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Abstract We present an integral equation method for conformal mapping of doubly
connected regions onto a unit disc with a circular slit of radius µ < 1. Our theoretical
development is based on the boundary integral equation for conformal mapping of
doubly connected region derived by Murid and Razali [15]. In this paper, using the
boundary relationship satisfied by the mapping function, a related system of integral
equations via Neumann kernel is constructed. For numerical experiment, the integral
equation is discretized which leads to a system of linear equations, where µ is assumed
known. Numerical implementation on a circular annulus is also presented.
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1 Introduction

Numerical conformal mapping of multiply connected regions are presently still a subject
of interest. Every region of connectivity p can be mapped conformally on each of the five
canonical regions [2, 3, 16]. They are the disc with concentric circular slits; an annulus with
concentric circular slits; the circular slit region; the radial slit region and the parallel slit
region. In particular, if Ω is a multiply connected regions of connectivity (p + 1) inside the
unit disc |z| < 1 where Γ = |z| = 1 is the boundary component of Ω, then there exists a
univalent analytic function w = f(z) in Ω such that (i) it maps Ω conformally onto a region
G inside the unit disc |w| < 1 which has p circular slits centered at w = 0 and (ii) it maps
the unit circle |z| = 1 conformally onto a unit circle |w| = 1. The images of the circular
slits are traversed twice [6, 10].

Several methods for conformal mapping of multiply connected regions have been pro-
posed in the literature [4, 7, 9, 11, 15, 17, 18, 19, 21, 22]. One of the methods is the
integral equation method. Some notable ones are the integral equations of Warschawski,
Gerschgorin, and Symm. All these integral equations are extensions of those maps for sim-
ply connected regions. Recently there are two integral equations for conformal mapping of
simply connected regions derived by Kerzman and Trummer [8] and Razali et al. [20]. An
effort for their extensions to doubly connected case has been given by Murid and Razali [15]
but without any numerical experiment. Numerical conformal mapping of doubly connected
regions onto an annulus based on [15] is discussed in [12].
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In this paper, we adapted the work of Murid and Razali [15] to construct an integral
equation involving the Neumann kernel for conformal mapping of doubly connected regions
onto a unit disc with a circular slit of radius µ < 1. For numerical experiment, the integral
equation is discretized which leads to a system of linear equations provided µ is known. A
numerical example is reported for a circular annulus as a test region.

2 A Boundary Integral Equation for Conformal Mapping of Dou-

bly Connected Regions

Let Γ0 and Γ1 be two smooth Jordan curves in the complex z-plane such that Γ1 lies in the
interior of Γ0. Denote the finite doubly connected region by Ω with boundary Γ = Γ0 ∪ Γ1.
Let w = f(z) be the analytic function which maps Ω conformally onto a unit disc with
a circular slit of radius µ < 1. The mapping function f is determined up to a factor of
modulus 1. The function f could be made unique by prescribing that

f(a) = 0, f ′(a) > 0,

where a ∈ Ω is a fixed point.
The boundary values of f can be represented in the form

f(z0(t)) = eiθ0(t), Γ0 : z = z0(t), 0 ≤ t ≤ β0 , (1)

f(z1(t)) = µeiθ1(t), Γ1 : z = z1(t), 0 ≤ t ≤ β1, (2)

where θ0(t) and θ1(t) are the boundaries corresponding to the functions Γ0 and Γ1, respec-
tively.

The unit tangent to Γ at z(t) is denoted by T (z(t)) = z′(t)/|z′(t)|. Thus it can be shown
that

f(z0(t)) =
1

i
T (z0(t))

θ′0(t)

|θ′0(t)|

f ′(z0(t))

|f ′(z0(t))|
=

1

i
T (z0(t))

f ′(z0(t))

|f ′(z0(t))|
, (3)

f(z1(t)) =
µ

i
T (z1(t))

θ′1(t)

|θ′1(t)|

f ′(z1(t))

|f ′(z1(t))|
= ±

µ

i
T (z1(t))

f ′(z1(t))

|f ′(z1(t))|
. (4)

Note that θ′0(t) > 0 while θ′1(t) may be positive or negative. Thus θ′1(t)/|θ
′
1(t)| = ±1.

