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Abstract This paper presents a new method to solve the interior and the exterior
Neumann problems in simply connected regions with smooth boundaries. The method
is based on two uniquely solvable Fredholm integral equations of the second kind with
the generalized Neumann kernel. Numerical examples reveal that the present method
offers an effective numerical method for the Neumann problems when the boundaries
are sufficiently smooth.
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1 Introduction

The boundary integral equation method is a classical method for solving the Neumann
problem (see [1, 2, 5, 6]). The classical boundary integral equations for the Neumann prob-
lems are the two second kind Fredholm integral equations with the Neumann kernel. These
integral equations are derived by representing the solutions of the Neumann problems as
the potential of a single layer. However, the integral equation for the interior Neumann
problem is not uniquely solvable. Furthermore, extra calculations are required for deter-
mining the boundary values of the solutions of the Neumann problems from the solutions
of the integral equation (see e.g., [1, pp. 315], [2], [6, pp. 72–73] and [5, p. 282]).

In this paper we continue our research on boundary integral equations with the general-
ized Neumann kernel for the elliptic boundary value problems. We shall extend the results
of [8, 10, 11] from the case of the Dirichlet and the Riemann-Hilbert problem to the Neu-
mann problem. Two Fredholm integral equations of the second kind with the generalized
Neumann kernel will be derived for the interior and the exterior Neumann problems. The
derived integral equations are uniquely solvable which can provide us with the boundary
values of the solution of the Neumann problem without any extra calculations. The later
properties mean the presented integral equations have advantages over the classical integral
equations mentioned above.

This paper is organized as follows: After the presentation of some auxiliary material
in Section 2, we recall in Section 3 the integral equations for the interior and the exterior
Dirichlet problems. In Sections 4 and 5, we derive two uniquely solvable Fredholm integral
equations of the second kind with the generalized Neumann kernel for the interior and the
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exterior Neumann problems, respectively. In Section 6 we discuss the question of how to
treat the integral equations numerically and in Section 7 we give a few examples. A short
conclusions will be given in Section 8.

2 Auxiliary Material

Let Ω be a bounded simply connected Jordan region with 0 ∈ Ω. The boundary Γ := ∂Ω
is assumed to have a positively oriented parametrization η(t) where η(t) is a 2π-periodic
twice continuously differentiable function with η̇(t) = dη

dt 6= 0. The parameter t need not be
the arc length parameter. The exterior of Γ is denoted by Ω−.

For a fixed α with 0 < α < 1, the Hölder space Hα consists of all 2π-periodic real
functions which are uniformly Hölder continuous with exponent α. It becomes a Banach
space when provided with the usual Hölder norm. A Hölder continuous function ĥ on Γ
can be interpreted via h(t) := ĥ(η(t)) as a Hölder continuous function h of the parameter t
and vice versa.

Let A(t) be a continuously differentiable 2π−periodic function with A 6= 0. We define
two real functions N and M by

N(τ, t) :=
1
π

Im
(

A(τ)
A(t)

η̇(t)
η(t)− η(τ)

)
, (1)

M(τ, t) :=
1
π

Re
(

A(τ)
A(t)

η̇(t)
η(t)− η(τ)

)
. (2)

The kernel N(τ, t) is called the generalized Neumann kernel formed with A and η [8, 10].
When A = 1, the kernel N is the Neumann kernel which aries frequently in the integral
equations for potential theory and conformal mapping (see [5, p. 286]).

Lemma 1 ([10]) a) The kernel N(τ, t) is continuous with

N(t, t) =
1
π

Im

(
1
2

η̈(t)
η̇(t)

− Ȧ(t)
A(t)

)
. (3)

b) The kernel M(τ, t) has the representation

M(τ, t) = − 1
2π

cot
τ − t

2
+ M1(τ, t) (4)

with a continuous kernel M1 which takes on the diagonal the values

M1(t, t) =
1
π

Re

(
1
2

η̈(t)
η̇(t)

− Ȧ(t)
A(t)

)
. (5)

Let N and M1 be the Fredholm integral operators associate with the continuous kernels
N and M1, i.e.,

(Nµ)(τ) :=
∫ 2π

0

N(τ, t)µ(t)dt, (6)

(M1µ)(τ) :=
∫ 2π

0

M1(τ, t)µ(t)dt. (7)
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Let also M and K be the singular integral operators

(Mµ)(τ) :=
∫ 2π

0

M(τ, t)µ(t)dt, (8)

(Kµ)(τ) :=
1
2π

∫ 2π

0

µ(t) cot
τ − t

2
dt. (9)

The integral in (8) and (9) is a principal value integral. The operator K is known as the
conjugation operator. It is also known as the Hilbert transform (see e.g., [5, p. 107]).

