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Abstract Let G (a,d) denote the class of function f, f(0) = f'(0) — 1 = 0 for which
Re{e" f'(z)} > 6 in D = {z:|z| <1} where |a| <7 and cosa > §. We obtain some
sharp results related to its radius of convexity.
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1 Introduction

We denote G (a, d) the class of normalised analytic functions f in the unit disc D where
f(R)=z4+a2® + - +apz" +---

satisfying Re {eio‘f’ (z)} > ¢ where |a] < 7 and cosa > §. This class of functions has
been studied by many researches among others MacGregor [5] who extensively looked into
its basic properties for G (0, 0), Goel and Mehrok [3] for G (0, d) (§ > 0) and Silverman and
Silvia [6] for G («,0). Daud [1] obtained some basic properties for G («a, d) including its
representation theorem, extremals and argument. In this paper we have extended the later
work by looking at, in particular, the radius of convexity of the class.

Let S be the class of normalized univalent functions analytic in the unit disc. Let K ()
denote the subclass of S consisting of functions g (z) for which

g" (2)
g (2)

This class is called convex of order3. In particular f(z) is in the class G («, ¢) if there exists
a function g (z) € K () such that

Re{1+ }26 O0<p<1).

e emw z
R{ g/(z)}>5 (0<6 <1, 2| <1).

Define a function p is in the class P if and only if

for some probability measure p. Denote by Ps the functions p (z) that are analyticin |z| < 1
and satisfy the conditions p (0) = 1 and Re p (z) > d, and set Py = p. It is well known that
a function ¢ (z) is in Ps if and only if there exists a function p (z) € P such that

p(z) +h

q(z):(l—z?)p(z)—i—z?:ﬁ,
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where

so that

(2)

)

1) =g ) (2

where g (z) € K (8),p(z) € P, and h is defined by (1). Taking derivatives of (2), we find

that
e = {or o (P ) - 5 e
) = { ) (PE )+ 5 0 )
G W E) )
[z gz  pl)+h
and hence
S L), )
e T e Te@en )

In determining the radius of convexity for the class G («, ) we note that for |z] = r, (3)
yields

. 2"\ 29" (2) . zp' (2)
o e i U T el ©

and from a simple calculation, it can be shown that

1!
min Re{l—i—Zg/ (Z)}_L
lz| =r 9 (2)

g€ K(B)

Thus, the radius of convexity of G («a, d) is seen to be the smallest positive r for which

1+ |ZI|11§1T Re{%}—o. (5

peP

~
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2 Main Results

The following result is obtained using the above argument which is a result given by Silver-
man [7] and Daud and Shaharuddin [2].
Theorem 1. Suppose p(z) € P, h is defined by (1) and

- 14 r2m
T T m
Then
2r
{ zp' (2) } S ) T EEmER=aR (0<r<rs)
p(z)+h - 2/h2+ah—a—2h (T§<T<1),

where 15 is the unique root of the equation (1 —28)r3 —3 (1 —28)72 +3r —1 =0 in the
interval (0,1]. This result is sharp.

For the proof, refer to Silverman [7] when ¢ taken only positive values, whereas Daud
and Shaharuddin [2] completed it when ¢ taken any negative values.

Theorem 2. Suppose 75 is the unique root of t(r) = (1 —28)r>—3 (1 —28)r3+3r—1
in the interval (0,1]. Set

1
(1 —208) 4+ V452 — 60 + 2

Then the radius of converity of G (a,0)is r(8,9) when 0 < r(a, ) < rs, and is otherwise
the smallest root greater then rs of the polynomial equation v (r) = (1 —268) r* +2dr2 — 4.
This result is sharp for all 9.

Proof. By applying Theorem 1 to (5), the radius of convexity of G («, d) is the smallest
positives root of

r(8,0) =

L= mm==m =0 (0<r <)

1+2vVh2+ah—a—2h=0 (rs<r<1)

(6)

where h is defined by (1). The first expression in (6) may be written as

—(1-20)r2—2(1-20)r+1

14+7r)[(1+h)—(1—h)r] 0

whose roots are

(1-20)F/(1-20° +(1-2) .

—(1-296) (1—26)+ 402 —66 + 2

If both roots are positive, the minimum root is r («, §). Similarly, a computation shows that
r* is a root of the second expression in (6) if an only if it is a root of v (r). This completes
the proof.
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3 Further Results

f(2)
convexity of G (a,d). The estimation of the lower and upper bound of R, [G (a,0)] is
obtained for a choice of an extreme point.
Theorem 3. Let A =cosa — 9.

