MATEMATIKA, 2010, Volume 26, Number 1, 33–41 ©Department of Mathematics, UTM.

Some Bounds of Radius of Convexity of a Class of Analytic Functions

¹Daud Mohamad & ²Shaharuddin Cik Soh

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia e-mail: ¹daud@tmsk.uitm.edu.my, ²shahar@tmsk.uitm.edu.my

Abstract Let $G(\alpha, \delta)$ denote the class of function f, f(0) = f'(0) - 1 = 0 for which $Re\{e^{i\alpha}f'(z)\} > \delta$ in $D = \{z : |z| < 1\}$ where $|\alpha| \le \pi$ and $\cos \alpha > \delta$. We obtain some sharp results related to its radius of convexity.

Keywords Analytic functions; convex; and radius of convexity.

1 Introduction

We denote $G(\alpha, \delta)$ the class of normalised analytic functions f in the unit disc D where

$$f(z) = z + a_2 z^2 + \dots + a_n z^n + \dots$$

satisfying Re $\{e^{i\alpha}f'(z)\} > \delta$ where $|\alpha| \leq \pi$ and $\cos \alpha > \delta$. This class of functions has been studied by many researches among others MacGregor [5] who extensively looked into its basic properties for G(0,0), Goel and Mehrok [3] for $G(0,\delta)$ ($\delta \geq 0$) and Silverman and Silvia [6] for $G(\alpha,0)$. Daud [1] obtained some basic properties for $G(\alpha,\delta)$ including its representation theorem, extremals and argument. In this paper we have extended the later work by looking at, in particular, the radius of convexity of the class.

Let S be the class of normalized univalent functions analytic in the unit disc. Let $K(\beta)$ denote the subclass of S consisting of functions g(z) for which

$$\operatorname{Re}\left\{1+\frac{g''\left(z\right)}{g'\left(z\right)}\right\} \ge \beta \quad \left(0 \le \beta \le 1\right).$$

This class is called convex of order β . In particular f(z) is in the class $G(\alpha, \delta)$ if there exists a function $g(z) \in K(\beta)$ such that

$$\operatorname{Re}\left\{e^{i\alpha}\frac{f'\left(z\right)}{g'\left(z\right)}\right\} > \delta \quad \left(0 \le \delta \le 1, |z| < 1\right).$$

Define a function p is in the class P if and only if

$$p(z) = \int_{|x|=1} \frac{1+zx}{1-zx} d\mu(x),$$

for some probability measure μ . Denote by P_{δ} the functions p(z) that are analytic in |z| < 1and satisfy the conditions p(0) = 1 and Re $p(z) > \delta$, and set $P_0 = p$. It is well known that a function q(z) is in P_{δ} if and only if there exists a function $p(z) \in P$ such that

$$q(z) = (1 - \delta) p(z) + \delta = \frac{p(z) + h}{1 + h},$$

where

$$h = \frac{\delta}{1 - \delta}.\tag{1}$$

Thus if $f(z) \in C(\beta, \delta)$, then we may write

$$e^{i\alpha}\frac{f'\left(z\right)}{g'\left(z\right)} = \frac{p\left(z\right) + h}{1+h}$$

so that

$$f'(z) = e^{-i\alpha}g'(z)\left(\frac{p(z)+h}{1+h}\right),\tag{2}$$

where $g(z) \in K(\beta), p(z) \in P$, and h is defined by (1). Taking derivatives of (2), we find that

$$f''(z) = e^{-i\alpha} \left\{ g''(z) \left(\frac{p(z) + h}{1 + h} \right) + \frac{g'(z)}{(1 + h)} (p'(z)) \right\}$$
$$zf''(z) = e^{-i\alpha} z \left\{ g''(z) \left(\frac{p(z) + h}{1 + h} \right) + \frac{g'(z)}{(1 + h)} (p'(z)) \right\}$$
$$\frac{zf''(z)}{f'(z)} = \frac{zg''(z)}{g'(z)} + \frac{zp'(z)}{p(z) + h}$$

and hence

$$1 + \frac{zf''(z)}{f'(z)} = 1 + \frac{zg''(z)}{g'(z)} + \frac{zp'(z)}{p(z) + h}.$$
(3)

