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Abstract Two major problems are involved in VLSI design, namely, the placement
of components and routing between these components. Single row routing problem is
a combinatorial optimization problem of significant importance for the design of com-
plex VLSI multi layer printed circuit boards (PCB’s). The design involves conductor
routing that makes all the necessary wiring and interconnections between the PCB
modules, such as pins, vias, and backplanes. In very large systems, the number of
interconnections may exceed tens of thousands. Therefore, we have to optimize the
wire routing and interconnections and thus determine the efficient designs. Kernighan-
Lin algorithm, traveling salesman problem, simulated annealing algorithm and single
row routing problem are used to find the best design. Included here are some simple
examples to find the results. A simulation program using Microsoft Visual C++ is
developed to simulate the single row routing problem using the simulated annealing
algorithm.

Keywords Placement and Routing in VLSI, Single Row Routing, Kernighan-Lin
Algorithm, Simulated Annealing

1 Introduction

Issues in VLSI design

Due to the growth of the computer and communication industries, there is a significant
demand for digital designers. VLSI system design deals with the design of integrated circuit
chips, boards that include these chips and systems that use the boards. In addition, as the
complexity of integrated circuit chips increases, analog hardware often accompanies the
digital hardware on a chip. As a consequence, analog design and mixed signal design are
also potential components of this area. There are many approaches and techniques in
solving the VLSI design problems.

A comprehensive survey were presented by Shahookar and Mazumder [1] with emphasis
on standard cell and macro placement. Five major algorithms for placement are discussed:
simulated annealing, force-directed placement, min-cut placement, placement by numerical
optimization and evolution-based placement. The first two classes of algorithms owe their
origin to physical laws, the third and fourth are analytical techniques, and the fifth class of
algorithms is derived from biological phenomena.
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Chandy and Banerjee [2] investigates two new approaches that have been proposed for
generalized parallel simulated annealing, multiple Markov chains and speculative compu-
tation. These two algorithms are compared with the parallel moves approach to perform
parallel cell placement.

Issues in Single Row Routing (SRR)

A systematic suboptimal approach to multilayer rectilinear wire routing: single row ap-
proach, was investigated by Raghavan and Sahni [3]. The method involves decomposing
the general rectilinear wiring problem into a number of conceptually simpler single row
problems. The complexity of the decomposition process will be first considered. Under
interesting optimization criteria, each step in the decomposition process shown to be NP-
hard. Then the single row wiring problem itself is considered under a variety of optimization
criteria. In some cases, either efficient or ”usually good” algorithms are possible. In other
cases, the problem turns out to be NP-hard.

Han and Sahni [4] developed two fast algorithms for the layering problem that arises
when the single row routing approach to wire layout used. Both of these algorithms are
for the case when the upper and lower street capacities are two. While neither of these
algorithms guarantees the production of an optimal layering, it has been empirically deter-
mined that both will produce better layerings than an earlier proposed algorithm for this
problem. In addition, these algorithms run much faster than an earlier algorithm.

Battacharya et al [5], Hossain et al [6], and Deogun and Sherwani [7] consider some
restricted single row routing problems. Graph theoretic approach is used to obtain restricted
classes of single row routing problems. Optimal street congestion algorithms are proposed
for single row routing problems that have overlap graphs isomorphic to path, binary tree
and clique.

Salleh and Zomaya [8] introduce the different approach, which is based on the simulated
annealing algorithm (SAA). By performing slow cooling, the nets in the SRR problem align
themselves according to a configuration with the lowest energy. The energy is taken as the
absolute sum of the heights of the net segments, given as follows:

EL =
m∑

i=1

m∑
r=1

|hi,r|

where mi is the number of segments in the net Ni for i = 1, 2, 3, . . . ,m.
Based on these literature reviews, clearly there are many methods to solve the placement

and the routing problem in VLSI design. The most popular one is using graph theoretical
method. But we interested to use another approach to solve this problem, which is simulated
annealing. Routing problem solved by the single row technique, which is considered the
interconnection and the placement of the components.

