
MATEMATIKA, 2008, Volume 24, Number 2, 131–140
c©Department of Mathematics, UTM

Two-Point Predictor-Corrector Block Method

for Solving Delay Differential Equations

1Fuziyah Ishak, 2Mohamed Suleiman & 3Zurni Omar
1Faculty of Information Technology & Quantitative Sciences

Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
2Mathematics Department, Faculty of Science and Environmental Studies
Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

3Mathematics Department, Faculty of Quantitative Sciences
Universiti Utara Malaysia, 06010 Sintok, Kedah Darul Aman, Malaysia

e-mail: 1fuziyah ishak@yahoo.com, 2msuleiman@putra.upm.edu.my, 3zurni@uum.edu.my

Abstract A 2-point variable order variable stepsize block method for the numerical

solution of delay differential equations is described. The predictor-corrector formulae

using divided difference formulation are implemented to produce two points simulta-

neously. This algorithm proves to be reliable, accurate and efficient. Furthermore,

numerical experiments show that the block method reduces the number of total steps

when compared with 1-point sequential method.

Keywords Delay differential equations; variable order; variable stepsize; block

method.

1 Introduction

In this paper, we consider the numerical solution of systems of first order delay differential
equations (DDEs) of the form:

y′(x) = f(x, y(x), y(x − τ1), y(x − τ2),, y(x− τn)), x ∈ [a, b], τi > 0
y(x) = φ(x), x ∈ [α, a]

(1)

where φ(x) is the initial function, τi, for i = 1....n, where n is an integer such that n ≥ 1 is
the lag function and

α = min
x∈[a,b]

(x − τi).

The lag can be constant, time dependent where τi = τi(x) or state dependent, that is
τi = τi(x, y(x)). The function f , where f : [a, b] × C([α, b], Rm) × C([α, b], Rm) → Rm is
continuous and satisfies a Lipschitz condition which guarantees the existence of a unique
solution of (1). Here, C([α, b], Rm) denotes the space of continuous functions mapping [α, b]
into Rm for an integer m ≥ 1. Numerical methods for solving DDEs are adapted from that
of numerical methods for ordinary differential equations (ODEs). For some of the earlier
work, please refer to Al-Mutib [1], Jackiewicz and Lo [5, 6], Jackiewicz [4] and Shampine
and Thompson [10].

132 Fuziyah Ishak, Mohamed Suleiman & Zurni Omar

Most numerical methods for solving differential equations produce only one new ap-
proximation value at each step of integration. Block methods, in particular 2-point block
methods, produce two new values simultaneously at each step by using the same back val-
ues. Each of these values is calculated independently of each other. This in turn will reduce
the cost associated with the prediction, correction and function evaluation at each step as
the number of total steps taken can be reduced. Block method can be implemented on se-
quential computers as well as parallel counterparts. The performance of the block method
is further capitalize by implementing concurrent calculation on parallel computers as this
will reduce the timing of the calculation as compared with the non-block method perform-
ing on sequential machines. Block methods have been proposed by some authors including
Shampine and Watts [11], Sommeijer et al. [12], Birta and Abou-Rabia [2] and Makrouglou
[8]. These methods were developed to solve either ODEs or Volterra integro-differential
equations.

The purpose of this paper is to develop a variable order variable stepsize two-point
predictor-corrector block method for solving equation (1). The algorithm will approximate
two new values simultaneously at each step of integration. The formulae will be derived
in such a way that the calculation of these new values can be performed independently of
each other. It is of the authors’ further intention that the method will be implemented on
parallel machines as better performance can be expected by capitalizing on the capabilities
of parallel processors. The parallelization technique using across the method approach
will be chosen in order to perform the concurrent evaluations for the two points in the
block. The efficiency of the method in terms of the total number of steps will be compared
with the performance of the previous non-block algorithm developed by Ishak et al. [3].
The organization of this paper is as follows. In section 2, we derive the divided difference
representation of the predictor corrector method for DDEs. In section 3, the calculation of
the local error and the stepsize and order changing strategy are discussed. Section 4 presents
some numerical results regarding the implementation of the method. Finally, section 5 is
the conclusion.