The operators N , M, M1 and K are bounded in Hα and map Hα into Hα (see e.g.,
[10, 9]). It follows from (4) that

M = M1 −K. (10)

The eigenproblem of the generalized Neumann kernel has been studied in [8, 10]. In this
paper, we shall consider only the generalized Neumann kernel with A = 1 and A = η.

Lemma 2 ([8, 10]) (a) Let N be the generalized Neumann kernel formed with A = 1 and
η. Then λ = −1 is not an eigenvalue of N .
(b) Let N be the generalized Neumann kernel formed with A = η and η. Then λ = 1 is not
an eigenvalue N .

2.1 The Dirichlet Problem

Let u be a real function defined in the domain Ω and let z = x + iy ∈ Ω. In this paper,
for simplicity, we shall write u(z) instead of u(x, y). The interior and the exterior Dirichlet
problem are defined as follows.
Interior Dirichlet problem. Let γ ∈ Hα be a given function. Find the function u harmonic
in Ω, Hölder continuous on Γ and satisfies on the boundary Γ with boundary condition

u(η(t)) = γ(t), η(t) ∈ Γ. (11)

Lemma 3 ([1, p. 308]). The interior Dirichlet problem (11) is uniquely solvable.

Exterior Dirichlet Problem. Let γ ∈ Hα be a given function. Find the function u harmonic
in Ω−, Hölder continuous on Γ, u(z) bounded when |z| → ∞ and satisfies on the boundary
Γ with boundary condition

u(η(t)) = γ(t), η(t) ∈ Γ. (12)

Lemma 4 ([1, p. 312]). The exterior Dirichlet problem (12) is uniquely solvable.

2.2 The Neumann Problem

Interior Neumann problem. Let n be the exterior normal to Γ and let γ ∈ Hα be a given
function such that ∫ 2π

0

γ(τ)|η̇(τ)|dτ = 0. (13)
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Find the function u harmonic in Ω, Hölder continuous on Γ and satisfies on the boundary
Γ with boundary condition

∂u

∂n

∣∣∣∣
η(t)

= γ(t), η(t) ∈ Γ. (14)

The interior Neumann problem (14) is uniquely solvable up to an additive real con-
stant [1, p. 308]. This arbitrary real constant can be specified by assuming u(0) = 0 as in
the following lemma.

Lemma 5 ([1, p. 313]). The interior Neumann problem (14) with the condition u(0) = 0
is uniquely solvable.

Exterior Neumann Problem. Let n be the exterior normal to Γ and let γ ∈ Hα be a given
function such that ∫ 2π

0

γ(τ)|η̇(τ)|dτ = 0. (15)

Find the function u harmonic in Ω−, Hölder continuous on Γ, u(z) = O
(|z|−1

)
as z → ∞

and satisfies on the boundary Γ with boundary condition

∂u

∂n

∣∣∣∣
η(t)

= γ(t), η(t) ∈ Γ. (16)

Lemma 6 ([1, p. 313]). The exterior Neumann problem (16) is uniquely solvable.

3 Integral Equations for the Dirichlet Problem

In this section, we shall review the boundary integral equations derived in [10] for the
interior and exterior Dirichlet problems.

Suppose that u is the unique solution of the interior Dirichlet problem. Since it is
harmonic in Ω, u has a harmonic conjugate in Ω. We denote to the boundary values of this
harmonic conjugate by µ. Then γ + iµ are boundary values of a function f analytic in Ω,
i.e.,

f+(η(t)) := γ(t) + iµ(t), η(t) ∈ Γ. (17)

The function f(z) is unique up to an additive imaginary constant which can be determined
by assuming f(0) is real. Hence, from Theorem 11(a) in [10], we have the following lemma.

Lemma 7 ([10]) Let µ be the unique solution of the integral equation

µ−Nµ = −Mγ (18)

where the kernels of the operators N and M are formed with A = η. Then the function
f+ = γ + iµ is a boundary value of an analytic function f in Ω with Im f(0) = 0.