2 Placement Strategy by Partitioning

Placement problem is a problem of determining the relative position of each transistor
within the target cell architecture. Figure 2.1 shows layout set of component. A common
strategy is to minimize the number of connections that may be made between the devices
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through common diffusions and vertically aligned gate wires. Figure 2.2 shows two different
placements of the component in the same problem.

Shahookar and Mazumder [1] defines the placement problem as follows. Given an elec-
trical circuit consisting of modules with predefined input and output terminals and inter-
connected in a predefined way, construct a layout indicating the positions of the modules
so the estimated wire length and layout area are minimized. The inputs to the problem are
the module description, consisting of the shapes, sizes and the terminals locations and the
netlist, describing the interconnections between the terminals of the modules. The output
is a list of x- and y-coordinates for all modules.

Partitioning circuits with costs and edges into partitions of specified sizes while trying
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to minimize total cost of edges cut has many applications in design automation. Many
techniques have been developed to solve this problem. Among the techniques are direct
partitioning techniques, group migration and metric allocation techniques. Combinatorial
optimization techniques such as simulated annealing have also been applied to partition-
ing. Many heuristics have been developed based on the work done by Kernighan-Lin and
Fiduccia-Mattheyses.

2.1 Kernighan-Lin Algorithm

The Kernighan-Lin algorithm partitions a given graph G = (V, E) of 2n into two equal
subgraphs of n nodes minimizing the edges cut. A cost matrix

C = (ci,j), i, j = 1, 2, . . . , 2n, i 6= j

is associated with the graph. The algorithm starts with an arbitrary partition of V into
two subsets A and B. For each node a ∈ A, an external cost Ea is defined by

Ea =
∑

y∈B

cay

and an internal cost Ia by
Ia =

∑

x∈A

cax

and
Da = Ea − Ia

is a difference between external and internal costs. The gain gi, produced when a and b
(a ∈ A, b ∈ B) are interchanged, is given by Da +Db− 2cab. In each iteration the algorithm
interchanges k (k ≤ n) pairs of vertices between the two subsets. The Kernighan-Lin algo-
rithm begins with an arbitrary partition of V into two equal-sized for all vertices. A pair
of vertices, one from each subset that generates the maximum gain through interchange, is
chosen. The gain is stored and the selected pair locked to prevent it from being considered
for interchange again. This procedure continues until all n vertex pairs are generated and a
sequence of gains, g1, g2, . . . , gn is generated. The total gain Gain(h), of interchanging the
first k pairs of vertices, 1 ≤ k ≤ n is computed:

Gain(k) =
k∑

i=1

gi = G.

The algorithm interchanges the first k pairs of vertices for which G is maximal. Inter-
mediate individual gains gi and cumulative gain G can be negative. If the best gain found
in an iteration is less than or equal to zero, the iteration is stopped (Kernighan and Lin
[9]).

2.2 Travelling Salesman Problem

In the case of the traveling salesman problem, the mathematical structure is a graph where
each city is denoted by a point (or node) and lines are drawn connecting every two nodes
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(called arcs or edges). Associated with every line is a distance (or cost). When the salesman
can get from every city to every other city directly, then the graph is said to be complete.
A round-trip of the cities corresponds to some subset of the lines, and is called a tour, or a
Hamiltonian cycle, in graph theory. The length of a tour is the sum of the lengths of the
lines in the round-trip.

The problem then becomes

minimize
m∑

j=1

m∑

i=1

cijxij

such that
m∑

j=1

xij = 1 for i = 1, ... ,m,

m∑
i=1

xij = 1 for j = 1, ..., m ,

|K|∑
i=1

|K|∑
j=1

kij ≤ |K| − 1 for K = {ki} i = 1, ... |K|, and K ⊂ {1, 2, . . . , m}

where |K| denotes the number of elements (cities) in K. The cost cij is allowed to be different
from the cost cji. Note that there are m (m− 1) zero-one variables in this formulation.