The boundary relationships (3) and (4) can be unified as

f(z) = ±
|f(z)|

i
T (z)

f ′(z)

|f ′(z)|
, z ∈ Γ, (5)

where Γ = Γ0 ∪ Γ1.
To eliminate the ± sign, we square both sides of the boundary relationship (5) and get

f(z)2 = −|f(z)|2T (z)2
f ′(z)2

|f ′(z)|2
, z ∈ Γ. (6)

An integral equation can be constructed related to the boundary relationship (6) based on
the following result of Murid and Razali [15]:
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Suppose D(z) is analytic and single-valued with respect to z ∈ Ω and is continuous on
Ω ∪ Γ. Suppose further that D satisfies the boundary relationship

P (z) = c(z)
T (z)Q(z)D(z)2

|D(z)|2
, z ∈ Γ, (7)

where T (z(t)) = z′(t)/|z′(t)| is the complex unit tangent function at z ∈ Γ, while c, P and
Q are complex-valued functions defined on Γ with the following properties:

(P1) c(z) =

{

c0, if z ∈ Γ0

c1, if z ∈ Γ1
, where c0 and c1 are complex constants,

(P2) P (z) is analytic and single-valued with respect to z ∈ Ω,
(P3) P (z) is continuous on Ω ∪ Γ,
(P4) P (z) has a finite number of zeroes at a1, a2, . . . , an in Ω,
(P5) P (z) 6= 0, Q(z) 6= 0, D(z) 6= 0, z ∈ Γ.

Theorem 1 Let u and v be any complex-valued function that are defined on Γ. Then

1

2

[

v(z) +
u(z)

T (z)Q(z)

]

D(z) + PV
1

2πi

∫

Γ

[

u(z)

(w − z)Q(w)
−

v(z)T (w)

w − z

]

D(w)|dw|

= −c(z)u(z)





∑

aj insideΓ

Res
w=aj

D(w)

(w − z)P (w)





−

− u(z)(c0 − c1)

[

1

2πi

∫

Γ2

D(w)

(w − z)P (w)
dw

]−

, z ∈ Γ, (8)

where the minus sign in the superscript denotes complex conjugate and where

Γ2 =

{

−Γ1, if z ∈ Γ0,
Γ0, if z ∈ Γ1.

Comparison of (6) and (7) leads to a choice of c(z) = −|f(z)|2, P (z) = f(z)2 , D(z) =
f ′(z), Q(z) = T (z). Substituting these assignments into (8) along with the choice of
u(z) = T (z)Q(z) and v(z) = 1, gives the integral equation

f ′(z) +

∫

Γ

M(z, w)f ′(w)|dw| = |f(z)|2T (z)2
[

Res
w=a

f ′(w)

(w − z)f(w)2

]−

+ T (z)2(1 − µ2)

[

1

2πi

∫

Γ2

f ′(w)

(w − z)f(w)2
dw

]−

, z ∈ Γ, (9)

where

M(z, w) =



















T (w)

2πi

[

T (z)2

w − z
−

1

w − z

]

, if w, z ∈ Γ, w 6= z,

1

2π

Im[z′′(t)z′(t)]

|z′(t)|3
, if w = z ∈ Γ.

(10)
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If we multiply both sides of (9) by T (z) and use the fact T (z)T (z) = |T (z)|2 = 1, we obtain

T (z)f ′(z) +

∫

Γ

N(z, w)T (w)f ′(w)|dw| = |f(z)|2T (z)

[

Res
w=a

f ′(w)

(w − z)f(w)2

]−

+ T (z)(1 − µ2)

[

1

2πi

∫

Γ2

f ′(w)

(w − z)f(w)2
dw

]−

, z ∈ Γ, (11)

where N is the Neumann kernel [6] defined by

N(z, w) =















1

π
Im

[

T (z)

w − z

]

, if w, z ∈ Γ, w 6= z,

1

2π

Im[z′′(t)z′(t)]

|z′(t)|3
, if w = z ∈ Γ.