By the Cauchy integral formula, the function f(z) stated in the above lemma is given
by

f(z) =
1

2πi

∫

γ

γ + iµ
η − z

dη, z ∈ Ω. (19)
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By obtaining the unique analytic function f , the unique solution of the interior Dirichlet
problem (11) is given in Ω ∪ Γ by u(z) = Re f(z).

Next, we shall review an integral equation for the exterior Dirichlet problem. Similarly
to the interior problem, the function u has also a harmonic conjugate in Ω with boundary
values will be denoted by µ. Then γ+iµ with boundary values of a unique analytic function
g in Ω,

g−(η(t)) := γ(t) + iµ(t), η(t) ∈ Γ, (20)

with g(z) = c + O(z−1) near ∞ with real c.
Let the function G be defined in Ω− by

G(z) :=
g(z)
z

, (21)

then G is analytic in Ω− with G(z) = c/z + O(z−2) near ∞ with real c. The boundary
values of the function G are given by

ηG− = γ + iµ. (22)

Lemma 8 ([10]) Let µ be the unique solution of the integral equation

µ +Nµ = Mγ (23)

where the kernels of the operators N and M are formed with A = 1. Then the function
ηG− = γ+iµ is a boundary value of an analytic function G in Ω− with G(z) = c/z+O(z−2)
near ∞ with real c

Since G(∞) = 0, hence the Cauchy integral formula implies that the function G stated
in the above lemma is given by

G(z) = − 1
2πi

∫

Γ

γ + iµ
η

dη

η − z
, z ∈ Ω−. (24)

Thus, by (21), the function g is given by

g(z) = − z

2πi

∫

Γ

γ + iµ
η

dη

η − z

=
1

2πi

∫

Γ

γ + iµ
η

dη − 1
2πi

∫

Γ

(γ + iµ)
dη

η − z
(25)

Consequently, the unique solution of the exterior Dirichlet problem (12) is given in Ω− ∪ Γ
by u(z) = Re g(z).

In the following two sections, we shall use the Cauchy-Riemann equations to reduce
the interior and the exterior Neumann problems to equivalent Dirichlet problems (see
e.g., Mikhlin [7, p. 153]). Then, we shall use the integral equations (18) and (23) to
derive boundary integral equations for the Neumann problems.
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4 An Integral Equation for the Interior Neumann Problem

In the parametric representation η(t), 0 ≤ t ≤ 2π of Γ, we assumed t is not the arc-length
parameter. Let s = s(t) be the arc-length of the curve Γ from η(0) to η(t), i.e.,

s(t) =
∫ t

0

|η̇(τ)|dτ, 0 ≤ t ≤ 2π. (26)

Then
ds

dt
= |η̇(t)|. (27)

Since η̇(t) 6= 0, hence the function s = s(t) has an inverse function t = t(s) for all 0 ≤ s ≤ L

where L =
∫ 2π

0
|η̇(τ)|dτ is the length of Γ.

Suppose that u is a solution of the exterior Neumann problem. Since u is harmonic
function in Ω, then u has a harmonic conjugate v in Ω. Denote to the boundary values of
the functions u and v by γ̃ and µ̃, respectively, i.e.,

γ̃(t) := u(η(t)), µ̃(t) := v(η(t)), η(t) ∈ Γ, 0 ≤ t ≤ 2π.

Hence, γ̃ + iµ̃ is a boundary value of a function f analytic in Ω, i.e.,

f+(η(t)) = γ̃(t) + iµ̃(t). (28)

Then by the Cauchy-Riemann equations (see e.g., [3, p. 27]), we have

∂v

∂s

∣∣∣∣
η(t)

=
∂u

∂n

∣∣∣∣
η(t)

= γ(t), t = t(s). (29)

Using the chain rule, we have
∂v

∂t
=

∂v

∂s

ds

dt
. (30)

Consequently, by (27), we obtain

∂v

∂t

∣∣∣∣
η(t)

= γ(t)|η̇(t)|. (31)

Hence, for 0 ≤ τ ≤ 2π, we have

µ̃(τ) = v(η(τ)) = v(η(0)) +
∫ τ

0

∂v

∂t

∣∣∣∣
η(t)

dt = v(η(0)) +
∫ τ

0

γ(t)|η̇(t)|dt. (32)