In determining the radius of convexity for the class $G(\alpha, \delta)$ we note that for |z| = r, (3) yields

$$\min_{f \in C(\beta,\delta)} \operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} = \min_{g \in K(\beta)} \operatorname{Re}\left\{1 + \frac{zg''(z)}{g'(z)}\right\} + \min_{p \in P} \operatorname{Re}\left\{\frac{zp'(z)}{p(z) + h}\right\}.$$
 (4)

and from a simple calculation, it can be shown that

$$\min_{\substack{|z| = r \\ g \in K(\beta)}} \operatorname{Re}\left\{1 + \frac{zg''(z)}{g'(z)}\right\} = 1.$$

Thus, the radius of convexity of $G(\alpha, \delta)$ is seen to be the smallest positive r for which

$$1 + \min_{\substack{|z| = r \\ p \in P}} \operatorname{Re}\left\{\frac{zp'(z)}{p(z) + h}\right\} = 0.$$
(5)

34

Some Bounds of Radius of Convexity of a Class of Analytic Functions

2 Main Results

The following result is obtained using the above argument which is a result given by Silverman [7] and Daud and Shaharuddin [2].

Theorem 1. Suppose $p(z) \in P$, h is defined by (1) and

$$a = \frac{1 + r^{2m}}{1 - r^{2m}}.$$

Then

$$\operatorname{Re}\left\{\frac{zp'(z)}{p(z)+h}\right\} \ge \begin{cases} -\frac{2r}{(1+r)[1+h-(1-h)r]} & (0 \le r \le r_{\delta})\\ 2\sqrt{h^2 + ah} - a - 2h & (r_{\delta} < r < 1), \end{cases}$$

where r_{δ} is the unique root of the equation $(1-2\delta)r^3 - 3(1-2\delta)r^2 + 3r - 1 = 0$ in the interval (0, 1]. This result is sharp.

For the proof, refer to Silverman [7] when δ taken only positive values, whereas Daud and Shaharuddin [2] completed it when δ taken any negative values.

Theorem 2. Suppose r_{δ} is the unique root of $t(r) = (1 - 2\delta) r^3 - 3 (1 - 2\delta) r^3 + 3r - 1$ in the interval (0, 1]. Set

$$r\left(\beta,\delta\right) = \frac{1}{(1-2\delta) + \sqrt{4\delta^2 - 6\delta + 2}}.$$

Then the radius of convexity of $G(\alpha, \delta)$ is $r(\beta, \delta)$ when $0 < r(\alpha, \beta) \le r_{\delta}$, and is otherwise the smallest root greater then r_{δ} of the polynomial equation $v(r) = (1 - 2\delta) r^4 + 2\delta r^2 - \delta$. This result is sharp for all δ .

Proof. By applying Theorem 1 to (5), the radius of convexity of $G(\alpha, \delta)$ is the smallest positives root of

$$\begin{cases} 1 - \frac{2r}{(1+r)[(1+h)-(1-h)r]} = 0 & (0 \le r < r_{\delta}) \\ 1 + 2\sqrt{h^2 + ah} - a - 2h = 0 & (r_{\delta} < r < 1) \end{cases}$$
(6)

where h is defined by (1). The first expression in (6) may be written as

$$\frac{-(1-2\delta) r^2 - 2(1-2\delta) r + 1}{(1+r) \left[(1+h) - (1-h) r\right]} = 0,$$

whose roots are

$$\frac{(1-2\delta) \mp \sqrt{(1-2\delta)^2 + (1-2\delta)}}{-(1-2\delta)} = \frac{1}{(1-2\delta) \pm \sqrt{4\delta^2 - 6\delta + 2}}$$

If both roots are positive, the minimum root is $r(\alpha, \delta)$. Similarly, a computation shows that r^* is a root of the second expression in (6) if an only if it is a root of v(r). This completes the proof.