2 Divided-Difference Representation of the Predictor and the Cor-

rector

For reason of simplicity, we consider only single-delay scalar equation. However, the results
are also valid for systems of equations with multiple delays. Consider delay differential
equation of the form

{

y′(x) = f(x, y(x), y(x − τ)), x ∈ [a, b], τ > 0
y(x) = φ(x), x ∈ [α, a]

(2)

where φ is a continuous initial function. The non-uniform grid is given by

α ≤ a = x0 < · · · < xn < xn+1 · · · < xN = b.

We denote the approximation to y(x), where y is the solution of (2) by yh(x). Also denote
the expression f(xn, yh(xn), yh(xn − τ)) by fn. The predicted value of yh(x) is denoted as
ph(x). Assume that yh is already computed for x ∈ [α, xn].

The immediate task is to evaluate yh(xn+1) and yh(xn+2) simultaneously. The Adams
methods are implemented in PECE mode where P stands for an application of a predictor,

Two-Point Predictor-Corrector Block Method for Solving Delay Differential Equations 133

E stands for an evaluation of a function f , and C stands for an application of a corrector.
The predictor uses the Adams-Bashforth method of order k while the corrector uses the
Adams-Moulton method of order k+ 1.

Let Pk,n be the interpolating polynomial of degree k − 1 interpolating f at

xn, xn−1, . . . , xn−k+1.

In divided-difference form, the interpolating polynomial can be written as

Pk,n(x) = f [xn] + (x − xn)f [xn, xn−1] + (x − xn)(x − xn−1)f [xn, xn−1, xn−2]

+ · · ·+ (x − xn)(x − xn−1) · · · (x − xn−k+2)f [xn, xn−1, . . . , xn−k+1]

where

f [xn, xn−1, . . . , xn−k+1] =
f [xn, xn−1, . . . , xn−k+2] − f [xn−1, xn−2, . . . , xn−k+1]

xn − xn−k+1
.

Integrating (2) from xn to xn+r, r = 1, 2 and replacing f with Pk,n yields the following
predicted values simultaneously at the grid points,

ph(xn+r) = yh(xn) +

∫ xn+r

xn

Pk,n(ξ) dξ,

= yh(xn) +

k−1
∑

i=0

f [xn, xn−1, . . . , xn−i]

∫ xn+r

xn

pn,i(ξ) dξ

where ξ is an independent dummy variable and

pn,i(x) =

{

1, i = 0
(x − xn)(x − xn−1) · · · (x − xn−i+1), i ≥ 1.

The predicted values of the derivative are given by

p′h(xn+r) =

k−1
∑

i=0

pn,i(xn+r)f [xn, xn−1, . . . , xn−i].

For the corrector values, consider the interpolating polynomial Pk+1,n+r of degree k that
interpolates f at points, (xn+r, f

p
n+r), (xn, fn), (xn−1, fn−1), . . . , (xn−k+1, fn−k+1) where

f
p
n+r = f(xn+r , ph(xn+r), ph(xn+r − τ)).

The notation fp[xn+r, xn, . . . , xn+k−1] is referred to the polynomial Pk+1,n+r that interpo-
lates f

p
n+r . The interpolating polynomial Pk+1,n+r can be written as

Pk+1,n+r(x) = Pk,n(x)+(x−xn)(x−xn−1) · · · (x−xn−k+1)f
p[xn+r, xn, xn−1, . . . , xn−k+1].

Replacing f in (2) with the polynomial Pk+1,n+r and integrating, the corrector formulae
for the two points are obtained as follows,

yh(xn+r) = ph(xn+r) + fp[xn+r, xn, . . . , xn−k+1]

∫ xn+r

xn

pn,k(ξ) dξ

134 Fuziyah Ishak, Mohamed Suleiman & Zurni Omar

and
y′h(xn+r) = p′h(xn+r) + pn,k(xn+r)f

p[xn+r, xn, . . . , xn−k+1].

