (5 =1,2,---,n)D be the j row in
Ty. But al® € R™ ™" contains n ones and b¥) € R'™" contains (m) ones. Since the
repetition of number 1 in T equals the repetition of number 1 in 75, then

ia(i) - f:bf =0.
i=1 j=1

Hence the rows of A are linearly dependent.
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3.2 Theorem
Let A and Ay be the matrices defined in (10) and in (11), respectively. Then

rank(A) = rank(Ay) =m+n — 1.

Proof

Let x be rearranged as

T
x = [1‘11,5612,"' 3 T1n, 21,%22,°° ,T2n," " ,Tml, """ 7-75mn] .

Then by Theorem (3.1), we have
rank(A4) = rank(Ax) < m + n.
Now consider the (m + n — 1) columns as:
A1ny A2ny " " 5 Amn, 11,312, " 5 A1 (n—1)-

Deleting the last row from A, and rearranging the entries, gives a square triangular matrix
D of order
(m+n-1)x(m+n-—1)

and all diagonal entries are 1. The general form of D is:

| Iy F | 1
D—[O Inl],whereF—[O].

Hence det (D) =1 # 0 and rank(D) = rank(A4) = rank(Ay) =m +n —1.

Since rank(4) =m +n — 1 and 1,,a = 1,,b, the system Az = g defined in the equation
(9) can be solved in terms of (m + n — 1) linearly independent equations. Now, after we
delete the first row from matrix A and rearrange the columns of A, we can rewrite (9) in
the following form:

min {Lz = h: lma=1ab, 2 > 0}, (12)
where
n n(m—1)
L m-1T (1, ®In 1) ¢ R(m+n—1)xmn
. | I, (In ® 1 21)
h=[as, ag, .« am, bi, by s ooy by] € ROPENZDX
T = [T11, 12, ey L1, T225 eony Loy cooey Ty oo xmn]T e pmnxl

The (m +n — 1) x mn matrix L of rank(L) = m + n — 1 is called the “simplest matrix
of matrix A and A”.

The axial two-index transportation problem always has a feasible solution and hence an
optimal solution. Now in order to obtain an initial basic feasible solution of the axial two-
index transportation problem depending on the idea of the Kronecker product of matrices,
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we solve the system Lx = h defined in (12) by rewriting it as the following form:

n n(m—1) 1 1
m—1 0 (ln ® Imfl) ‘ U1 n _ hl m—1 (13)
n In (In & ]-mfl) Y2 n(m—1) h2 n
Here,
y1 = [211, %12, -+ 710" € R™¥T
Y2 = [1'217:1"227 5, X2p, 3T, 7$mn]T € R"(mil)X1
hl = [0/2,0/3, o 7am]T S R(m_l)XI
hs = [b1,ba, -+ ,b,]T € R™*?
Now, the equation (13) gives:
1p Q@ Im—1]y2 = M (14)
Y1+ [In @ Im—1]y2 = ho (15)

where (14) is a system which contains (m — 1) equations and n(m — 1) variables and it
is easy to solve it by determining the values of z;; in y» which satisfies of the following
subjects:

n m
Exm =a; , 1=1,2,..,m, E Tij=bj , j=1,2, ., n
Jj=1 i=1

and taking the other variables are zeros. Also (15) is a system which contains at most
(m +n — 1) nonzero variables. Since y» is known by solving (14), then it easy to find y; as

N = h2 - [In ® 1m,fl] Y2 (16)

By this method, we obtain an initial feasible solution of axial two-index transportation
problem and then the optimal solution. It is also possible to use this method to obtain an
initial feasible solution for un balanced transportation problem by changing it to the axial
transportation problem and then obtain the optimal solution.

3.3 Example

Assume that the axial two- index transportation problem has three sources and three des-
tination centers and related data are given in the following table:

Destinations
1 2 3
31 11| 4|15
Sources 22| 1 | 2 | 5 Supplies
314|513 ]|5
5 10 10
Demands

1
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In order to find the minimum cost of this problem by using the Kronecker product of
matrices, we compute:

21
22
_ 101010 I3 _ 5
[13®I2]y2_[010101] 51 _[5]'
Z32
Z33
This gives
221 + T23 + 32 = 5 which implies 291 =5, 223 =0, 232 =0,
To2 + x31 + 33 = 5 which implies z25 =0, 31 =0, x33 = 5.
Thus
5
0
_ 0
Y2 = 0
0
5
Next,
—$11
y1=| 12 | =ha—[I3® 1] 2
L 13
5
_ 0
5 1 1.0 0 0 O 0 5 5 0
:10—0011000:10—0:10
| 10 00 0 0 11 0 10 5 5
5

Thus 11 :0, 12 = 10, T13 = 5. Hence
min (cost) =1x10+4x54+2x5+3 x5 =55.

Notice that this is an optimal solution.

4 Algebraic Method for Solving the Axial N -Index Transportation
Problem Based on the Kronecker Product

Let us assume that the axial three-index transportation problem has m factories, n ware-
houses and p wholesale outlets. Further let S = {S;} be a set of factories, D = {D;} be a
set of warehouses and P = {P;} be a set of wholesale outlets.
Now let
G=(S,D,P,Sx D x P) (17)
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such a network which is shown geometrically as a cuboid with three dimensions which are
S, D and P, and is called as an azial three-index transportation problem of order m X n X p,
where the sets S, D and P denote nodes and S x D x P denotes arcs of the network G.
This problem can be formulated as a linear programming problem based on the Kronecker
product with:

mzin {cTw :Bx = g,1s = 1,g = 1pr,2 > 0} (18)
Here,
I,®1,®1, I, ® 1y
B=| 1,081, | = : (19)
L,®1,®I, 1, ® Ax
g7 = [,rT T T]
rl = [1md1,1 doy -y Lndp), gt = [1pb1, 1pb2, -+, 1,b,], 87 = [Lpa1, 1naz, -, Lpam),
a,T [@i1, -+ ,ain],d [dzl,---,dip],bfz[bjl,---,bjp],izl,---,m,j=1,---,n,
et = [$111,$112, 5 T11py T s Tmnly Tmn2, " ,$mnp],
T [0111,0112, ‘5 Clipy 5, Cmnl s Cmn2y * acmnp]

and I,,, is the m x m identity matrix , 1,, is the 1 x m vector whose all entries are 1,
Ljn =1, @I, and 1, =1, ® 1,,.