3 Further Results

We let $R_{cv}[G(\alpha, \delta)] = \sup \left\{ r : Re\left[1 + \frac{zf''(z)}{f'(z)}\right] > 0, |z| = r, f \in G(\alpha, \delta) \right\}$ be the radius of convexity of $G(\alpha, \delta)$. The estimation of the lower and upper bound of $R_{cv}[G(\alpha, \delta)]$ is obtained for a choice of an extreme point. **Theorem 3.** Let $A = \cos \alpha - \delta$

(i)
$$R_{cv} \left[G\left(\alpha, \delta \right) \right] \ge \left(\sqrt{2} - 1\right) \left| \frac{2(A+\delta)A-1}{A-\sqrt{1-A(2\delta+A)}} \right|,$$

(ii) If $\delta < \frac{1}{3},$

$$R_{cv}\left[G\left(\alpha,\delta\right)\right] \le \left[1 + 2\sqrt{\frac{A}{1 - 4\delta A} \left\{\sqrt{A} - \sqrt{\left(A + \delta\right) + \sqrt{1 - 4\delta A}}\right\}}\right]^{1/2} < 1.$$
(7)

Proof. Let $f \in G(\alpha, \delta)$. A theorem of Daud [1] gives us $Ref'(z) \ge 0$ for

$$|z| < \frac{A - \sqrt{1 - A(2\delta + A)}}{2(A + \delta)A - 1}.$$

Put $\lambda = \frac{A - \sqrt{1 - A(2\delta + A)}}{2(A + \delta)A - 1}$ and let $g(z) = \frac{f(\lambda(z))}{\lambda} \in G(0, 0)$. It is known from MacGregor[4] that g is convex for $|z| < \sqrt{2} - 1$. Thus f is convex if

$$|z| < \frac{\sqrt{2}-1}{\lambda} = \left(\sqrt{2}-1\right) \left|\frac{2\left(A+\delta\right)A-1}{A-\sqrt{1-A\left(2\delta+A\right)}}\right|$$

We consider an extreme point $g(z) = -e^{-i\alpha} (e^{-i\alpha} - 2\delta) z - 2e^{-i\alpha} A \log(1-z)$ of $G(\alpha, \delta)$ as in Daud [1]. Then

$$g'(z) = -e^{-i\alpha} \left(e^{-i\alpha} - 2\delta \right) + 2e^{-i\alpha} A\left(\frac{1}{1-z}\right)$$

and

$$zg'(z) = -e^{-i\alpha} \left(e^{-i\alpha} - 2\delta \right) z + 2e^{-i\alpha} A\left(\frac{z}{1-z}\right).$$

 So

$$g'(z) + zg''(z) = (zg'(z))' = -e^{-i\alpha} \left(e^{-i\alpha} - 2\delta\right) + 2e^{-i\alpha}A\left(\frac{1}{1-z}\right)^2$$

and this expression is zero if and only if

$$z = 1 \pm \sqrt{1 + \frac{e^{i2\alpha}}{1 - 2\delta e^{i\alpha}}}.$$
(8)

These values are well defined since the condition $\delta < \frac{1}{3}$ implies $1 - 2\delta e^{i\alpha} \neq 0$. Now let $\rho = \rho(\alpha, \delta)$ be the smallest of the modulii of these two roots. Then we must have $R_{cv}[G(\alpha, \delta)] \leq \rho$. To see this, we argue as follows. If g'(z) = 0 for some z satisfying $|z| < \rho$, then

$$1 + \frac{zg''(z)}{g'(z)} \tag{9}$$

is not defined, and g is not convex on the disc $|z| < \rho$. If $g'(z) \neq 0$ on the disc, then (9) is zero on $|z| = \rho$ and g is not convex on any larger disc.

To determine ρ , we first find *Rez*, *Imz* for the z in (9). If $\alpha = 0$ or $\alpha = \pm \pi$, we have

$$\rho = \sqrt{\frac{2(1-\delta)}{1-2\delta}} - 1 \quad , \quad \rho = \sqrt{\frac{2(1+\delta)}{1+2\delta}} - 1$$

respectively, and these are the values given by (7). Assume now that $\cos \alpha \neq 1$. Let

$$\zeta^2 = 1 + \frac{e^{i\alpha}}{1 - 2\delta e^{i\alpha}}$$

and put

$$\zeta = x + iy \quad , (x, y \text{ real}).$$

We have

$$\frac{e^{i2\alpha}}{1-2\delta e^{i\alpha}} = \frac{\cos 2\alpha + i\sin 2\alpha}{1-2\delta\left(\cos\alpha + i\sin\alpha\right)} = \frac{\cos 2\alpha - 2\delta\cos\alpha + i\left(\sin 2\alpha - 2\delta\sin\alpha\right)}{1-4\delta\cos\alpha + 4\delta^2}$$