(i) Rey [G (0,0)] > (VZ— 1) ’M

A—/1-A(204A)
.. 1
(ii) If 0 < 3,

We let R, [G(a,0)] = sup {T : Re [1 + Zf//(z)} >0,)zl=rfeqG(a 5)} be the radius of

3

Rey [G (a,0)] < < 1. (7)

1+2¢T5%Z{VZ—VQA+®+VTTEE}

Proof. Let f € G («,9). A theorem of Daud [1] gives us Ref’ (z) > 0 for

A—\/I-A25 1 A)

F < A

Put A = %‘W and let g (z) = M € G(0,0). It is known from MacGregor[4]

that g is convex for |z| < v/2 — 1. Thus f is convex if

|Z|<\/§)\_1:(\/§_1) 2(4+68)A—1

A—\/1-A(20 + A)

We consider an extreme point g (z) = —e™ (e7** — 20) z — 2e~**Alog (1 — z) of G (a, )
as in Daud [1]. Then

g (z) = —e " (e7"™* — 26) +2¢"*A (1 ! )

—Z

and

—Z

/ — o (i 9 2 7iaA ? .
zg' (%) e " (e 8) z+ 2e (1 )
So

g (2) + 29" (2) = (29 (2)) = —e 7" (7' — 26) + 27 A (1 ! )

and this expression is zero if and only if

eta
‘ T T 25 ®
These values are well defined since the condition § < % implies 1 — 26e!* # 0. Now
let p = p(a,d) be the smallest of the modulii of these two roots. Then we must have
Ry [G (e, 6)] < p. To see this, we argue as follows. If ¢’ (z) = 0 for some z satisfying
|z| < p, then
zg" (2)

e

9)
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is not defined, and g is not convex on the disc |z| < p. If ¢’ (2) # 0 on the disc, then (9) is
zero on |z| = p and g is not convex on any larger disc.
To determine p, we first find Rez, Imz for the z in (9). If « = 0 or @ = &, we have
2(1-96 2(1+46
1-2§ 1426

respectively, and these are the values given by (7). Assume now that cosa # 1. Let

elOL

2
¢ + 1 —2§e>
and put
(=z+iy ,(z,y real).
We have
e?*  cos2a+ isin2a ~cos2a — 20 cos o + i (sin 2 — 20 sin )
1—28ei®  1—2§(cosa +isina) 1 — 46 cos o + 442

which gives

cos 2a — 20 cos « v sin 2o — 28 sin o
7
1 —46cosa + 462 1 — 46 cos o + 462

C=a?—y+i20y =1+

so that 5 A(A—5)
2 o cos2a —2dcosar 2 —
Y = T S cosa 1402 . 1— 440 (10)
and
sin 2a — 26 sin « 2Ay/1 - (A+ 5)2
2xy = = . (11)
1 — 46 cosa + 462 1—4A46
Thus
2 _ 2
xQ_A (1 (A+9) ) _ 24(A-96)

22 (1—445)°  1-440

which we rewrite as

(1— 4467 5" 24 (A~ 6) (1 - 448) 2> — 4% (1= (A+)°) =0.

An elementary argument shows that 1 — 448 > 0 when 0 < %, and so

24 (A—0)(1—4A46) + \/(2A (A—6)(1—440))* + 442 (1 — 44A5)° (1 —(A+ 5)2)

CCQZ

2(1 —446)

CAA-6)EAVI 445
- 1—4A§ '
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The product of these roots is negative since |4 4 6| = |cosa| < 1, and A —§ 4+ /1 — 440 is
positive since § < %, so we must have

o A(A=8) + AVT 34D
1— 445

which gives

B A(A—9)+AV1—4A6
z= i\/ s . (12)
Substituting x in (11), we obtain
A (1 (A 5)2)
(13)

YEIN T (A= 0+ i—ad)

and the possible values of ( = x + iy are determined. It follows from (8) that

p=p(a,0) =y (1-2)+y

where x and y are the positive alternatives in (12) and (13). Thus

, |1 [A(A—0)+ AVT—1A0)* 2 A(l—(A+5)2)
"= =44 T AT 440) [(A—0) ¢+ vI_1A9|

lp

]% [\/Z—(A_Mmﬂ

A
_1+2[1—4A5

as required. The expression in the second bracket is negative when § < %, so we have p < 1.
This completes the proof.

We note that the restriction on § in Theorem 3(ii) of the theorem is inevitable, since
the function g used in the proof to obtain upper bound for R, [G (¢, §)] is actually convex
in the case a =0, § = % The following result is obtained by using a different choice ofg.

Theorem 4. R, [G(a,d)] < (ﬁ)l/(nil) where n is the smallest integer satisfying
n>2n> % . This result is sharp.

The proof is immediate once we have proved

Lemma 5. The class G (a,0) contains the function

g(z) =2+ (é>z" (z € D)

n

where n > 2 is an integer, and the radius of the largest disc in which g is convez is

1 1/(n—1)
1)
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where n > %. This result is sharp. Proof of the lemma. Let g (2) = z + (
Then ¢’ (2) =1+ Az"~! and so

S

)z" (2 €D).