Let the t-fold integral of pn,i(x) be denoted as p
(−t)
n,i (x). Now, define

gi,t(x) =

{

pn,i(x), t = 0

p
(−t)
n,i (x), t ≥ 1

The formula for gi,t(x) can be obtained recursively by the relation

gi,t(x) = (x − xn−i+1) gi−1,t(x) − t gi−1,t+1(x), t ≥ 1

With the adoption of the following notation,

[0]yh(x) = ph(x) and [0]zh(x) = [0]y′h(x) = p′h(x),

the PECE mode based on Adams methods for the numerical solution of equation (2) is
defined by

P :















[0]yh(xn+r) = yh(xn) +
k−1
∑

i=0
gi,1(xn+r)f [xn, xn−1, . . . , xn−i],

[0]zh(xn+r) =
k−1
∑

i=0

gi,0(xn+r)f [xn, xn−1, . . . , xn−i],

E : [1]zh(xn+r) = [1]f(xn+r ,
[0]yh(xn+r),

[0]yh(αr)),

C :

{

[1]yh(xn+r) = [0]yh(xn+r) + gk,1(xn+r)f
p[xn+r, xn, . . . , xn−k+1]

[1]zh(xn+r) = [0]zh(xn+r) + gk,0(xn+r)f
p [xn+r, xn, . . . , xn−k+1]

E : [2]zh(xn+r) = [2]f(xn+r ,
[1]yh(xn+r),

[1]yh(αr)),

in which the numerical solution is defined by

yh(xn+r) = [1]yh(xn+r).

Let er be defined as the difference between subsequent iteration values of the derivative at
xn+r. That is,

er = [1]zh(xn+r) −
[0]zh(xn+r).

Therefore,
er = gk,0(xn+r)f

p[xn+r, xn, . . . , xn−k+1] (3)

From equation (3), the corrector formulae can be rewritten as

C :







[1]yh(xn+r) = [0]yh(xn+r) + gk,1(xn+r)
er

gk,0(xn+r)
[1]zh(xn+r) = [0]zh(xn+r) + gk,0(xn+r)

er

gk,0(xn+r)
(4)

Let αr = xn+r − τn+r, r = 1, 2 be the delay argument. The solution of the delay term
is denoted by yh(αr). We now describe how the prediction and the correction of the delay
term [s]yh(αr), s = 0, 1 are being carried out. Also note that yh(αr) = [1]yh(αr). The
locations of αr are sought because the calculation of the delay term depends upon these

Two-Point Predictor-Corrector Block Method for Solving Delay Differential Equations 135

locations. The derivation of the predictor-corrector formulae follows from earlier discussion.
The calculation is done as follows.

[0]yh(αr) =























φ(αr), αr ≤ a

yh(xj) +
kj+1−1

∑

i=0

gi,1(αr)f [xj , xj−1, . . . , xj−i], a < αr ≤ xn

yh(xn) +
k−1
∑

i=0
gi,1(αr)f [xn, xn−1, . . . , xn−i], xn < αr ≤ xn+r

[1]yh(αr) =















φ(αr), αr ≤ a

[0]yh(αr) + gkj+1,1(αr)f [xj+1, xj, . . . , xj−kj+1−1], a < αr ≤ xn

[0]yh(αr) + gk,1(αr)
er

gk,0(xn+r)
, xn < αr ≤ xn+r.

Here j and kj are integers such that xj < αj ≤ xj+1 and kj+1 is the order of the method
used for advancing the solution from xj to xj+1.