To formulate the symmetric traveling salesman problem, one notes that the direction
traversed is immaterial, so that cij = cji. Since direction does not now matter, one can
consider the graph where there is only one arc (undirected) between every two nodes. Thus,
we let xj ∈ {0, 1} be the decision variable where j runs through all edges E of the undirected
graph and cj is the cost of traveling that edge. To find a tour in this graph, one must select
a subset of edges such that every node is contained in exactly two of the edges selected.
Thus, the problem can be formulated as a 2-matching problem in the graph Gv having
m(m− 1)/2 zero-one variables, i.e. half of the number of the previous formulation. As in
the asymmetric case, subtours must be eliminated through subtour elimination constraints.

The problem can therefore be formulated as:

minimize
1
2

m∑

j=1

∑
k∈J(j)

ckxk

such that ∑
k∈J(j) xk = 2 for all j = 1, ...,m,∑

j∈E(K) xj ≤ |K| − 1 for all K ⊂ {1, ..., m} ,

xj = 0 or 1 for all j ∈ E(k).

where J(j) is the set of all undirected edges connected to node j and E(K) is the subset
of all undirected edges connecting the cities in any proper, nonempty subset K of all cities.
Of course, the symmetric problem is a special case of the asymmetric one, but practical
experience has shown that algorithms for the asymmetric problem perform, in general, badly
on symmetric problems. Thus, the latter need a special formulation and solution treatment.

A problem in graph theory requires the most efficient (i.e., least total distance) Hamil-
tonian circuit a salesman can take through each of n cities (Hoofman and Padberg [10]).
No general method of solution is known, and the problem is NP-hard.
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2.3 Simulated Annealing Algorithm

Simulated annealing was introduced by Metropolis et al. This method is used to approx-
imate the solution of very large combinatorial optimization problems such as the TSP or
VLSI-CAD problems including PLA folding, partitioning, routing, logic minimization, floor-
planning or placement (Shahookar and Mazumder[1]. The technique originates from the
theory of statistical mechanics and is based upon the analogy between the annealing of
solids. It is very time consuming but yields excellent results. It is an excellent heuristic for
solving any combinatorial optimization problem.

Assume that we are looking for the configuration that minimizes a cost function E.
Starting off at an initial configuration, a sequence of iterations is generated. Each iterations
consists of the random selection of a configuration from the neighbourhood of the current
configuration and the calculation of the corresponding change in cost function ∆E.

Typically, we use the Boltzmann probability distribution

Prob(E) ∼ exp
(−∆E

kT

)

where k is a constant and at a given temperature T, a system can be in a range of possible
energy states-the higher the temperature the more likely it is to be in a high energy state.
In practise, the temperature is decreased in stages and at each stage the temperature is
kept constant until thermal quasi-equilibrium is reached.

The simulated annealing program consists of a pair of nested loops. The outer-most loop
sets the temperature and the inner-most loops runs the simulation at that temperature. The
way in which the temperature is decreased is known as the cooling schedule. In practice,
two different cooling schedules are predominantly used: a linear cooling schedule (Tnew =
Told − dT ) and a proportional cooling schedule (Tnew = C∗Told) where C < 1.0. These are
not only possible cooling schedules, they are just the ones that appear in most literature
(Kirkpatrick et al [11]).

3 Routing Problem

The routing problem is typically the assignment of physical wires on the board to individual
nets in a design. Ideally, placement and routing should be performed simultaneously as they
depend on each others results. This is however, too complicated. In real problem, placement
is done prior to routing. The objectives of the routing are to minimize the interconnection
lengths and provide the shortest connections between terminals.

The routing problem can be defined as follows. Given a placement and a fixed number of
metal layers, we have to find a valid pattern of horizontal and vertical wires that connect the
terminals of the nets. Our objectives here are to minimize the respective cost components
such as area, wire delays, number of layer and the other additional cost component like the
number of bends and vias. There are two levels of abstraction: global routing and detailed
routing.

Solving the routing problem, minimizes the total of area and the wire length. It is
important to optimize chip area usage in order to fit more functionality into a given chip
area. With the optimal wire length being used, the capacity delays associated with longer
nets will be reduced and this will speed up the operation of the chip. This, in turn,
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reduces the communication cost between the terminals and therefore, improves the circuit
performance.