(12)

To evaluate the residue in equation (11), we use the fact that if f(w) = g(w)/h(w),
where g and h are analytic at a, and g(a) 6= 0, h(a) = h′(a) = 0, h′′(a) 6= 0, which means a
is a double pole of f(w), then [5]

Res
w=a

f(w) = 2
g′(a)

h′′(a)
−

2

3

h′′′(a)g(a)

h′′(a)2
. (13)

Applying (13) to (11) and after several algebraic manipulations, we obtain

Res
w=a

f ′(w)

(w − z)f(w)2
= −

1

(a − z)2f ′(a)
. (14)

Thus integral equation (11) becomes

T (z)f ′(z) +

∫

Γ

N(z, w)T (w)f ′(w)|dw| = |f(z)|2T (z)

[

−
1

(a − z)2f ′(a)

]−

+ T (z)(1 − µ2)

[

1

2πi

∫

Γ2

f ′(w)

(w − z)f(w)2
dw

]−

, z ∈ Γ. (15)

Multiply (15) by f ′(a), we get

T (z)f ′(z)f ′(a) +

∫

Γ

N(z, w)T (w)f ′(w)f ′(a)|dw| = −|f(z)|2T (z)
1

(a − z)2

+ T (z)(1 − µ2)

[

1

2πi

∫

Γ2

f ′(w)

(w − z)f(w)2
f ′(a)dw

]−

, z ∈ Γ. (16)

The single integral equation in (16) can be separated into a system of two integral equations
given by

T (z0)f
′(z0)f

′(a) +

∫

Γ

N(z0, w)T (w)f ′(w)f ′(a)|dw| = −T (z0)
1

(a − z0)2

+ T (z0)(1 − µ2)

[

1

2πi

∫

−Γ1

f ′(w)

(w − z0)f(w)2
f ′(a)dw

]−

, z0 ∈ Γ0, (17)
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T (z1)f
′(z1)f

′(a) +

∫

Γ

N(z1, w)T (w)f ′(w)f ′(a)|dw| = −µ2T (z1)
1

(a − z1)2

+ T (z1)(1 − µ2)

[

1

2πi

∫

Γ0

f ′(w)

(w − z1)f(w)2
f ′(a)dw

]−

, z1 ∈ Γ1. (18)

Taking boundary relationship (6) into account, (17) and (18) become

T (z0)f
′(z0)f

′(a) +

∫

Γ

N(z0, w)T (w)f ′(w)f ′(a)|dw| = −
T (z0)

(a − z0)2

+ T (z0)(1 − µ2)





1

2πi

∫

−Γ1

f ′(w)f ′(a)

(w − z0)
[

−µ2T (w)2 f ′(w)2

|f ′(w)|2

]dw





−

, z0 ∈ Γ0, (19)

T (z1)f
′(z1)f

′(a) +

∫

Γ

N(z1, w)T (w)f ′(w)f ′(a)|dw| = −
µ2T (z1)

(a − z1)2

+ T (z1)(1 − µ2)





1

2πi

∫

Γ0

f ′(w)f ′(a)

(w − z1)
[

−T (w)2 f ′(w)2

|f ′(w)|2

]dw





−

, z1 ∈ Γ1. (20)

Using the facts that |f ′(w)|2 = f ′(w)f ′(w), T (w)|dw| = dw, and T (w)T (w) = |T (w)|2 =
1, the two integral equations (19) and (20) become

T (z0)f
′(z0)f

′(a) +

∫

Γ

N(z0, w)T (w)f ′(w)f ′(a)|dw| = −
T (z0)

(a − z0)2

+
1

2πiµ
T (z0)(1 − µ2)

∫

−Γ1

T (w)

w − z0
f ′(w)f ′(a)|dw|, z0 ∈ Γ0, (21)

T (z1)f
′(z1)f

′(a) +

∫

Γ

N(z1, w)T (w)f ′(w)f ′(a)|dw| = −
µ2T (z1)

(a − z1)2

+
1

2πi
T (z1)(1 − µ2)

∫

Γ0

T (w)

w − z1
f ′(w)f ′(a)|dw|, z1 ∈ Γ1. (22)

Since Γ = Γ0 ∪ Γ1, equations (21) and (22) can be written as

T (z0)f
′(z0)f

′(a) +

∫

Γ0

N(z0, w)T (w)f ′(w)f ′(a)|dw|

−

∫

−Γ1

N(z0, w)T (w)f ′(w)f ′(a)|dw|

= −
T (z0)

(a − z0)2
+

T (z0)

2πiµ2

∫

−Γ1

1

w − z0
T (w)f ′(w)f ′(a)|dw|

−
T (z0)

2πi

∫

−Γ1

1

w − z0
T (w)f ′(w)f ′(a)|dw|, z0 ∈ Γ0, (23)
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T (z1)f
′(z1)f