3 Local Error Estimation and the Strategy of Changing the Order

and the Stepsize

A reliable way to control the local error at the grid points is to compare the formulae of
different orders. Following the discussion in Suleiman [13], the local error at each grid point
Er,k can be estimated as

Er,k ≈ yn+r(k + 1) − yn+r(k)

where yn+r(k) and yn+r(k + 1) are the results of yh(xn+r) by using the iterative mode
PECkE and PECk+1E respectively. Let

Er,k = yn+r(k + 1) − yn+r(k) (5)

denotes the estimated error in yn+r(k) at xn+r. It follows from (4) that

yn+r(k) = ph(xn+r) +
gk−1,1(xn+r)
gk−1,0(xn+r)

ēr

yn+r(k + 1) = ph(xn+r) +
gk,1(xn+r)
gk,0(xn+r)

êr

where

ēr = y′n+r(k) − p′h(xn+r)

and

êr = y′n+r(k + 1) − p′h(xn+r).

Now,

ēr = gk−1,0(xn+r)(xn+r − xn−k+1)f [xn+r , xn, . . . , xn−k+1]
= gk,0(xn+r)f [xn+r, xn, . . . , xn−k+1]
= êr

= er

(6)

136 Fuziyah Ishak, Mohamed Suleiman & Zurni Omar

Using equation (6), we can rewrite (5) as

Er,k = −
gk−1,2(xn+r)

gk,0(xn+r)
er. (7)

It is expected that the magnitude of local error at the second point,E2,k is bigger than its
counterpart at the first point. This is due to the fact that the prediction of the second point
uses the stepsize of 2h where h = xn+1−xn = xn+2−xn+1, while the prediction of the first
point uses a smaller stepsize h. Therefore, the local error at the second point is controlled.
Numerical results also prove that this criterion gives a reliable decision in accepting a step
or not.

This variable order variable stepsize algorithm offers a self-starting procedure by starting
with the method of order one. The most optimal stepsize is taken while varying the order
to achieve the required accuracy as efficiently as possible. Derivative discontinuities in the
solutions of DDEs can be detected whenever the magnitude of the local error at the second
point is too big as compared with a given tolerance. The algorithm reduces the stepsize
and order accordingly in order to reduce the error and thus automatically includes the
discontinuity point as the grid point. Errors of adjacent orders E2,k−2, E2,k−1 and E2,k+1

can be calculated directly from formula (7) by exchanging k with k − 2,k − 1 and k +
1respectively. These errors are needed in determining the order for the next integration
step. The order and the stepsize changing mechanisms are similar as performed in Ishak et
al [3], Omar [9] and Suleiman [13], with the exception that the local error is controlled at
the second point.

4 Numerical Results

The accuracy and efficiency of the algorithm are demonstrated by the following examples.
Each of the examples is solved on a given interval with the requested tolerance. Since it
is impractical to present the numerical solutions at each of the grid points, we present the
results in tables consisting of errors and total steps taken as a measurement for accuracy
and efficiency of the method respectively. The numerical results are compared with the
non-block variable order variable stepsize algorithm introduced in Ishak et al [3].
Example 1. (Al-Mutib [1])

y′(x) = cos(x) y (y(x) − 2), 0 ≤ x ≤ 50,

y(x) = 1, x ≤ 0.

The exact solution is y(x) = sin(x) + 1.

The error, ei at the grid point is defined as

ei =

∣

∣

∣

∣

yh(xi) − y(xi)

A + B(y(xi))

∣

∣

∣

∣

,

where y(xi) is the exact solution at xi. A and B may take the values of either 1 or 0
depending upon the kind of error test chosen. In this case, we use mixed error test where
A= 1 and B= 1, as opposed to absolute error test (A= 1 and B= 0) and relative error test
(A= 0 and B= 1). For a specified tolerance, we calculate the maximum and average errors.

Two-Point Predictor-Corrector Block Method for Solving Delay Differential Equations 137

The results of the errors together with the number of steps taken to perform the integration
in the interval [0, 50] are given in Table 1.
Example 2. (Lin et al. [7])

{

y′(x) = Jny(x) + Dny(x − 1) + f(x), x ≥ 0
y(x) = (1, 1, . . . , 1)T , x ≤ 0

where

f(x) = (sinx, sin 2x, . . . , sinnx)T ,

Jn =



















−1 2 1

2
. . .