3.1 Single Row Routing Technique

The classical single row routing problem is one of the important problems in the layout
design of multilayer circuit boards (Battacharya et al [5]). Single row routing problem, as
applied to VLSI design, is a specific subproblem of the floor plan problem, which not only
considers the interconnection of components, but also the placement of the component such
as that the total chip area used is minimized. The goal of area minimization is paramount in
VLSI design because area dominates the cost of a chip. The problem of finding an optimal
placement for the general floor plan problem is NP-Complete e (Looges [12]).

In the single row routing problem, we are given n points (pins / terminals) V = 1, 2, ..., n
evenly spaced along a line, and a set of nets L = {N1, N2, . . . , Nm} over V. Without loss of
generality, we may assume that the line of points is oriented horizontally.

Laying out a single row wiring problem entails defining conductor paths in order to
realize all the nets, subject to each of the following:

• Each conductor path is made up of horizontal and vertical segment only.

• Conductor paths do not cross.

• The layout of each net should be free of “backward moves”. In other words, it should
not be possible to draw a vertical line anywhere that intersects more than one con-
ductor segment of any given net. A layout that satisfies the above constraints is called
a realization.

The wiring channel above the line of points is called the upper street and the one below,
the lower street. The number of wiring tracks needed in the upper street is upper street con-
gestion, Cus and the below one is lower street congestion, Cls. The quantity max{Cus, Cls}
is called width.
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When the layout of the conductor path contains a vertical segment from the upper
street to the lower street, the path is said to make interstreet crossing. The between -nodes
congestion of a realization is

max {number of interstreet crossings between an adjacent pair of points}.

In laying out a wire the number of right-angled bends in the layout of that wire is related
to the number of interstreet crossings made by it, as follows:

the number of bends = 2(number of interstreet crossings) + 2.

In general, p− 1 wires are required to realize a net with p points. Let pi be the number of
points in net Ni, 1 ≤ i ≤ m. Then, for the complete realization,

The number of bends = 2(number of interstreet crossings) + 2
∑

i

(pi − 1 )

There are many single rows wiring problem under a variety of constraints and opti-
mization measures such as minimizing the width, between-nodes congestions and the total
number of bends.

Here, we are concerned with finding a realization that minimizes the total number of
bends (in all wires). This optimization measure is important in at least this context (Ragha-
van and Sahni [3]):

• In fabricating microwave and millimetric wave integrated circuits, the conductor paths
in the metallization layer act as waveguides, rather than as simple electrical wires.
These paths are called microstrip line. The effect of a bend in a microstrip line is the
creation of reflections and this reduces the transmission efficiency of the line. This
forces the drivers to send out stronger signals in order to effect a proper transmission.
So, in this context, counting the total number of bends in a realization can help form
a rough estimate of the power requirements of the chip. Minimizing the total number
of bends will help reduce the power consumption of the integrated system.

• As mention earlier, the total number of bends in a realization is intimately related to
the total number of interstreet crossings. If external circumstances (e.g fixed place-
ment procedure) do not force the point locations to be fixed, a realization that mini-
mizes the total number of interstreet crossings can be followed by a suitable relocation
of the point positions along the line of points. The result is a “minimum length” re-
alization. i.e., a realization in which the separation between the two extreme points
is minimized.

4 Examples

4.1 Model Desciption 1

Figure 4.1 below shows a graph representation of a set of gates that are partitioned into
two sets.
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Analysis of Results

Kernighan-Lin algorithm is one of an iterative improvement techniques that produces good
placement but requires enormous amounts of computation time. For the above example,

For i = 1 to 4 :

• iteration 1 : compute the gain for all free pairs takes 16 time

© choose the largest gain takes 4 time

© update all the D’s takes 4 time

• iteration i : compute gain for all free pairs takes (n− i + 1)2

Generally, when we are given a graph G(V, E), where |V | = 2n, {A, B} is the initial
partition such that |A| = |B| :
inner (for) loop:

• iterates n times

• iteration 1 : (n∗n) time

• Iteration i : (n− i + 1)2

4.2 Model Description 2

Given a set of gates that need to be partitioned into two sets, as shown in Figure 4.4:
By applying Kernighan- Lin algorithm, the final solution for our model is A = {1, 2, 3}

and B = {4, 5, 6}. Now we apply the single row routing approaches to this problem to find
the best routing.

