Some Bounds of Radius of Convexity of a Class of Analytic Functions

${ }^{1}$ Daud Mohamad \& ${ }^{2}$ Shaharuddin Cik Soh
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia
e-mail: ${ }^{1}$ daud@tmsk.uitm.edu.my, ${ }^{2}$ shahar@tmsk.uitm.edu.my

Abstract

Let $G(\alpha, \delta)$ denote the class of function $f, f(0)=f^{\prime}(0)-1=0$ for which $\operatorname{Re}\left\{e^{i \alpha} f^{\prime}(z)\right\}>\delta$ in $D=\{z:|z|<1\}$ where $|\alpha| \leq \pi$ and $\cos \alpha>\delta$. We obtain some sharp results related to its radius of convexity.

Keywords Analytic functions; convex; and radius of convexity.

1 Introduction

We denote $G(\alpha, \delta)$ the class of normalised analytic functions f in the unit disc D where

$$
f(z)=z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots
$$

satisfying $\operatorname{Re}\left\{e^{i \alpha} f^{\prime}(z)\right\}>\delta$ where $|\alpha| \leq \pi$ and $\cos \alpha>\delta$. This class of functions has been studied by many researches among others MacGregor [5] who extensively looked into its basic properties for $G(0,0)$, Goel and Mehrok [3] for $G(0, \delta)(\delta \geq 0)$ and Silverman and Silvia [6] for $G(\alpha, 0)$. Daud [1] obtained some basic properties for $G(\alpha, \delta)$ including its representation theorem, extremals and argument. In this paper we have extended the later work by looking at, in particular, the radius of convexity of the class.

Let S be the class of normalized univalent functions analytic in the unit disc. Let $K(\beta)$ denote the subclass of S consisting of functions $g(z)$ for which

$$
\operatorname{Re}\left\{1+\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right\} \geq \beta \quad(0 \leq \beta \leq 1)
$$

This class is called convex of order β. In particular $f(z)$ is in the class $G(\alpha, \delta)$ if there exists a function $g(z) \in K(\beta)$ such that

$$
\operatorname{Re}\left\{e^{i \alpha} \frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}>\delta \quad(0 \leq \delta \leq 1,|z|<1)
$$

Define a function p is in the class P if and only if

$$
p(z)=\int_{|x|=1} \frac{1+z x}{1-z x} d \mu(x)
$$

for some probability measure μ. Denote by P_{δ} the functions $p(z)$ that are analytic in $|z|<1$ and satisfy the conditions $p(0)=1$ and $\operatorname{Re} p(z)>\delta$, and set $P_{0}=p$. It is well known that a function $q(z)$ is in P_{δ} if and only if there exists a function $p(z) \in P$ such that

$$
q(z)=(1-\delta) p(z)+\delta=\frac{p(z)+h}{1+h}
$$

where

$$
\begin{equation*}
h=\frac{\delta}{1-\delta} . \tag{1}
\end{equation*}
$$

Thus if $f(z) \in C(\beta, \delta)$, then we may write

$$
e^{i \alpha} \frac{f^{\prime}(z)}{g^{\prime}(z)}=\frac{p(z)+h}{1+h}
$$

so that

$$
\begin{equation*}
f^{\prime}(z)=e^{-i \alpha} g^{\prime}(z)\left(\frac{p(z)+h}{1+h}\right) \tag{2}
\end{equation*}
$$

where $g(z) \in K(\beta), p(z) \in P$, and h is defined by (1). Taking derivatives of (2), we find that

$$
\begin{gathered}
f^{\prime \prime}(z)=e^{-i \alpha}\left\{g^{\prime \prime}(z)\left(\frac{p(z)+h}{1+h}\right)+\frac{g^{\prime}(z)}{(1+h)}\left(p^{\prime}(z)\right)\right\} \\
z f^{\prime \prime}(z)=e^{-i \alpha} z\left\{g^{\prime \prime}(z)\left(\frac{p(z)+h}{1+h}\right)+\frac{g^{\prime}(z)}{(1+h)}\left(p^{\prime}(z)\right)\right\} \\
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+\frac{z p^{\prime}(z)}{p(z)+h}
\end{gathered}
$$

and hence

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+\frac{z p^{\prime}(z)}{p(z)+h} . \tag{3}
\end{equation*}
$$