. . .
. . .

1
. . .

. . .
. . . 1

. . .
. . .

. . . 2
1 2 −1



















and Dn =













2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2













with Jn and Dn are n× n matrices. In this example, n is taken to be 150 and the problem
is solved in the interval of [0, 5].

Exact solution is not available. In this case, the reference solution at the end point
for each equation in the system is produced by the method using the tolerance of 10−12.
The difference between the reference solution and the approximate solution is used in the
calculation of maximum and average errors. The results are given in Table 2.

The following abbreviations are used in describing the solutions:

S1P 1-point variable order variable stepsize algorithm in Ishak et al. [3]
S2PB 2-point predictor-corrector block method
TOL the chosen tolerance
MAXE the maximum error
AVERR the average error
FSTEP the number of failed steps
STEP the total number of steps

When the exact solution is available, the errors calculated are defined as

(ei)t =

∣

∣

∣

∣

(yh(xi))t − (y(xi))t

A + B(y(xi))t

∣

∣

∣

∣

,

where (y)t is the t-th component of y. A and B may take the values of either 1 or 0
depending upon the kind of error test chosen. In this case, we use mixed error test where
A= 1 and B= 1, as opposed to absolute error test (A= 1 and B= 0) and relative error test
(A= 0 and B= 1).

The maximum and average errors are defined as follows,

MAXE = max
1 ≤ i ≤ SSTEP

(

max
1 ≤ t ≤ N

(ei)t

)

,

AVE =

SSTEP
∑

i=1

N
∑

t=1
(ei)t

(R)(N)(SSTEP)

138 Fuziyah Ishak, Mohamed Suleiman & Zurni Omar

where N is the number of equations in the system, SSTEP is the total number of successful
steps and R is the number of point.

When the exact solution is not available, the error calculated refers to the error at the
endpoint. The reference solution at the end point for each equation in the system is produced
by the method using the tolerance of 10−12. The experiment was executed on Sunfire V1280
by using one processor. The machine is located at the Institute of Mathematical Research
(INSPEM), Universiti Putra Malaysia. The numerical results for different values of the
tolerance are given in Table 1 and Table 2 for Example 1 and Example 2 respectively.

Table 1: Numerical Results for Example 1

TOL METHOD STEP FSTEP AVERR MAXE

10− 2 S1P
S2PB

78
62

4
4

1.33840E-02
7.89873E-03

4.26458E-02
2.54222E-02

10 − 4 S1P
S2PB

118
88

3
3

8.78369E-05
6.39995E-05

2.75513E-04
1.81656E-04

10 − 6 S1P
S2PB

161
126

1
5

1.55361E-06
4.99711E-07

3.47645E-06
1.48025E-06

10 − 8 S1P
S2PB

219
148

1
0

4.17149E-09
2.87762E-10

1.23526E-08
1.04934E-09

10 − 10 S1P
S2PB

273
214

0
7

5.07972E-11
2.43087E-11

1.14012E-10
5.99198E-11

Table 2: Numerical Results for Example 2

TOL METHOD STEP FSTEP AVERR MAXE
10− 2 S1P

S2PB
101
125

1
1

5.34740E-03
4.38894E-02

1.06864E-02
5.48535E-02

10 − 4 S1P
S2PB

269
262

0
6

2.84992E-05
8.15218E-05

5.99010E-05
1.53040E-04

10 − 6 S1P
S2PB

555
439

0
1

2.75874E-07
7.13090E-07

7.70910E-07
2.71596E-06

10 − 8 S1P
S2PB

936
704

1
2

1.48249E-09
1.59668E-08

8.41883E-09
6.16016E-08

10 − 10 S1P
S2PB

1435
1053

3
4

4.94689E-12
9.86221E-11

2.01822E-11
6.95126E-10

For Example 1, the average and maximum errors of S2PB are slightly better than S1P.
For Example 2, the errors of S1P are slightly better than that of S2PB. However, both of
the methods achieved the desired accuracy and it is clear that the errors are comparable
for the given tolerances in both of the methods. The total number of steps for S2PB is
less than the total number of steps for S1P, except for tolerance 10−2 in Example 2 which
is slightly higher. For finer tolerances, S2PB shows greater reduction in the total number