Analysis of Results

For this example, we have to iterate twice before achieving G < 0. Then, we show it as
single row routing.

Figure 4.5 is the layout of the single row routing before the circuit is partitioned. All
the nodes are in one row. The dots in each area nodes show a number of connection wires.

Figure 4.6 is the layout of single row routing after the circuit is partitioned. Red lines
are referred to as graph partition line. Our objective is to minimize a number of connection
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wires between nodes that interstreet that red line. After first iteration, the number of
cutsize is 3.

Figure 4.7 shows a final solution for this example. After swapping the node 1 and 4 by
Kernighan-Lin algorithm, it shows an improvement in cutsize number.

5 Single Row Routing Simulation Model

A computer simulation model has been developed to study the simulated annealing and sin-
gle row routing technique. In this simulation, only 80 nets to be considered. Our simulation
was based on single row routing technique using the simulated annealing algorithm.

We used the MFC with Microsoft Visual C++ to simulate our model. MFC was created
to make programming in Windows easier. As an object-oriented wrapper for Win32, it au-
tomates many routine programming tasks (mostly passing references around). Paradigms
like the document/view architecture were added to automate even more tasks for the pro-
grammer, but in the process, some control was taken away.

5.1 Model Description

Our simulation consists of 160 terminals/pins, V = {1, 2, 3, . . . , 160}, evenly spaced along
a line, and a set of nets L = {N1, N2, . . . , N80} over V. We put all the data in our input
file. We assume that the line of terminals oriented horizontally. Our simulation has been
developed using Microsoft Visual C++ based on the single row technique.
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Firstly, we have defined the initial temperature, To = 100oC , constant, k = 1 and
Boltzmann probability of accept, ε = 0.9. We have used the proportional cooling schedule
Tnew = a∗Told where α = 0.95. This simulation will start as in Figure 5.1. The first and
forth column are the nets number, the second and fifth column are terminals start while
the rest are terminals end.

Some parameters involved in this simulation are as follows:

T : temperature that will change after we press the enter or space bar
key

ColPosition(int) : display the nets into two column in our output
Energy : energy of the nets
Q : maxima qm,qM or width
qm : lower street congestions
qM : upper street congestions
nDogLegs : number of doglegs or a vertical line joining two horizontal lines of

the same track in a given realization
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5.2 Data Structure

A data structure is constructs that can be defined within a programming language to store
a collection data. The following data structure describes our simulation:

struct nn
{

int b,e,q,bq,eq;
int order,bqU,bqL,eqU,eqL;
bool Hide;
int nDog;
int vbd[2∗MaxNets+1];
int sh[MaxNets+1];
int energy;

{ N[MaxNets+1];

struct mm
{

bool Hide;
int Net;

{ v[2∗MaxNets+1];

Some of the member functions in the simulation are:
ClearScreen() : to clear the screen after iteration
Update(void) : update the output display after press the enter and a spacebar key
Perturb() : doing all the calculation
DisplayNets() : to display all of nets
OnPaint() : to draw a horizontal line/interval line for each nets
OnKeyDown() : to let the node i moving either randomly or in one way direction.

5.3 Simulation Model

In this simulation, a perturbation is performed to examine the neighbors by moving a net
at random to a new position. The resulting change in energy (E is then evaluated. If the
energy is reduced, that is ∆E < 0, the new configuration is accepted as the starting point
for the next move. However, if the energy is increased, ∆E > 0, the move generates the

probability Prob(E) ∼ exp
(−∆E

kT

)
. The move is accepted if this probability is greater

than a Boltzmann probability of acceptance, ε = 0.94 and rejected otherwise. Within a
higher value, the number of moves accepted for ∆E > 0 are reduced and the same rule
applies vice versa.