Let the real functions ϕ(t) and µ(t) be defined on [0, 2π] by

ϕ(t) :=
∫ t

0

γ(τ)|η̇(τ)|dτ, (33)

µ(t) := −γ̃(t) + Re f(0), (34)

and let the complex-valued function F (z) be defined on Ω by

F (z) := −if(z) + iRe f(0)− v(η(0)). (35)
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Then F is analytic in Ω with Im F (0) = 0.
From (32) and (33), we have µ̃(t) = ϕ(t) + v(η(0)). Hence, the boundary values of the

function f are given by

f+ = −µ + Re f(0) + iϕ + iv(η(0)). (36)

Consequently, the boundary values of the function F are given by

F+ = ϕ + iµ. (37)

The function F is analytic in Ω with Im F (0) = 0 and F+ = ϕ+iµ. Hence, by Lemma 7,
the function µ is the unique solution of the integral equation

µ−Nµ = −Mϕ (38)

where the kernels of the operators N and M are formed with A = η.
By solving the integral equation (38) for µ, then from (34), (33) and (36), we obtain

the boundary values of the function f from (36). Let C be the complex constant C :=
Re f(0) + iv(η(0)), then the function f(z) is given in Ω by

f(z) =
1

2πi

∫

Γ

−µ(t) + iϕ(t)
η − z

dη + C. (39)

It clear from (41) that the solution f(z) contains an additive arbitrary complex constant
C. We can determined the constant C by assuming f(0) = 0, i.e.,

C = − 1
2πi

∫

Γ

−µ(t) + iϕ(t)
η

dη. (40)

Hence,

f(z) =
1

2πi

∫

Γ

−µ(t) + iϕ(t)
η − z

dη − 1
2πi

∫

Γ

−µ(t) + iϕ(t)
η

dη. (41)

Then, the unique solution of the interior Neumann problem with the condition u(0) = 0 is
given in Ω ∪ Γ by

u(z) = Re f(z). (42)

5 An Integral Equation for the Exterior Neumann Problem

Suppose that u is the solution of the exterior Neumann problem and v is a harmonic
conjugate of u in Ω−. Denote the boundary values of the functions u and v by γ and µ,
respectively, i.e.,

γ̃(t) := u(η(t)), µ̃(t) := v(η(t)), 0 ≤ t ≤ 2π.

Hence, γ̃ + iµ̃ is a boundary value of a function g analytic in Ω,

g−(η(t)) = γ̃(t) + iµ̃(t), (43)

with g(z) = c̃ + O(z−1) near ∞ with a real constant c̃. Since

u(z) = Re g(z) → 0 when z →∞,



90 Mohamed M. S. Nasser

hence c̃ = 0. Then g(z) = (c1 + ic2)/z + O(z−2) near ∞ with real constants c1 and c2.
Since the function g = u + iv is an analytic function, then by the Cauchy-Riemann

equations, we have
∂v

∂s

∣∣∣∣
η(t)

=
∂u

∂n

∣∣∣∣
η(t)

= γ(t), t = t(s). (44)

Using the chain rule and (27), we obtain

∂v

∂t

∣∣∣∣
η(t)

=
∂v

∂s

∣∣∣∣
η(t)

ds

dt
= γ(t)|η̇(t)|. (45)

Hence, for 0 ≤ τ ≤ 2π, we have

µ̃(t) = v(η(τ)) = v(η(0)) +
∫ τ

0

∂v

∂t

∣∣∣∣
η(t)

dt = v(η(0)) +
∫ τ

0

γ(t)|η̇(t)|dt. (46)

Let the real functions ϕ(t) and µ(t) be defined on [0, 2π] by

ϕ(t) :=
∫ t

0

γ(τ)|η̇(τ)|dτ, (47)

µ(t) := −γ̃(t), (48)

and let the complex-valued function G(z) be defined on Ω by

G(z) :=
−ig(z)− v(η(0))

z
. (49)

Then G is analytic in Ω− with G(z) = c/z+O(z−2) near∞ with real constant c = −v(η(0)).
The boundary values of the function G(z) are given by

ηG− = −i(γ̃ + iµ̃)− v(η(0)) = ϕ + iµ. (50)

Hence, by Lemma 8, the function µ is the unique solution of the integral equation