Two-Point Predictor-Corrector Block Method for Solving Delay Differential Equations 139

of steps. The number of failed steps in both methods for Example 1 and Example 2 are
comparable.

The numerical results clearly indicate that the 2-point predictor-corrector block method
performs very well and achieves the required accuracy as compared to the 1-point variable
order variable stepsize algorithm. The block method is more efficient as it reduces the
number of total steps performed.

5 Conclusion

We have presented a variable order variable stepsize two point block method for the numer-
ical solution of delay differential equations. The performance of the method is compared
with the non-block one point algorithm. The method produces two new values simulta-
neously, thus reduces the cost as the total step decreases. From the numerical results we
conclude that this algorithm is efficient, accurate and reliable for solving DDEs.

References

[1] A. N. Al-Mutib, Numerical Methods for Solving Delay Differential Equations, PhD.
Thesis, University of Manchester, 1977.

[2] L. G. Birta & O. Abou-Rabia, Parallel Block Predictor-Corrector Methods for ODE’s,

IEEE Trans. on Computer, C-36 (March 1987), 299-311.

[3] F. Ishak, M. B. Suleiman, F. Ismail & Z. A. Majid, Variable order variable stepsize

algorithm for the numerical solution of delay differential equations in divided difference

form, Proceedings of The 2nd IMT-GT 2006 Regional Conference on Mathematics,
Statistics and Applications Vol. II (2006), 46-54.

[4] Z. Jackiewicz, Variable-Step Variable-Order Algorithm for the Numerical Solution of

Neutral Functional Differential Equations, Applied Numer. Math., 3(1987), 317-329.

[5] Z. Jackiewicz & E. Lo, The Numerical Solution of Neutral Functional Differential Equa-

tions by Adams Predictor-Corrector Methods, Applied Numer. Math., 8(1991), 477-491.

[6] Z. Jackiewicz & E. Lo, Numerical Solution of Neutral Functional Differential Equations

by Adams Methods in Divided Difference Form, Journal of Comp. and Appl. Math.
189(2006), 592-605.

[7] F. R. Lin, X. Q. Jin & S. L. Lei, Strang-Type Preconditioners for Solving Linear Systems

from Delay Differential Equations, BIT Numerical Mathematics, 43(2003), 139-152.

[8] A. Makroglou, A Block-by-Block Method for the Numerical Solution of Volterra Delay

Integro-Differential Equations, Computing, 30(1983), 49-62.

[9] Z. Omar, Parallel Block Methods for Solving Higher Order Ordinary Differential Equa-

tions Directly, PhD Thesis, University Putra Malaysia, 1999.

[10] L. F. Shampine & S. Thompson, Solving DDEs in MATLAB, Applied Numerical Math-
ematics, 37(2001), 441-458.

140 Fuziyah Ishak, Mohamed Suleiman & Zurni Omar

[11] L. F. Shampine & H. A. Watts, Block Implicit One-Step Methods, Math. Comp., 23
(1969), 731-170.

[12] B. P. Sommeijer, W. Couzy & P. J. van der Houwen, A-stable parallel block methods for

ordinary and integro-differential equations, Applied Numerical Mathematics, 9(1992),
267-281.

[13] M. B. Suleiman, Generalized Multistep Adams and Backward Differentiation Methods

for the Solution of Stiff and Non-Stiff Ordinary Differential Equations, PhD Thesis,
University of Manchester, 1979.

