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Abstract The Shapley value is a unique function which obeys three axioms, which
are anonymous, pareto optimal, and linear. This is a solution concept for cooperative
games with transferable utility. But when the set of games which is considered is the
set of simple games, the condition of linearity has no sense. In this paper, we introduce
the concept of monotonicity to answer the controversy in linearity.
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1 Introduction

A point valued solution concept essentially defines a function on the set of games which
yields a unique outcome for every game. Obviously, there are infinitely many possible
functions. One way to select a particular function is to specify a list of properties or axioms
which the function must satisfy and which are sufficient to produce a unique function. This
is the approach underlying the Shapley value ([5]).

Shapley ([6]) approaches his value axiomatically. He proceeds from a set of three axioms
(anonymous, pareto optimal, linear), having simple intuitive interpretations, which suffice
to determine a unique function. This function has come to be called the Shapley value.

Shapley’s result is still discussed, mainly in reference to the underlying concept of lin-
earity, which specifies how the values of different games must be related to one another
and which is the driving force behind Shapley’s demonstration of the uniqueness of his
value. The standard objection to this axiom has its advocates especially among social sci-
entists and is the following: When the set of games which is considered is the set of simple
games, the condition of linearity has no sense. We would like to introduce the concept of
monotonicity on this domain that maybe can help solving the problem.

2 The Shapley Value

We first, define some terms. Recall that a permutation II of a finite set S is a one-to-one
mapping from S onto itself. Given any game (T, v), we define the permuted game (IIT, ITv)
by
Iy (S) = v(I1S), VS. (1)
A permuted game is the game obtained by relabelling all the players. Similarly, for any
allocation z,
Mz[i] = «[II7]. (2)
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We say that a solution is anonymous (symmetric) if the names of the players do not matter,
that is it is invariant to a relabelling of the players. Formally, a point-valued solution
concept @ is anonymous if

D[IIy] = P[v]. (3)

We say that a player is a null player if his contribution to every coalition is zero, that is
v[SU{i}] =v[S], VS. (4)

We denote the space of all games by ¢. The symbol ¢ C £2" is the set of n-person games,
i.e. such games where the cardinality of the set of players is finite and equal to n.

Definition 1. The value of the game v € ¢ is the function f:¢™ — §R’_ﬁ0 defined Vn € Z*+.
Shapley approaches his value axiomatically. He gives two definitions as mention in
definition 2 and definition 3.

Definition 2. A carrier for a game v is a coalition T' such that VS : v(S) = v(SNT).

Definition 2 states that any player who does not belong to a carrier is a dummy, i.e.,
incapable of contributing anything to any coalition.

Definition 3. Let II(U) denote the set of permutations of U - that is, the one-to-one
mappings of U onto itself. If = € II(U), then, writing ©S for the image of S under 7, we
may define the function 7v by 7v(nS) = v(S), VS € 2V, where S € 2V is S : U — U.

Effectively, the game 7v is nothing other than the game v, with the roles of the play-
ers interchanged by the permutation 7. With these two definitions, it is possible to give
axiomatic treatment.

Definition 4 (Shapley’s axioms). A value is a point valued solution concept F[v] which
is

Linear ®[v + w] = ®[v] + P[w] (5)
Anonymous ®[IIv] = II®[v] (6)
Pareto Optimal ®[v][T] = v[T] (7
®[v][7] = 0 for every null player. (8)

Theorem 1 Axioms (5)-(8) are sufficient to determine a unique value ® for all games.

Proof. The easiest way to understand why this function exists and is unique is to think
of a characteristic function v as a vector with 2/l — 1 components, one for each nonempty
member of the power set 2U. (For simplicity of this explanation, take the universe U of
players to be finite. This will be the case which will be considered in the entire article.)
Then the set ¢ of all characteristic function games is the subset of Euclidean space of
dimension 2/l — 1. The additivity axiom says that if we know a value function of some set
of games that constitute an additive basis for ¢, then we can determine the value for any
game.
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A set of games that will permit us to accomplish this is the set consisting of the games
vR, defined for each subset R of U by

1, if RCS;,
0, otherwise.

n(s) = { 9)

Any player not in R is a dummy player in this game. Since the playersin R are all symmetric,
the anonymous axiom (6) requires that ®;(vg) = ®;(vg) Vi,j € R. Since R is the carrier of
the game vg, the pareto optimal axiom (7) allows us to conclude that ®;(vg) = 1Vi € R,
where r = |R|. (For any finite coalition S, we will denote by s the number of players in
S.) Thus the value is uniquely defined for all games of the form vy or, for that matter, for
games of the form avg for any number a. We point out merely that, as game are essentially
real-valued non-negative functions, it is possible to talk of a number times a game, or, as
above, of the sum of two or more games. The difference of two games is not necessary a
game.