µ +Nµ = Mϕ (51)

where the kernels of the operators N and M are formed with A = 1.
By solving the integral equation (51) for µ, then from (43), (46), (47) and (48), we obtain

the boundary values of the function g,

g−(η) = −µ + iϕ + iv(η(0)). (52)

Since g(∞) = 0, then, by the Cauchy integral formula (see [4, p. 2]), the function g(z) is
given in Ω− by

g(z) = − 1
2πi

∫

Γ

−µ(t) + ϕ(t)
η − z

dη. (53)

Furthermore, the function g satisfies

1
2πi

∫

Γ

g−(η)
η

dη = 0.
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Hence, by (52), we have

v(η(0)) = − 1
2πi

∫

Γ

ϕ + iµ
η

dη. (54)

It clear from (53) that the solution g(z) is uniquely determined by µ and ϕ. By knowing
the real functions ϕ, µ, and the real constant v(η(0)), the boundary values g− of the function
g can be calculated from (52). The function g itself can be calculated by (53). Then, the
unique solution of the exterior Neumann problem is given in Ω− ∪ Γ by

u(z) = Re g(z). (55)

6 Numerical Implementation

Since the functions A and η are 2π−periodic, the integrals in the integral operator N can
be best discretized on an equidistant grid by the trapezoidal rule, i.e., the integral operator
N is discretized by the Nyström method [1].

Let n be a given integer and define the the n equidistant collocation points tj by

tj := (j − 1)
2π

n
, j = 1, 2, . . . , n. (56)

Then, using the Nyström method with the trapezoidal rule to discretize the integral equa-
tions (38) and (51), we obtain the linear systems

µn(ti)− 2π

n

n∑

j=1

N(ti, tj)µn(tj) = −(Mϕ)(ti), (57)

µn(ti) +
2π

n

n∑

j=1

N(ti, tj)µn(tj) = (Mϕ)(ti), i = 1, 2, . . . , n, (58)

where µn is an approximation to µ. Note that the kernels N and M in (57) are formed
with A = η and formed with A = 1 in (58).

For the calculation of (Mϕ)(ti) in the right-hand side of (57) and (58), we calculate

ϕ(t) =
∫ t

0

γ(τ)|η̇(τ)|dτ. (59)

Since the integrand γ(τ)|η̇(τ)| is not periodic on [0, t] unless t = 2π. Hence, to calculate
the integral in (59) accurately, we shall use the Gaussian quadrature method. For t > 0,
we have

ϕ(t) =
∫ 1

−1

γ

(
(τ + 1)t

2

) ∣∣∣∣η̇
(

(τ + 1)t
2

)∣∣∣∣
t

2
dτ.

Hence, by using the m + 1 points Gaussian quadrature method, we obtain

ϕ(t) ≈
m∑

i=0

ωit

2
γ

(
(σi + 1)t

2

) ∣∣∣∣η̇
(

(σi + 1)t
2

)∣∣∣∣ (60)

where σi and ωi (i = 0, 1, 2, . . . ,m) are the Gaussian abscissas and weights.
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Then using (10)

(Mϕ)(ti) = (M1ϕ)(ti)− (Kϕ)(ti), i = 1, 2, 3, . . . , n.

The values (Kϕ)(ti) will be calculated by using the FFT and the values (M1ϕ)(ti) will be
calculated by using the trapezoidal rule, i.e.,

(M1ϕ)(ti) =
2π

n

n∑

j=1

M1(ti, tj)ϕ(tj), i = 1, 2, . . . , n.

Defining the matrix Q by Qij = πN(ti, tj)/n, and the vectors x, y by xi = µn(ti),
yi(Mϕ)(ti), Eqs. (57) and (58) can be rewritten as the two n by n linear systems

(I −Q)x = −y, (61)
(I + Q)x = y. (62)

Since the integral equations (38) and (51) are uniquely solvable, then for n sufficiently large,
the linear systems (61) and (62) are uniquely solvable [1, p. 170].