which gives

$$\zeta^2 = x^2 - y^2 + i2xy = 1 + \frac{\cos 2\alpha - 2\delta \cos \alpha}{1 - 4\delta \cos \alpha + 4\delta^2} + i\frac{\sin 2\alpha - 2\delta \sin \alpha}{1 - 4\delta \cos \alpha + 4\delta^2}$$

so that

$$x^2 - y^2 = 1 + \frac{\cos 2\alpha - 2\delta \cos \alpha}{1 - 4\delta \cos \alpha + 4\delta^2} = \frac{2A\left(A - \delta\right)}{1 - 4A\delta} \tag{10}$$

and

$$2xy = \frac{\sin 2\alpha - 2\delta \sin \alpha}{1 - 4\delta \cos \alpha + 4\delta^2} = \frac{2A\sqrt{1 - (A + \delta)^2}}{1 - 4A\delta}.$$
 (11)

Thus

$$x^{2} - \frac{A^{2} \left(1 - (A + \delta)^{2}\right)}{x^{2} \left(1 - 4A\delta\right)^{2}} = \frac{2A \left(A - \delta\right)}{1 - 4A\delta}$$

which we rewrite as

$$(1 - 4A\delta)^2 x^4 - 2A (A - \delta) (1 - 4A\delta) x^2 - A^2 \left(1 - (A + \delta)^2\right) = 0.$$

An elementary argument shows that $1 - 4A\delta > 0$ when $\delta < \frac{1}{3}$, and so

$$x^{2} = \frac{2A(A-\delta)(1-4A\delta) \pm \sqrt{(2A(A-\delta)(1-4A\delta))^{2} + 4A^{2}(1-4A\delta)^{2}(1-(A+\delta)^{2})^{2}}}{2(1-4A\delta)^{2}}$$
$$= \frac{A(A-\delta) \pm A\sqrt{1-4A\delta}}{1-4A\delta}.$$

The product of these roots is negative since $|A + \delta| = |\cos \alpha| < 1$, and $A - \delta + \sqrt{1 - 4A\delta}$ is positive since $\delta < \frac{1}{3}$, so we must have

$$x^{2} = \frac{A\left(A-\delta\right) + A\sqrt{1-4A\delta}}{1-4A\delta}$$

which gives

$$x = \pm \sqrt{\frac{A\left(A-\delta\right) + A\sqrt{1-4A\delta}}{1-4A\delta}}.$$
(12)

Substituting x in (11), we obtain

$$y = \pm \sqrt{\frac{A\left(1 - (A + \delta)^2\right)}{\left(1 - 4A\delta\right)\left((A - \delta) + \sqrt{1 - 4A\delta}\right)}},$$
(13)

and the possible values of $\zeta = x + iy$ are determined. It follows from (8) that

$$\rho = \rho(\alpha, \delta) = \sqrt{(1-x)^2 + y^2}$$

where x and y are the positive alternatives in (12) and (13). Thus

$$|\rho|^{2} = \left[\frac{1 - \left[A\left(A - \delta\right) + A\sqrt{1 - 4A\delta}\right]^{\frac{1}{2}}}{1 - 4A\delta}\right]^{\frac{1}{2}} + \frac{A\left(1 - (A + \delta)^{2}\right)}{(1 - 4A\delta)\left[(A - \delta) + \sqrt{1 - 4A\delta}\right]}$$
$$= 1 + 2\left[\frac{A}{1 - 4A\delta}\right]^{\frac{1}{2}}\left[\sqrt{A} - \left(A - \delta + \sqrt{1 - 4A\delta}\right)^{\frac{1}{2}}\right]$$

as required. The expression in the second bracket is negative when $\delta < \frac{1}{3}$, so we have $\rho < 1$. This completes the proof.

We note that the restriction on δ in Theorem 3(ii) of the theorem is inevitable, since the function g used in the proof to obtain upper bound for $R_{cv}[G(\alpha, \delta)]$ is actually convex

in the case $\alpha = 0$, $\delta = \frac{1}{2}$. The following result is obtained by using a different choice of g. **Theorem 4.** $R_{cv} [G(\alpha, \delta)] \leq \left(\frac{1}{nA}\right)^{1/(n-1)}$ where n is the smallest integer satisfying $n \geq 2, n > \frac{1}{A}$. This result is sharp.