But the games vg form a basis for the superset of all games, because there are 2!Vl —1
of them, one for each nonempty subset R of U, and because they are linearly independent.
Therefore any game v can be written as the sum of games of the form agvg. And so, the
linearity axiom (5) implies that there is a unique value obeying Shapley’s axioms defined
on the space of all games. [

Shapley expressed this unique value ® explicitly:

®i(v) = Y ys(w[S] - vIS — {i}]) (10)

ScT

(15| = D!(n —[SD!

n!

(3D

where vs =

3 The Conception of Monotonicity

Before discussing the conception of monotonicity, we start with the concept of simple games.
We state the definition 5, of non-zero n-person simple game first, then follow by three
definitions of monotonicity concept.

Definition 5. If for non-zero n-person simple game v, an (n + 1)-dimensional non-negative
vector 7, = (p1, .-, Pn, ¢) exists such that

n

Y pi=1,0<q<1, (11)
W(S)=1) &Y pi>q (12)
i€S

where a non-zero game v is a game for which exists at least one coalition S such that
v(S) # 0, then we call the simple game v a weighted game. The number p; is called the
weight of player i; the number ¢ is called quota; the vector r, is called the representation
of the game v.
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Remark 1. Usually in literature ([4], [2]), condition (11) is not required. But if for game v
there is a vector r, = (p{, ..., pl,,¢') which satisfies (12) but does not satisfy condition (11),
it is enough to define

!

n !
6=>"riAa=S)N(i=5, vi. (13)
=1

Then vector 7, = (p1, ---, Pn, q) satisfies conditions (11) and (12). Thus v is a weighted game
according to our definition.

Although a weighted game is a very small subset of simple games, most of the common
social problems can be described by them (e.g., the corporation with n share-holders each
have p; shares of stock each). On the other side, some very trivial simple games are not
weighted games. The six-player game with players {1,2,3, A, B, C} for which the winning
coalition contains at least two players from the set {1,2,3} and (at least) two players
from the set {A, B,C} cannot be represented as the weighted game. The proof is direct.
Considering the symmetry of the problem, the weights of players have to be equal to each
other. Contradiction: the two members coalition {1,2} is the blocking coalition while the
coalition {1, A} is not (The coalition S is blocking iff v (%) = 0).

The more precise description of the space description of the space of weighted games can
be simply given: Vectors (p1,..., p,) create a non-negative part of a unit sphere S¥ in the
n-dimensional space with an additive norm. For 2-players games S7, is the abscissa AB,
where A = (0,1) and B = (1,0), for 3-players games we get the triangular ABC, where
A = (1,0,0), B = (0,1,0) and C = (0,0,1) etc. The whole set of all representations of
n-person weighted games is equal to the n-dimensional convex manifold W™ = S7;x (0,1) .

The set of all representations of a particular game v is a convex subset of W™. The proof
of this statement is straightforward: any linear combination of rl and r2 is a representation
of the game v. Thus the set W" is compound from the convex disjoint subsets W' which
represent the individual n-person weighted games. The most natural mapping between the
set of all n-person weighted games and the set of (n + 1) dimensional vectors can be given:
let us represent game v by the centre of gravity of W. Although this mapping seems to
be the most reasonable from the geometrical point of view it cannot be taken as a voting
power index-it does not satisfy the pareto optimal condition (7).

On the other side the existence of a representation r, of the game v such that (p? = 0)
iff 4 is dummy can simply be proven. When we note the set of such representation by D7,
and we represent the game v by the centre of gravity of D7, we receive functions ~;(v)
which satisfy the axioms (6,7). We will call v(v) the geometrical voting power index.

In order to find the axioms which will restrict the space of functions f(v) : ¢ = R%, we
have to formulate of monotonicity concept that suitable for the whole space games.

Definition 6. The voting power index ¢ satisfies the local topological monotonic property
on the domain of all games if

(w(S\{i}) < v(S\{j})VS, such that i,j€S » .
AN3S', ijes, v(S'\{i}) < v(S'\{5}) } = ¢i(v) > ¢;(v)

(v(S\{i}) = v(S\{j})VS, such that 4,j€S ))=¢i(v) =0¢;(v) (14)
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Remark 2. Here, we merely point out that if the index satisfies the efficiency axiom, it is
an imputation. If

(VS)(i, 5 € S)(w(S\{i}) < v(S\{j}) & (VS)(i
(VS)(i, 5 € S)(w(S\{i}) = v(S\{j}) & (VS)(i
(3595 € ) (w(S"\{i}) <v(S'\{j}) & (35

Proof.

J ¢ S)(W(SU i) = 1S U{s})
J ¢ S)w(SU{i}) = (S Ui}
(i ¢ (S U{i}) > v(S U{s})

?

)

(VS such that 4,5 ¢ S)(35 = SU {i,j})

v(SU{i}) = v(S\{j}) > v(S\{i}) = v(SU{j}).
(VS such that 4,5 ¢ S)(35 = SU {3, 5})

v(SU{i}) = v(S\{j}) = v(S\{i}) = v(S U {5}).