The linear systems (61) and (62) are solved using the MATLABs \ operator that makes
use of the Gauss elimination method. By solving the linear systems (61) and (62), we obtain
µn(ti) for i = 1, 2, . . . , n. Then the approximate solution µn(t) can be calculated for all
t ∈ [0, 2π] using the Nyström interpolating formula, i.e., the approximate solution µn(t) of
the integral equation (38) is given by

µn(t) = −(Mϕ)(t) +
2π

n

n∑

j=1

N(t, tj)µn(tj), (63)

and the approximate solution µ(t) of the integral equation (51) is given by

µn(t) = (Mϕ)(t)− 2π

n

n∑

j=1

N(t, tj)µn(tj). (64)

7 Examples

For our examples, we use three boundary curves: an ellipse, the ovals of Cassini, and an
“amoeba”. For the ellipse, the boundary has the parameterization

Γ1 : η(t) = cos t + i5 sin t, 0 ≤ t ≤ 2π,

(see Figure 1). For the ovals of Cassini, the boundary parameterization is

Γ2 : η(t) = R(t) eit, 0 ≤ t ≤ 2π,

where R(t) = 2.5 + 2 cos 2t (see Figure 2). The parameterization of the amoeba boundary
is

Γ3 : η(t) = R(t) eit, 0 ≤ t ≤ 2π,

with R(t) = ecos t cos2 2t + esin t sin2 2t (see Figure 3).
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Figure 1: The Curve Γ1, the Interior and Exterior Test Points.

Figure 2: The Curve Γ2, the Interior and Exterior Test Points.
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Figure 3: The Curve Γ3, the Interior and Exterior Test Points.

The interior of amoeba boundary shown in Figure 2 is a nonconvex and complicated
region. It was used in [2] to illustrate that the programs given there can handle solutions
on such unusual boundaries. In this paper, we use this boundary to show that our method
can also work efficiently for such regions.

For the test problems, we use the following Neumann problems. These problems had
been used in [2]. The first problem is the interior Neumann problem with the condition
u(0) = 0, has the unique solution

u(z) = ex cos y − 1, z = x + iy ∈ Ω.

The second problem is the exterior Neumann problem which has the unique solution

u(z) =
x

x2 + y2
, z = x + iy ∈ Ω−.

Let T (η) denotes the unit tangent of Γ at the point η(t) ∈ Γ, then T (η) = η̇(t)/|η̇(t)|.
Hence, the unit normal vector n to Γ at the point η(t) ∈ Γ is given by

n = (nx,ny)

where nx = Re(−iT (η(t))) and ny = Im(−iT (η(t))). Hence, for the above interior and
exterior Neumann problems, the function γ(t) is given by

γ(t) =
∂u

∂n

∣∣∣∣
η(t)

=
(

∂u

∂x
nx +

∂u

∂y
ny

)∣∣∣∣
η(t)

.

The maximum error norm ‖u − un‖∞ between the exact boundary values u and the
approximate boundary values un at the node points is presented in Table 1 for the interior
Neumann problem and in Table 5 for the exterior Neumann problem. The absolute error
|u(z) − un(z)| at four test points z inside Γ for the interior Neumann problem is listed in
Tables 2–4. The error |u(z)−un(z)| at four test points z outside Γ for the exterior Neumann
problem is listed in Tables 6–8. The numerical results are presented for various values of
n and m where n is the number of node points given in (56) and m + 1 is the number of
Gaussian abscissa used in (60).
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Table 1: The Error ‖u − un‖∞ for the Interior Neumann Problem on the Boundaries Γ1,
Γ2 and Γ3.

m n Γ1 Γ2 Γ3

64 32 1.43(−05) 7.56(−03) 2.54(−01)
64 3.20(−11) 1.58(−04) 7.13(−03)
128 3.56(−14) 9.21(−08) 5.00(−05)
256 ——– 6.84(−14) 1.26(−07)
512 ——– ——– 1.31(−07)

128 32 1.43(−05) 7.56(−03) 2.54(−01)
64 3.20(−11) 1.58(−04) 7.13(−03)
128 1.44(−14) 9.21(−08) 5.00(−05)
256 ——– 9.59(−14) 3.58(−09)
512 ——– ——– 2.91(−13)

Table 2: The Error |u(z)− un(z)| for the Interior Neumann Problem on the Boundary Γ1.

m n z = 0 z = i z = 2i z = 3i
64 16 1.28(−01) 4.93(−02) 5.64(−02) 1.15(−02)

32 5.24(−03) 9.64(−04) 5.43(−04) 2.19(−03)
64 7.97(−06) 1.27(−06) 2.74(−07) 1.25(−06)
128 1.85(−11) 1.35(−12) 8.93(−12) 1.13(−11)
256 1.37(−15) 2.00(−15) 5.33(−15) 8.44(−15)