The (m 4+ n+ p) x mnp matrix B of rank m +n + p— 2 is called the node-arcs incidence
matriz of the network G defined in (17).
Note that the (n + m) X nm matrix

In®1m
A= [ 1n®[m] (20)

of rank m 4+ n — 1 is the coefficient matrix of the axial two-index transportation problem
with n sources (origins) and m destination centers as defined in (17). By using the same
technique for solving the axial two- index transportation problem, we can also solve the
axial three-index transportation problem. Since

rank(B) =m+n+p—2 and 1,5 = 1,,¢ = 1,7,

then the system Bz = g defined in (18) can be solved in terms m + n + p — 2 of linearly
independent equations. Hence, we can delete any two rows from matrix B and rearrange
its columns; we can rewrite (18) as in the following form:

min {cT:c Te=h,1ps=1g=1pr,0 > 0} (21)
x
Here,
mn nm(p—1)
_p—-1 0 1nm 2y Ip—l (m4n—2)xmn
T_m+n [L L®1p_1 €R

m m(n—1)

n1 g (L ® In_1) B
L= m n (m+n—1)xmn
|: Im (Im ® ]-nfl) € R
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Note the matrix L is the simplest matrix of matrix A defined in (20).
To solve an axial three-index transportation problem defined in (21), we re-partitioned
the system T'x = h in the form:

mn nm(p—1) 1 1
- 0 lym®I,_ % _ | 1
mtn—1 L L (Y lpfl ) 22 nmrzz]—l) o h2 ml—::-nfl (22)
Now, (22) gives (23) and (24):
[].nm ® Ip_l]zQ = hl. (23)

This is a system which contains (p — 1) equations and nm(p — 1) variables.
To solve (23), we determine the values of z;;; in 2> which satisfies 1,,s = 1,4 = 1,r and
take the values of other variables are zeros.

Lz1 + [L ® 1p_1]22 = hg. (24)

We can prove that this is a system which contains at most m + n + p — 2 nonzero of
variables and it is easy to find the other variables z;;; in z;.

By using this method, we can also obtain an initial basic feasible solution of the axial
three-index transportation problem.

We now consider the axial N(N > 2) - index transportation problem of order mq X mg X
.-+ X mpy, that can be formulated as linear programming based on the Kronecker product
with:

min {ch : Dz = g,z > 0} (25)
xr

where,
ImN ® ]‘mN—l ® ]‘mN—2 K- ® 1m2 ® ]-m1
]-’ITLN ® ImN_1 ® ]-mn_z ® st ® 1m2 ® 1m1
D= .
]‘mN ® 1mN—1 ® 1mN—2 @ ® 1m2 ® Iml
ImN ® 1mN—1mN—2"'m2m1

]-mN ® WN

9" =1l9{.95, " ,9n]
1

my—1my—gz-mami = Llmy_1 @ lmy_ s @~ @1y, @1y,
The (m1 +ma +---+mn) X (Mimgy---my) matrix D of
rank(D) = (my + ma +---+my+1—N)
is called the node-arcs incidence matriz of the network

Gy =(Q1,Q2,--- ,QN,Q1 X Q2 X --- X Qn).



122 Zeyad Abdel Aziz Al Zhour & Adem Kilicman

Note that the (my +ma +--- + my_1) X (Mm1ma---my_1) matrix

ImN—l ® lmN—z &---® ]-mz ® ]-m1
Wy = : (27)
1mN—1 ® 1mN—2 Y ]-mg 2y Im1
of rank (my +ma +--- +my + 2 — N) is the coeflicient matrix of the axial (N — 1) -index
transportation problem.
Since rank(D) = (m1 + ma + --- + my + 1 — N), by the same technique which we

used to solve the axial three-index transportation problem, we solve the axial N - index
transportation problem defined in (25) by rewriting it in the following form:

min {c¢’'z : Mz = h,z > 0} . (28)
T
Here,

_ 0 ]‘mN—lmN—2"'m2m1 ®In-1 (mi+ma+---+mn+1—N)x(mima---mn)
M= [ K K®1n_1 €R

and K is the simplest matrix of matrix Wy, defined in (27). We next re-partition the system
Mz = h defined in (28) in the form:

0 ]-mN_lmN_g---mzml ® IN—I U1 _ hl
P i I Y )
Now, (29) can be written as (30) and (31):
[]-mNmN_l---QOl ® IN—I]UZ = hl (30)
Kvi + [K ®1n_1]va = hs (31)

By solving the equations defined in (30) and (31), we obtain an initial (optimal) feasible
solution of the axial N -index transportation problem. These results on the axial trans-
portation problem can be applied to the study of the solution of the planar transportation
problem, as a general case [1, 10], which can be obtained from the matrix D defined in (26)
replacing 1,, by I, and I, by 1,.

5 Conclusion

We have presented an efficient algebraic method to obtain initial basic feasible solutions
of the axial two and three-index transportation problem based on the Kronecker product
of matrices, and we have applied this method to solve the axial N - index transportation
problem. This method is comparable other methods. As a matter of fact it can be considered
superior, since it is simple, easily programmable and robust.
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