′(a) +

∫

Γ0

N(z1, w)T (w)f ′(w)f ′(a)|dw|

−

∫

−Γ1

N(z1, w)T (w)f ′(w)f ′(a)|dw|

= −
µ2T (z1)

(a − z1)2
+

T (z1)

2πi

∫

Γ0

1

w − z1
T (w)f ′(w)f ′(a)|dw|

−
µ2T (z1)

2πi

∫

Γ0

1

w − z1
T (w)f ′(w)f ′(a)|dw|, z1 ∈ Γ1. (24)

Using the fact that any z ∈ C, Im(z) = (z − z)/(2i), the Neumann kernel which is defined
in (12) can be written as

N(z, w) =



















1

2πi

[

T (z)

z − w
−

T (z)

z − w

]

, if w, z ∈ Γ, w 6= z,

1

2π

Im[z′′(t)z′(t)]

|z′(t)|3
, if w = z ∈ Γ.

(25)

Applying definition (25) to N(z0, w) in
∫

−Γ1

of equation (23) and to N(z1, w) in
∫

Γ0

of

equation (24), we obtain

T (z0)f
′(z0)f

′(a) +

∫

Γ0

N(z0, w)T (w)f ′(w)f ′(a)|dw|

−

∫

−Γ1

1

2πi

[

T (z0)

z0 − w
−

T (z0)

z0 − w

]

T (w)f ′(w)f ′(a)|dw|

= −
T (z0)

(a − z0)2
−

1

2πiµ2

∫

−Γ1

T (z0)

z0 − w
T (w)f ′(w)f ′(a)|dw|

+
1

2πi

∫

−Γ1

T (z0)

z0 − w
T (w)f ′(w)f ′(a)|dw|, z0 ∈ Γ0, (26)

T (z1)f
′(z1)f

′(a) +

∫

Γ0

1

2πi

[

T (z1)

z1 − w
−

T (z1)

z1 − w

]

T (w)f ′(w)f ′(a)|dw|

−

∫

−Γ1

N(z1, w)T (w)f ′(w)f ′(a)|dw|

= −
µ2T (z1)

(a − z1)2
−

1

2πi

∫

Γ0

T (z1)

z1 − w
T (w)f ′(w)f ′(a)|dw|

+
µ2

2πi

∫

Γ0

T (z1)

z1 − w
T (w)f ′(w)f ′(a)|dw|, z1 ∈ Γ1. (27)

After simplications, we get
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T (z0)f
′(z0)f

′(a) +

∫

Γ0

N(z0, w)T (w)f ′(w)f ′(a)|dw|

−

∫

−Γ1

1

2πi

[

T (z0)

z0 − w

]

T (w)f ′(w)f ′(a)|dw|

= −
T (z0)

(a − z0)2
−

1

2πiµ2

∫

−Γ1

T (z0)

z0 − w
T (w)f ′(w)f ′(a)|dw|, z0 ∈ Γ0, (28)

T (z1)f
′(z1)f

′(a) +

∫

Γ0

1

2πi

[

T (z1)

z1 − w

]

T (w)f ′(w)f ′(a)|dw|

−

∫

−Γ1

N(z1, w)T (w)f ′(w)f ′(a)|dw|

= −
µ2T (z1)

(a − z1)2
+

µ2

2πi

∫

Γ0

T (z1)

z1 − w
T (w)f ′(w)f ′(a)|dw|, z1 ∈ Γ1. (29)

Rearranging (28) and (29) yields

T (z0)f
′(z0)f

′(a) +

∫

Γ0

N(z0, w)T (w)f ′(w)f ′(a)|dw|

−

∫

−Γ1

1

2πi

[

T (z0)

z0 − w
−

T (z0)

µ2(z0 − w)

]

T (w)f ′(w)f ′(a)|dw|

= −
T (z0)

(a − z0)2
, z0 ∈ Γ0, (30)

T (z1)f
′(z1)f

′(a) +

∫

Γ0

1

2πi

[

T (z1)

z1 − w
−

µ2T (z1)

z1 − w

]

T (w)f ′(w)f ′(a)|dw|

−

∫

−Γ1

N(z1, w)T (w)f ′(w)f ′(a)|dw| = −
µ2T (z1)

(a − z1)2
, z1 ∈ Γ1. (31)

Defining

g(z, a) = T (z)f ′(z)f ′(a),

h(a, z) = −
T (z)