The proof is immediate once we have proved

Lemma 5. The class $G(\alpha, \delta)$ contains the function

$$g(z) = z + \left(\frac{A}{n}\right)z^n \quad (z \in D)$$

where $n \geq 2$ is an integer, and the radius of the largest disc in which g is convex is

$$\left(\frac{1}{nA}\right)^{1/(n-1)},$$

where $n > \frac{1}{A}$. This result is sharp. Proof of the lemma. Let $g(z) = z + \left(\frac{A}{n}\right) z^n$ $(z \in D)$. Then $g'(z) = 1 + Az^{n-1}$ and so

$$Re\left[e^{i\alpha}g'\left(z\right)\right] = Re\left[e^{i\alpha}\left(1 + Az^{n-1}\right)\right]$$
$$= \cos\alpha + ARe\left(e^{i\alpha}z^{n-1}\right)$$
$$> \cos\alpha - A$$
$$= \delta.$$

Hence $g \in G(\alpha, \delta)$. Now $g''(z) = (n-1) A z^{n-2}$ which gives

$$1 + \frac{zg''(z)}{g'(z)} = 1 + \frac{z(n-1)Az^{n-2}}{1+Az^{n-1}} = n + \frac{1-n}{1+Az^{n-1}}$$

So,

$$Re\left[1 + \frac{zg''\left(z\right)}{g'\left(z\right)}\right] > 0$$

if and only if

$$Re\left[n+\frac{1-n}{1+Az^{n-1}}\right] > 0,$$

and simplifying the above inequality, we have

$$(n-1)\left(1 + Re\overline{Az^{n-1}}\right) < n\left|1 + Az^{n-1}\right|^2,$$
$$(n-1) + (n-1)Re\overline{Az^{n-1}} < n\left[1 + 2Re\overline{Az^{n-1}} + \left|Az^{n-1}\right|^2\right]$$
$$n\left|Az^{n-1}\right|^2 + (n+1)Re\overline{Az^{n-1}} + 1 > 0.$$

This inequality is true on $|z| = \rho$ if and only if $n (A\rho^{n-1} - 1)^2 - (n+1)A\rho^{n-1} + 1 \ge 0$ or $(nA\rho^{n-1} - 1) (A\rho^{n-1} - 1) \ge 0$, and when $n > \frac{1}{A}$ it follows that g is convex on $|z| < (\frac{1}{nA})^{\frac{1}{(n-1)}}$, but not on any larger disc.

 $\left(\frac{1}{nA}\right)^{\frac{1}{(n-1)}}$, but not on any larger disc. Following Silverman and Silvia [6], we next consider polynomials of degree n in $G(\alpha, \delta)$. We find sufficient conditions in terms of α, δ, n for these to be convex. **Theorem 6.** Suppose $p_n(z) = z + \sum_{k=2}^n c_k z^k$ is in $G(\alpha, \delta)$. Then p_n is convex if $\cos \alpha \leq \frac{1}{(n+2)(n-1)} + \delta$. This result is sharp.

Proof. Let $f(z) = z + \sum_{k=2}^{n} c_k z^k$. Then by a result of Kobori [4], f is convex if $\sum_{k=2}^{\alpha} k^2 |a_k| \leq 1$ for the p_n in the statement. We have, using the result on coefficient bound of $G(\alpha, \delta)$ in Daud [1],

$$\sum_{k=2}^{n} k^2 |c_k| \le \sum_{k=2}^{n} 2k (\cos \alpha - \delta)$$
$$= 2 \left[\frac{n (n-1)}{2} - 1 \right] (\cos \alpha - \delta)$$
$$\le 1$$

if $\cos \alpha \leq \frac{1}{(n+2)(n-1)} + \delta$. This completes the proof of the theorem.

The function $f_1(z) = z$ is a member of each of the classes $G(\alpha, \delta)$. In fact f_1 is the only function with this property. To see that this is the case, suppose that some other function g has the same property, so that g' takes a value $\lambda \neq 1$. Consider the line in the Argand diagram containing λ and 1. Rotate this line about any point between λ and 1 so that in its new position it contains neither of these points. The line now separates the plane into two half planes, and one of these contains 1 but does not contain λ . The plane can be described as the collection of points w for which $Ree^{i\alpha}w > \delta$ and since w may be taken as 1, we have $\cos \alpha > \delta$. For this α and δ , any function in $G(\alpha, \delta)$ fails to take value λ , and so is not in $G(\alpha, \delta)$. This is the required contradiction.