(8 = 8"\{i,jPv($"\{i}) = v(S U {j}) <w(S U {i}) = v(S"\{s}).0

Definition 7. The voting power index ¢ satisfies the global topological monotonic property
on the domain of all games whenever V n-person games u, v such that,

ke{l,..,n}: (ke S=>v(S) <ulS)A(k¢S=v(S)>ul9))), (15)
where u = (p¥, ..., p¥,q), v = (pY, ..., p, q), then the following inequality holds

br(u) > or(v). (16)

Definition 8. The voting power index ¢ is topologically monotonic on the domain of all
games if it is locally and globally topologically monotonic on the domain of all games.

Theorem 2 FEach index ¢(v) is locally topologically monotonic on the domain of weighted
games v if and only if it is locally weakly monotonic on this domain.

Proof. For all weighted games v (using Remark 2):

(v(S\{i}) <v(S\{51}) & (w(S\{i}) =0Av(S\{j}) =1Av(S) =1) &
& (SeCi(v)AS ¢ C;(v))
(VS)(i,5 € S)(w(S\{i}) = v(S\{j}) &

(¥S) (i, j € S)w(S\{i}) = v(S\{j})
< { (VS(,j ¢ S)w(Su{i) =wsuly) §

- { (VS)(i, j € S)(S € Cj(v)) & (S € Ci(v))
(VS)(i,j ¢ S)([SU{j}] € Cj(v)) & ([SU{i}] € Ci(v))

(V9)(i, 5 € S)(w(S\{i}) < v(S\{j}) &

() (i, € $)((S\{i}) < v(S\[j})
< { (¥S)(i,5 ¢ S)(W(S Ui} > »(S UL } <
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- { (VS)(i,j € S)(S € Cj(v)) = (S € Ci(v))
(VS)(i, 5 ¢ S)[SU i} € Cj(w)) = ([SU{i}] € Ci(v))
It can be easily seen that the assumptions of (14) is equivalent on the domain of weighted
games. O

Theorem 3 Each index ¢(v) which is globally topologically monotonic on the domain of
weighted games v is globally weakly monotonic on this domain.

Proof. Direct: All pairs of the games u, v which satisfy the assumptions of global weak
monotonicity ((pj > pf) A (p¥ < pj, Vj # k)) satisfy the assumptions of local topological
monotonicity (15):

(p¥ < PY) (Vi # k) = (Zp?—qSZp?—q) (VS:k¢S) =

ics ics
(u(S) < v(S)(VS: k ¢ 5)
" (Ser-a> Do) wsikes) s we) 2 usneskes. 1D
icS ies
O
Theorem 4 The Shapley value ® is weakly monotonic on the space of all games.
Proof. We can rewrite the Shapley value, defined by equation (10):
®i(v) = ) ask(S) —v(S\{i})]
1ESCN
= > as(S) —v(S\{iD]+ Y Bslw(SU{i}) - v(S)), (18)
i,jESCN SCN
where ny \
as = (S - )(TL — S)" ﬂS — s!(n;jfl)!’ (19)

n!

N C U is any finite carrier of v, N = N\{i,j}, s is the cardinality of set S, and n is the
cardinality of set N. Because the coefficients ag and fs do not depend on a particular
game, but on the size of coalition, it is enough to compare differences v(S) — v(S\{i}) and
v(SU{i}) — v(S). Local weak monotonicity (using Remark 2):

(v(S\{i}) < v(S\{j})VS , such that 4,5 € S) } N
AES", €8, v(S\{i}) <o(S"\{j}))

i,j € S:v(S) —v(S\{i}) > v(S) — v(S\{4})
6,5 ¢ S:v(SU{i}) —v(S) 2 v(SU{j}) —v(S) = (20)
38", 4,5 eS8 v(S) —o(S"\{i}) > v(S) —v(S"\{5})
= (I)z(ll) > (bj(ll).

(w(S\{i}) = v(S\{j})VS, such that i,j€5)) =
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N { i,j € §:v(8) —v(S\{i}) = v(S) — v(S\{5}) } N

i,j ¢S :v(SU{i}) —v(S) =v(SU{j}) —v(S) (21)
= ‘I),(l/) = (Pj(ll).
Global weak monotonicity:
Fke{1,...,n}: (ke S=v(S) <u(S)A(k¢S=v(S) >ul9))) =
VS, such that ke S:u(S)>v(S))

- { u(S\{k}) < v(S\{k}) } - (22)

= ®p(u) > 4(v).
O

4 Conclusion

We have presented several original results in this paper. We proposed to restrict the space
of functions which are taken as the solution of cooperative games with transferable utility
by Shapley’s axioms: we demand that such functions obey pareto optimal, anonymous and
weak monotonicity conditions.
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