(a − z)2
,

P (z, w) =
1

2πi

[

T (z)

z − w
−

T (z)

µ2(z − w)

]

,

Q(z, w) =
1

2πi

[

T (z)

z − w
−

µ2T (z)

z − w

]

,
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(30) and (31) can be written as

g(z0, a) +

∫

Γ0

N(z0, w)g(w, a)|dw| −

∫

−Γ1

P (z0, w)g(w, a)|dw| = h(a, z0), z0 ∈ Γ0, (32)

g(z1, a) +

∫

Γ0

Q(z1, w)g(w, a)|dw| −

∫

−Γ1

N(z1, w)g(w, a)|dw| = µ2h(a, z1), z1 ∈ Γ1. (33)

3 Numerical Implementation

Using parametric representations z0(t) of Γ0 for t : 0 ≤ t ≤ β0 and z1(t) of −Γ1 for
t : 0 ≤ t ≤ β1, equations (32) and (33) become

g(z0(t), a) +

∫ β0

0

N(z0(t), z0(s))g(z0(s), a)|z′0(s)|ds

−

∫ β1

0

P (z0(t), z1(s))g(z1(s), a)|z′1(s)|ds = h(a, z0(t)), z0(t) ∈ Γ0, (34)

g(z1(t), a) +

∫ β0

0

Q(z1(t), z0(s))g(z0(s), a)|z′0(s)|ds

−

∫ β1

0

N(z1(t), z1(s))g(z1(s), a)|z′1(s)|ds = µ2h(a, z1(t)), z1(t) ∈ Γ1. (35)

Multiplying (34) and (35) by |z′0(t)| and |z′1(t)|, respectively, gives

|z′0(t)|g(z0(t), a) +

∫ β0

0

|z′0(t)|N(z0(t), z0(s))g(z0(s), a)|z′0(s)|ds

−

∫ β1

0

|z′0(t)|P (z0(t), z1(s))g(z1(s), a)|z′1(s)|ds = |z′0(t)|h(a, z0(t)), z0(t) ∈ Γ0,

(36)

|z′1(t)|g(z1(t), a) +

∫ β0

0

|z′1(t)|Q(z1(t), z0(s))g(z0(s), a)|z′0(s)|ds

−

∫ β1

0

|z′1(t)|N(z1(t), z1(s))g(z1(s), a)|z′1(s)|ds = µ2|z′1(t)|h(a, z1(t)), z1(t) ∈ Γ1.

(37)

Defining

φ0(t) = |z′0(t)|g(z0(t), a),

φ1(t) = |z′1(t)|g(z1(t), a),

γ0(t) = |z′0(t)|h(a, z0(t)),

γ1(t) = µ2|z′1(t)|h(a, z1(t)),

K00(t0, s0) = |z′0(t)|N(z0(t), z0(s)),

K01(t0, s1) = |z′0(t)|P (z0(t), z1(s)),

K10(t1, s0) = |z′1(t)|Q(z1(t), z0(s)),

K11(t1, s1) = |z′1(t)|N(z1(t), z1(s)),
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equations (36) and (37) can be written briefly as

φ0(t) +

∫ β0

0

K00(t0, s0)φ0(s)ds −

∫ β1

0

K01(t0, s1)φ1(s)ds = γ0(t), z0 ∈ Γ0, (38)

φ1(t) +

∫ β0

0

K10(t1, s0)φ0(s)ds −

∫ β1

0

K11(t1, s1)φ1(s)ds = γ1(t), z1 ∈ Γ1. (39)

Since the functions φ, γ, and K are β-periodic, an appealing procedure for solving (38)
and (39) numerically is using the Nyström’s method with the trapezoidal rule [1]. The
trapezoidal rule is the most accurate method for integrating periodic functions numerically.
We choose β0 = β1 = 2π and n equidistant collocation points ti = (i − 1)β0/n, 1 ≤ i ≤ n
on Γ0 and m equidistant collocation points tı = (ı − 1)β1/m, 1 ≤ ı ≤ m, on Γ1. Applying
the Nyström’s method with trapezoidal rule to discretize (38) and (39), gives

φ0(ti) +
β0

n

n
∑

j=1

K00(ti, tj)φ0(tj) −
β1

m

m
∑

k=1

K01(ti, tk)φ1(tk) = γ0(ti), (40)