Figure 5.2 , Figure 5.3 and Figure 5.4 show an output of display net for T=95oC,
85.737oC and 81.451oC. From the right side lines drawn, we can see that every terminal/pins
are oriented horizontally and each net was free of backward moves. From these figures also,
seen that the move is accepted because there exist an amount reduction in total of energy,
width and number of doglegs. This simulation will continue until the best result obtain.
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5.4 Results

Based on the results in appendix, shown that this process lowers the temperature by slow
stages and at T=0.656oC, we can see that the system ’freezes’ and no further changes occur.
In this simulation, the total of energy is 3244, the width is 24 and the number of doglegs is
440. Figure 5.5 below shows the final result for this simulation.

The main drawback of simulated annealing is the long computation time needed before
converging to the stable state. This is due to the fact that the algorithm performs a large
number of random searches at each temperature step before arriving at the equilibrium
state.

6 Conclusion

Single row routing is a component of many complex VLSI design problems. The difficulty
with the problem stems from the fact that no solid mathematical approach has been able
to provide a general solution. The simulated annealing algorithm was applied by using
an objective function, which is expressed in terms of the track height. The energy in
the objective function represents both the street congestion and the number of interstreet
crossings. By reducing the two cost into one, the new energy now represents the degree for
the compactness of the routing design.
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Appendix

Results for 80 nets

Output file

Temp. Energy Width Doglegs

95.000 10804 25 1148
90.250 9607 24 1046
85.737 8821 25 962
81.451 7883 24 912
77.378 7386 24 851
73.509 7239 26 854
69.834 7204 26 846
66.342 7204 26 846
63.025 7164 26 827
59.874 7164 26 827
56.880 6790 26 832
54.036 6768 26 830
51.334 6768 26 830
48.767 6362 26 801
46.329 6337 26 797
44.013 6333 26 796
41.812 6308 26 791
39.721 6298 26 791
37.735 6298 26 791
35.849 6180 26 769
34.056 6113 26 751
32.353 6066 26 749
30.736 5508 26 703
29.199 5508 26 703
27.739 5508 26 703
26.352 5496 26 695
25.034 5476 26 695
23.783 5476 26 695
22.594 5445 26 674
21.464 5445 26 674
20.391 5325 26 662
19.371 5325 26 662
18.403 5325 26 662
17.482 5247 26 653
16.608 5239 26 651
15.778 5082 25 671
14.989 4878 25 643
14.240 4833 25 639
13.528 4756 25 633
12.851 4756 25 633
12.209 4735 25 627
11.598 4735 25 627
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Temp. Energy Width Doglegs

11.018 4658 25 619
10.467 4538 25 600
9.944 4529 25 598
9.447 4508 25 596
8.974 4492 25 592
8.526 4492 25 592
8.099 4487 25 589
7.694 4398 25 587
7.310 4285 25 578
6.944 4207 24 571
6.597 4202 24 570
6.267 4155 24 562
5.954 4143 24 566
5.656 4079 24 554
5.373 4079 24 554
5.105 3966 24 551
4.849 3965 24 549
4.607 3932 24 544
4.377 3899 24 546
4.158 3895 24 544
3.950 3893 24 542
3.752 3845 24 536
3.565 3845 24 536
3.387 3816 24 533
3.217 3767 24 526
3.056 3631 23 503
2.904 3631 23 503
2.758 3608 23 501
2.620 3608 23 501
2.489 3608 23 501
2.365 3608 23 501
2.247 3608 23 501
2.134 3608 23 501
2.028 3529 23 492
1.926 3518 23 497
1.830 3515 23 495
1.738 3494 23 491
1.652 3488 23 489
1.569 3485 23 487
1.491 3475 23 483
1.416 3459 23 483
1.345 3446 23 480
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Temp. Energy Width Doglegs

1.278 3446 23 480
1.214 3446 23 480
1.153 3446 23 480
1.041 3430 23 481
0.989 3408 23 466
0.939 3408 23 466
0.892 3366 23 465
0.848 3366 23 465
0.805 3319 23 467
0.765 3319 23 467
0.727 3308 23 463
0.691 3303 23 461
0.656 3244 24 440
0.623 3244 24 440
0.592 3244 24 440
0.562 3244 24 440
0.534 3244 24 440
0.508 3244 24 440