Re [e'%¢' ()] = Re [e"™ (1+ Az"71)]

=cosa + ARe (emznfl)

>cosa— A

=4

Hence g € G (a,6). Now ¢g” (z) = (n — 1) A2"~2 which gives
zg" (z z(n—1)Azn2 1—-n
1+ gg,(i))_ur (1+A)27H =n+ ey
So,
Re [1 A (Z)] >0
g'(2)

if and only if

1+ Azn-1

and simplifying the above inequality , we have

1_
Re[n+7n] >0,

(n—1) (1 + ReAz"fl) <n|l+ Az"ily2 ,

(n—=1)+(n—1)ReAz""1 <n [1 +2ReAzn"1 + ’Az"flf} ;
n ’Az"*l’2 + (n+1)Redz"—1+1>0.
This inequality is true on |z| = p if and only if n (4p"~! — 1)2 —(n+1)Ap"t4+1>0
or (nAp"~!'—1) (Ap"~t —1) > 0, and when n > & it follows that g is convex on [z| <
1

(ﬁ) =1 but not on any larger disc.
Following Silverman and Silvia [6], we next consider polynomials of degree n in G (o, 9).

We find sufficient conditions in terms of «, §, n for these to be convex. Theorem 6. Suppose

pn(2) = 2+ > 1y ckzk is in G (a,8). Then p, is conver if cosa < m + 6. This

result is sharp.

Proof. Let f(z) = z+ > ,_,ckz®. Then by a result of Kobori [4], fis convex if
Sr_ok?lag| < 1 for the p,, in the statement. We have, using the result on coefficient
bound of G («, d) in Daud [1],

n 2 n
ZH k2 |en| < ZH 2k (cos o — §)

S ETCEL N [

<1
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if cosa < m + §. This completes the proof of the theorem.

The function f; (z) = z is a member of each of the classesG («, d). In fact fi is the only
function with this property. To see that this is the case, suppose that some other function
¢ has the same property, so that ¢’ takes a valueh # 1. Consider the line in the Argand
diagram containing A and 1. Rotate this line about any point between A and 1 so that
in its new position it contains neither of these points. The line now separates the plane
into two half planes, and one of these contains 1 but does not contain\. The plane can be
described as the collection of points w for which Ree’®w > § and since w may be taken as
1, we havecos @ > §. For this @ andd, any function in G («, ) fails to take value A, and so
is not in G (a, ). This is the required contradiction.

Theorem 7. (i) Lete > 0, and let Fe be the family of classes G («, d) for whichcosa >
0+ ¢e. Then NF¢ contains a function, which is not conver.

(ii) Let Fy be any family of classes G (o, d) with the property that, for anye > 0,
there exists a member G («a,d) of Fy withcosaw < 6 + €. Then NFy contains only the
functionfy (z) =z, (z € D).

As an immediate corollary to the theorem we have the following result that answers the
above question in the case of convexity.

Corollary 8. Let F be the intersection of any family of classesG («, d). Then either F
contains just the identity functionfr (z) = z, or F contains a function which is not conver.

Part (i) of the theorem was proved by Silverman and Silvia [6] in the case|a| < § —
g, |a| < Z. Our proof is rather more geometrical than theirs, using the following property
of any half plane Ree!®w > § in the w-Argand diagram with|a| < 7, cosa > §: the largest

radius of any circle centered at 1 whose interior is a subset of the half plane, is cosa > §.
Proof of theorem.

(i) Let f(2) = z + Az™. A slight modification to the last part of proof of Lemma 5
shows that f is convex if and only if |[A| < 5. Choose n so that ¢ > L and then A so that
L < nX<e Then A > 2 and f is not convex. Alsof’ (z) =1+ nAz""!, so that f’ maps
D onto a circle centered at 1 and radiuse, and f € G («, ) whenevercosa — 0 > ¢.

(ii) Suppose that NFy contains a function g # f1, so that, by the open mapping theorem,
the interior of some disc centered at 1 is a subset of ¢’ (D). Let the radius of this disc be
d, and let G («, d) be a class in Fy for which cosa — § < d. The derivative of any function
in G (a,8) maps D into the half plane Ree’®w > § and the radius of the largest circle,
centred at 1, inside this half plane, is cosa — §. This implies g ¢ NFy, which contradicts
our assumption. So NFy contains only fi.

4 Conclusion

This paper extends some of the results given by Silverman and Silvia [6] and Daud [1]
on bounds for R, [G (a, )], the radius of convexity of G («,d). Using the approach by
Silverman [7] and Goel and Mehrok [3], we extend the results when dtaken as any negative
values in Daud and Shaharuddin [2]. With this results, we emphasis on using the extreme
values function to look on the consideration of convexity and starlikeness of the class.
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