φ1(tı) +
β0

n

n
∑

j=1

K10(tı, tj)φ0(tj) −
β1

m

m
∑

k=1

K11(tı, tk)φ1(tk) = γ1(tı). (41)

Equations (40) and (41) lead to a system of (n + m) complex equations in n unknowns
φ0(ti) and m unknowns φ1(tı). By defining the matrices

Bij =
β0

n
K00(ti, tj),

Cik =
β1

m
K01(ti, tk),

Eıj =
β0

n
K10(tı, tj),

Dık =
β1

m
K11(tı, tk),

x0i = φ0(ti),

x1ı = φ1(tı),

γ0i = γ0(ti),

γ1ı = γ1(tı),

the system of equations (40) and (41) can be written as n+m by n+m system of equations

[Inn + Bnn]x0n − Cnmx1m = γ0n, (42)

Emnx0n + [Imm − Dmm]x1m = γ1m. (43)

The result in matrix form for the system of equations (42) and (43) is







Inn + Bnn · · · −Cnm

... · · ·
...

Emn · · · Imm − Dmm













x0n

...
x1m






=







γ0n

...
γ1m






. (44)
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Defining

A =







Inn + Bnn · · · −Cnm

... · · ·
...

Emn · · · Imm − Dmm






, x=







x0n

...
x1m






and y =







γ0n

...
γ1m






,

the (n + m) × (n + m) system can be written briefly as Ax = y. Separating A, x and y in
terms of the real and imaginary parts, the system can be written as

ReARex − Im A Imx + i( ImARex + ReA Imx) = Rey + iImy. (45)

The single (n+m)×(n+m) complex system (45) can also be written as 2(n+m)×2(n+m)
system matrix involving the real (Re) and imaginary (Im) of the unknown functions, i.e.,







Re A · · · Im A
... · · ·

...
Im A · · · Re A













Re x
...

Im x






=







Re y
...

Im y






. (46)

Since the parameter µ is assumed known, the system (46) can be solved simultaneously for
the unknown functions,

φ0(t) = |z′0(t)|T (z0(t))f
′(z0(t))f

′(a), (47)

φ1(t) = |z′1(t)|T (z1(t))f
′(z1(t))f

′(a). (48)

The boundary correspondence functions θ0(t) and θ1(t) are then computed approximately
by the formulas

θ0(t) = Argf(z0(t)) ≈ Arg(−iφ0(t)), (49)

θ1(t) = Argf(z1(t)) ≈ Arg(±iφ1(t)). (50)

4 Numerical Results

For numerical experiment, we have used the frame of circular annulus A = {z : r < |z| < 1},
r = q = e−πτ , τ > 0, as a test region. The exact mapping function is given by [23]

f(z) = −e2σ

θ4

(

1

2i
log z +

iπτ

2
− iσ

)

θ4

(

1

2i
log z +

iπτ

2
+ iσ

) , (51)

with µ = e−2σ and θ4 being the Jacobi Theta-functions. We have chosen τ = 0.50 and
σ = 0.20. Since θ4(πτ i/2) = 0 [24], this implies a = e−2σ = µ. Figure 1 shows the region and
image based on our method. The results for the sub-norm error between the exact boundary
correspondence functions θ0(t), θ1(t) and the computed boundary correspondence functions
θ0n(t), θ1m(t) is shown in Table 4 All the computations were done using MATHEMATICA
package [25] in single precision (16 digit machine precision).
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Figure 1: Conformal mapping of a circular annulus onto the unit disc with a circular slit :
τ = 0.50, σ = 0.20, r = e−πτ , a = µ = e−2σ.

Table 1: Error Norm

n = m ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1m(t)‖∞
32 6.3(−05) 3.2(−04)
64 3.5(−10) 1.9(−09)
128 1.2(−14) 8.7(−13)

5 Conclusion

In this paper we have constructed a system of integral equations for numerical conformal
mapping of doubly connected regions onto a unit disc with a concentric circular slit of radius
µ. The system involved the Neumann kernel and is linear if µ is assumed to be known. The
numerical example illustrates that the present method can be used to produce approxima-
tions of high accuracy provided µ is known. In practice, however, µ is unknown and has
to be determined in the course of numerical computation. For unknown µ, the discretized
system presented in this paper becomes a system of nonlinear equations. Therefore, any
solution method must be iterative. For such treatment of our method, see the forthcoming
papers [13, 14].
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