Table 3: The Error |u(z)− un(z)| for the Interior Neumann Problem on the Boundary Γ2.

m n z = −1 z = 0 z = 1 z = 2
64 16 5.25(−02) 1.13(−03) 4.05(−02) 3.79(−01)

32 2.64(−03) 2.11(−07) 2.44(−03) 2.73(−02)
64 3.54(−05) 9.45(−13) 3.29(−05) 3.73(−04)
128 1.06(−08) 2.32(−16) 9.82(−09) 6.85(−08)
256 5.55(−16) ——– 4.44(−16) 3.55(−15)

Table 4: The Error |u(z)− un(z)| for the Interior Neumann Problem on the Boundary Γ3.

m n z = 0 z = 1 z = 2 z = 1 + i
128 32 5.98(−04) 1.86(−02) 5.69(−02) 9.48(−04)

64 8.68(−08) 4.35(−04) 9.56(−04) 4.05(−04)
128 9.43(−13) 2.14(−06) 2.02(−06) 1.53(−06)
256 1.25(−16) 2.91(−11) 2.74(−11) 2.04(−11)
512 ——– 4.66(−15) 1.51(−14) 5.55(−16)
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Table 5: The Error ‖u − un‖∞ for the Exterior Neumann Problem on the Boundaries Γ1,
Γ2 and Γ3.

m n Γ1 Γ2 Γ3

128 32 7.50(−02) 4.61(−02) 6.14(−01)
64 3.04(−03) 1.60(−03) 2.86(−02)
128 5.52(−06) 1.19(−06) 1.48(−04)
256 4.50(−06) 5.08(−12) 1.20(−08)
512 4.68(−06) 5.16(−12) 4.82(−10)

256 32 7.50(−02) 4.61(−02) 6.14(−01)
64 3.04(−03) 1.60(−03) 2.86(−02)
128 4.64(−06) 1.19(−06) 1.48(−04)
256 1.09(−11) 4.23(−13) 1.20(−08)
512 6.05(−13) 6.50(−14) 4.53(−14)

Table 6: The Error |u(z)− un(z)| for the Exterior Neumann Problem on the Boundary Γ1.

m n z = −4 z = −2 z = 2 z = 4
256 16 1.02(−02) 7.51(−02) 7.51(−02) 1.02(−02)

32 5.10(−04) 6.23(−03) 6.23(−03) 5.10(−04)
64 7.85(−07) 1.94(−05) 1.94(−05) 7.85(−07)
128 1.82(−12) 1.00(−10) 1.00(−10) 1.82(−12)
256 2.78(−16) 7.77(−16) 1.11(−16) 4.44(−16)
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Table 7: The Error |u(z)− un(z)| for the Exterior Neumann Problem on the Boundary Γ2.

m n z = −2i z = −i z = i z = 2i
128 16 2.51(−04) 2.56(−02) 2.56(−02) 2.51(−04)

32 3.57(−06) 6.25(−04) 6.25(−04) 3.57(−06)
64 6.88(−12) 2.86(−07) 2.86(−07) 6.86(−12)
128 1.62(−14) 4.36(−13) 4.37(−13) 1.81(−14)
256 2.10(−14) 2.37(−14) 2.37(−14) 2.18(−14)

Table 8: The Error |u(z)− un(z)| for the Exterior Neumann Problem on the Boundary Γ3.

m n z = −1 z = −1− i z = 1− i z = 2− i
256 32 1.79(−02) 5.62(−03) 6.29(−02) 2.60(−02)

64 5.88(−04) 2.13(−07) 1.09(−03) 9.83(−04)
128 1.55(−07) 7.76(−07) 4.21(−06) 2.31(−06)
256 8.72(−11) 6.52(−11) 1.29(−10) 1.91(−10)
512 2.22(−16) 1.22(−15) 2.22(−16) 3.89(−16)

8 Conclusions

Two uniquely solvable boundary integral equations were derived in this paper for the interior
and the exterior Neumann problems. Unlike the classical boundary integral equations for
the Neumann problems [1, 2, 5, 6], the derived boundary integral equations are uniquely
solvable and yields directly the boundary value of the solutions of the Neumann problems.

An interior and an exterior Neumann problems were solved numerically in three test
regions using the proposed method. The numerical examples illustrate that the proposed
method yields approximations of high accuracy.
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