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Abstract A non-Newtonian pulsatile model of blood flow through multiple stenoses

with irregular surfaces is considered. The model chosen is the generalized power law

model of blood viscocity where the flow is assumed to be unsteady, laminar, two-

dimensional and axisymmetric. The governing equations of motion in terms of the

viscous shear stress and the boundary conditions in the cylindrical coordinate system

are first transformed using a radial coordinate transformation before they are dis-

cretized using a finite difference scheme based on central difference approximations on

non-uniform grids. The numerical results obtained in terms of blood flow character-

ictics show that the values of the axial velocity and flow rate in the power-law model

are lower while the resistance to flow and the wall shear stress are higher compared to

the Newtonian model. These features concur with the general observations of blood

flowing through small stenosed arteries.
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1 Introduction

The cause and development of cardiovascular diseases are related to the nature of blood
movement and the mechanical behaviour of the blood vessel walls. The rheological behav-
iour of blood can be characterized by a non-Newtonian viscosity and may depend on the
vessel size. In the case of blood flowing in a large artery whose radius is larger than 1 mm,
the blood behaviour can be assumed as Newtonian. However, this assumption is not valid
when the blood vessel is smaller i.e having a radius less than 1mm. See Mandal [1].

From a biofluid mechanics point of view, blood would not be expected to obey the very
simple, one parameter, and linearised law of viscosity developed by Newton. As mentioned
by Enderle et al. [2]), the non-Newtonian characteristics of blood can only be modelled
by higher order constitutive equations. Significant attempts to define such non-Newtonian
behaviour, however did not appear until the 1960s, when variable-shear rotational viscome-
ters were introduced. Since then, literally dozens of constitutive models that attempted to
relate shear stress to shear rate in the fluid have been proposed. The most practical of these
is an empirical power law formulation that generalizes Newton’s law of viscocity.

Charm and Kurland [3] observed that the shear rate versus apparent blood viscosity
data of canine blood followed those of power law fluids. Experimental findings of Perktold
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et al. [4] showed that the power law fluid exhibits a non-Newtonian influence. Hussain et al.
[5] noted that all blood samples of 259 patients in their study behave as a non-Newtonian
power law fluid. Tu and Deville [6] , pointed out that the blood of patients in some disease
conditions, for example patients with severe myocardial infarction, cerebrovascular diseases
and hypertension, exhibits power law properties.

The above studies considered blood flow through a single stenosis. However, in many
clinical situations, the patient is found to have multiple stenoses, i.e., more than one stenosis
in the same arterial segment (Talukder et al. [7]). (Fukushima et al. [8]) and Johnston and
Kilpatrick [9] have studied Newtonian blood flow through a pair of multiple stenoses while
(Ang and Mazumdar [10]) considered triplet stenoses. Their studies showed that multiple
stenoses have more significant effects on blood flow compared to the sum of the effects of
the individual stenoses.

In most of the studies mentioned above, the geometry of stenosis was represented by a
cosine curve in contrast to the real situation where the geometry of stenosis is more likely
to be irregular. (Johnston and Kilpatrick [11], Anderson et al. [12], Chakravarty et al. [13],
and Yakhot et al. [14]) observed that an artery modelled by a smooth curve of the same
severity overestimated the pressure drop, wall shear stress and the separation Reynolds
number compared to an artery modelled by an irregular curve.

In view of the above findings and in an effort to resemble the in vivo situation, the present
work considers the power law model of blood flow through a multi-irregular stenosed artery.
The governing equations, boundary conditions and the geometry of stenosis considered are
presented in sections 2 and 3 while the solution procedure is described in sections 4 and 5.
The numerical results which compare the blood flow characteristics of the power-law model
with the Newtonian model is discussed in section 6.

2 Governing equations

Consider the case of power law fluid representing stenotic blood flowing through a straight
arterial vessel, rigid and axisymmetric with the present of a multi-irregular stenoses. The
flow is laminar, unsteady, two-dimensional, and fully developed where the flowing blood is
treated to be an incompressible fluid. Under these assumptions, the governing equations
may be written in the cylindrical coordinates system as:
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equation of radial momentum
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and equation of continuity
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where the relationship between the shear stress and the shear rate in case of two dimensional
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motions are (see Bird et al. [15]):
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Here τ is the stress tensor and n is the fluid behaviour index parameter. Following Pedley
[16], under certain assumptions, the axial viscous transport terms are negligible and the
radial equation of motion simply reduces to ∂p/∂r = 0, indicating that the pressure is
independent of radial position. Hence, equation (2) can be omitted. Following Burton [17],
for a human being, the pressure gradient ∂p/∂z appearing in (1) is taken as

−
∂p

∂z
= A0 + A1 cos(ωt) (7)

where A0 is the constant amplitude of the pressure gradient, A1 is the amplitude of the
pulsatile component giving rise to systolic and diastolic pressure; ω = 2πfp, where fp is the
pulse frequency.