Theorem 7. (i) Let $\varepsilon > 0$, and let F_{ε} be the family of classes $G(\alpha, \delta)$ for which $\cos \alpha \ge \delta + \varepsilon$. Then $\cap F_{\varepsilon}$ contains a function, which is not convex.

(ii) Let F_0 be any family of classes $G(\alpha, \delta)$ with the property that, for any $\varepsilon > 0$, there exists a member $G(\alpha, \delta)$ of F_0 with $\cos \alpha < \delta + \varepsilon$. Then $\cap F_0$ contains only the function $f_1(z) = z$, $(z \in D)$.

As an immediate corollary to the theorem we have the following result that answers the above question in the case of convexity.

Corollary 8. Let F be the intersection of any family of classes $G(\alpha, \delta)$. Then either F contains just the identity function $f_1(z) = z$, or F contains a function which is not convex.

Part (i) of the theorem was proved by Silverman and Silvia [6] in the case $|\alpha| < \frac{\pi}{2} - \varepsilon$, $|\alpha| \leq \frac{\pi}{2}$. Our proof is rather more geometrical than theirs, using the following property of any half plane $Ree^{i\alpha}w > \delta$ in the *w*-Argand diagram with $|\alpha| \leq \pi$, $\cos \alpha > \delta$: the largest radius of any circle centered at 1 whose interior is a subset of the half plane, is $\cos \alpha > \delta$.

Proof of theorem.

(i) Let $f(z) = z + \lambda z^n$. A slight modification to the last part of proof of Lemma 5 shows that f is convex if and only if $|\lambda| < \frac{1}{n^2}$. Choose n so that $\varepsilon > \frac{1}{n}$ and then λ so that $\frac{1}{n} < n\lambda < \varepsilon$. Then $\lambda > \frac{1}{n^2}$ and f is not convex. Also $f'(z) = 1 + n\lambda z^{n-1}$, so that f' maps D onto a circle centered at 1 and radius ε , and $f \in G(\alpha, \delta)$ whenever $\cos \alpha - \delta > \varepsilon$.

(ii) Suppose that $\cap F_0$ contains a function $g \neq f_1$, so that, by the open mapping theorem, the interior of some disc centered at 1 is a subset of g'(D). Let the radius of this disc be d, and let $G(\alpha, \delta)$ be a class in F_0 for which $\cos \alpha - \delta < d$. The derivative of any function in $G(\alpha, \delta)$ maps D into the half plane $Ree^{i\alpha}w > \delta$ and the radius of the largest circle, centred at 1, inside this half plane, is $\cos \alpha - \delta$. This implies $g \notin \cap F_0$, which contradicts our assumption. So $\cap F_0$ contains only f_1 .

4 Conclusion

This paper extends some of the results given by Silverman and Silvia [6] and Daud [1] on bounds for $R_{cv} [G(\alpha, \delta)]$, the radius of convexity of $G(\alpha, \delta)$. Using the approach by Silverman [7] and Goel and Mehrok [3], we extend the results when δ taken as any negative values in Daud and Shaharuddin [2]. With this results, we emphasis on using the extreme values function to look on the consideration of convexity and starlikeness of the class.

References

- [1] Daud Mohamad, On a class of functions whose derivatives map the unit disc into a half plane, Bull. Malaysian Math. Soc. (Second Series)(2001), 163–171.
- [2] Daud Mohamad & Shaharuddin Cik Soh, The radius of convexity of a class of analytic functions, Int. J. Contemp. Math. Sciences 26(2009), vol.4, 1289–1297.
- [3] R.M. Goel & B.S. Mehrok, A class of univalent functions, J. Austral. Math. Soc. (Series A) 35(1983), 1–17.
- [4] A. Kobori, Uber sterngie und konvexe Abbildung, Mem. Coll. Sci. Kyoto A 15(1932), 267–278.
- [5] T.H. MacGregor, Functions whose derivative has positive real part, Trans. Amer. Math. Soc. 104(1962), 532–537.
- [6] H. Silverman & E.M. Silvia, On α-close-to-convex functions, Publ. Math. Debrecen 49(1996) no. 3-4, 305–316.
- [7] H. Silverman, Convexity theorems for subclasses of univalent functions, Pacific Journal of Mathematics, 64(1976) no. 1, 253-263.