The boundary conditions on the solid wall are the no slip conditions:

w(r, z, t) = 0, u(r, z, t) = 0 at r = R. (8)

and in the tube, the condition is

∂w(r, z, t)

∂r
= 0, u(r, z, t) = 0 at r = 0. (9)

For a system at rest;

w(r, z, t) = 0 and u(r, z, t) = 0 at t = 0. (10)

3 Geometry of Stenoses

The geometry of stenosis considered here is the rough or irregular profile, which is con-
structed from the data developed by Back et al. [18]. The profile of multiple stenoses with
irregular and smooth geometry represented by cosine curves are shown in Figure 1. The
irregular shape of the first and second artery is assumed to be the same.
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Figure 1: Profile of Multiple Irregular Stenoses

4 Transformation of the Governing Equations

4.1 Radial Coordinate Transformation

Using a radial coordinate transformation x = r
R(z)

, which has the effect of immobilizing the

vessel wall in the transformed coordinate x, the continuity equation (3) and the equation of
motion (1) , the relationship between the shear stress and shear rate, (4) and (5) become:
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The boundary and initial conditions (8) – (10) now become:

u (x, z, t) = 0, w (x, z, t) = 0 on x = 1,
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and u (x, z, t) = 0 = w (x, z, t) at t = 0.
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4.2 The Radial Momentum

In order to obtain an expression for the radial velocity component, u (x, z, t) equation (11)
is multiplied by xR and integrated with respect to x, to obtain ,
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Taking into account the boundary condition (15b) Equation (18) takes the following form;
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Comparing the LHS and RHS of equation (19), gives
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Then, substituting equation (20) into equation (18) and simplifying, gives
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Equation (21) is new sum of the radial velocity component that needs to be calculated.

5 Numerical Procedure

The finite difference scheme for discretizing equations (11) and (12) is based on the central
difference approximations for all the first spatial derivatives in the following manner.
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2. The time derivative in (12) is approximated using
forward approximations to obtain the difference quotient
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Other spatial derivatives can be obtained from similar expressions. The notation used
in this section is w(z, x, t) ≡ w(zi, xj, tk) ≡ wk
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entire arterial segment under study with ∆x, the increment in the radial direction and ∆z

is the non-uniform increment in the axial direction.

Using equations (22) – (25), the discretized form of equations (11) – (14) are given as:
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The discretized boundary conditions are given by
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The axial velocity component is obtained using the equations (26) - (28), together with
the boundary conditions (29). The radial velocity component from equation (21) can be
rewritten in discretized form as
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The radial velocity component can be calculated directly from equation (30), using the
values of the axial velocity component. The explicit finite difference scheme presented
above is limited by the stability criterion
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Blood flow characteristics such as the volumetric flow rate (Q), the resistance to flow (Ω),
the wall shear stress (τw) can be obtained from the following relations,
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6 Numerical Results and Discussions

Numerical computations were carried out using the Gauss-Seidel algorithm with the follow-
ing parameter values :

L = 0.1746, fp = 1.2Hz, ρ = 1.06x103Kgm-3, µ = 0.0035 Pa,

A1 = 100 Kgm-2s-2, A0 = 0.2A1, ∆x = 0.025, ∆t = 0.00001.
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The results in terms of velocity profiles, flow rate, resistance to flow and wall shear stress
are compared with those obtained using the Newtonian model.

6.1 Velocity Profiles

Figure 2 illustrates the variation of the axial velocity profiles in an artery containing multiple
stenoses for different times spread over a single cardiac cycle. The velocity presented is
evaluated at the critical height of the first stenosis (when z=0.018m) at different time
periods. The blood is assumed to be in the early diastole phase for a single cardiac cycle
when the time reaches 0.5s, when the flow is at minimum. It can be seen that the flow
velocity is reduced when the time is 0.25s to 0.5s but at time equals to 0.7s the velocity
curve is found to shift away from the origin. This is due to the pulsatility of the pressure
gradient produced by the heart as it comes into play. Compared to the Newtonian model,
the velocity for the power law model is lower for all times periods.

Figure 2: Axial Velocity Profiles for Blood Flow Through Multi-irregular Stenoses

6.2 Flow Rates and Resistance to Flow

Figures 3 and 4 exhibit how the non-Newtonian rheology of the streaming blood affects the
rate of flow and the resistance to flow at different times. The flow rate for the Newtonian
model of blood viscosity is higher while the resistive impedance is lower compared to the
corresponding values in the power law model.

6.3 Wall Shear Stress

The wall shear stress is the representation of the magnitude and rate of change of blood
flow close to a vessel wall and has been linked to the pathogenesis of atherosclerosis. Wall
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Figure 3: Flow Rates for a Multi-irregular Stenoses at Different Time Periods

Figure 4: Resistance to Flow Rates for a Multi-irregular Stenoses at Different Time Periods
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shear stress mapping should become part of the important approach to early detection of
atherosclerosis. Figure 5 exhibits the behaviour of the wall shear stress distributed over the
arterial segment for the four different time periods and also their responses to the blood
viscosity. In the multiple irregular stenoses with 48% areal occlusion, a Newtonian model
of blood viscosity predicts lower shear stress than a power law model. As time progresses,
the stresses appear to decrease until the time 0.5s of a single cardiac cycle. However, the
values of the wall shear stress increase when the time is 0.7s. One may point out in this
regard that the stress reduces in magnitude during the systolic phase and increase at the
diastolic phase of a single cardiac cycle which is when the system is activated under the
normal functioning of the heart producing a pressure gradient.

Figure 5: Wall Shear Stress for Multi-irregular Stenoses at Different Time Periods

7 Conclusions

Numerical results for an unsteady blood flow in a multi-irregular stenosed artery, using
the power law model of blood viscosity have been presented. Comparison of the blood flow
characteristics with the results from the Newtonian model show that the axial velocities and
flow rates are lower while the resistance to flow and the wall shear stress values are higher in
the case of power-law model. These results confirm earlier experimental observations that
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blood flow through small arteries exhibit non-Newtonian behavior.
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