In determining the radius of convexity for the class $G(\alpha, \delta)$ we note that for $|z|=r,(3)$ yields

$$
\begin{equation*}
\min _{f \in C(\beta, \delta)} \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}=\min _{g \in K(\beta)} \operatorname{Re}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\}+\min _{p \in P} \operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)+h}\right\} \tag{4}
\end{equation*}
$$

and from a simple calculation, it can be shown that

$$
\min _{\substack{|z|=r \\ g \in K(\beta)}} \operatorname{Re}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\}=1
$$

Thus, the radius of convexity of $G(\alpha, \delta)$ is seen to be the smallest positive r for which

$$
\begin{equation*}
1+\min _{\substack{|z|=r \\ p \in P}} \operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)+h}\right\}=0 \tag{5}
\end{equation*}
$$

2 Main Results

The following result is obtained using the above argument which is a result given by Silverman [7] and Daud and Shaharuddin [2].

Theorem 1. Suppose $p(z) \in P, h$ is defined by (1) and

$$
a=\frac{1+r^{2 m}}{1-r^{2 m}}
$$

Then

$$
\operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)+h}\right\} \geq \begin{cases}-\frac{2 r}{(1+r)[1+h-(1-h) r]} & \left(0 \leq r \leq r_{\delta}\right) \\ 2 \sqrt{h^{2}+a h}-a-2 h & \left(r_{\delta}<r<1\right)\end{cases}
$$

where r_{δ} is the unique root of the equation $(1-2 \delta) r^{3}-3(1-2 \delta) r^{2}+3 r-1=0$ in the interval $(0,1]$. This result is sharp.

For the proof, refer to Silverman [7] when δ taken only positive values, whereas Daud and Shaharuddin [2] completed it when δ taken any negative values.

Theorem 2. Suppose r_{δ} is the unique root of $t(r)=(1-2 \delta) r^{3}-3(1-2 \delta) r^{3}+3 r-1$ in the interval $(0,1]$. Set

$$
r(\beta, \delta)=\frac{1}{(1-2 \delta)+\sqrt{4 \delta^{2}-6 \delta+2}}
$$

Then the radius of convexity of $G(\alpha, \delta)$ is $r(\beta, \delta)$ when $0<r(\alpha, \beta) \leq r_{\delta}$, and is otherwise the smallest root greater then r_{δ} of the polynomial equation $v(r)=(1-2 \delta) r^{4}+2 \delta r^{2}-\delta$. This result is sharp for all δ.

Proof. By applying Theorem 1 to (5), the radius of convexity of $G(\alpha, \delta)$ is the smallest positives root of

$$
\begin{cases}1-\frac{2 r}{(1+r)[(1+h)-(1-h) r]}=0 & \left(0 \leq r<r_{\delta}\right) \tag{6}\\ 1+2 \sqrt{h^{2}+a h}-a-2 h=0 & \left(r_{\delta}<r<1\right)\end{cases}
$$

where h is defined by (1). The first expression in (6) may be written as

$$
\frac{-(1-2 \delta) r^{2}-2(1-2 \delta) r+1}{(1+r)[(1+h)-(1-h) r]}=0
$$

whose roots are

$$
\frac{(1-2 \delta) \mp \sqrt{(1-2 \delta)^{2}+(1-2 \delta)}}{-(1-2 \delta)}=\frac{1}{(1-2 \delta) \pm \sqrt{4 \delta^{2}-6 \delta+2}}
$$

If both roots are positive, the minimum root is $r(\alpha, \delta)$. Similarly, a computation shows that r^{*} is a root of the second expression in (6) if an only if it is a root of $v(r)$. This completes the proof.

3 Further Results

We let $R_{c v}[G(\alpha, \delta)]=\sup \left\{r: \operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>0,|z|=r, f \in G(\alpha, \delta)\right\}$ be the radius of convexity of $G(\alpha, \delta)$. The estimation of the lower and upper bound of $R_{c v}[G(\alpha, \delta)]$ is obtained for a choice of an extreme point.

Theorem 3. Let $A=\cos \alpha-\delta$.
(i) $R_{c v}[G(\alpha, \delta)] \geq(\sqrt{2}-1)\left|\frac{2(A+\delta) A-1}{A-\sqrt{1-A(2 \delta+A)}}\right|$,
(ii) If $\delta<\frac{1}{3}$,

$$
\begin{equation*}
R_{c v}[G(\alpha, \delta)] \leq\left[1+2 \sqrt{\frac{A}{1-4 \delta A}\{\sqrt{A}-\sqrt{(A+\delta)+\sqrt{1-4 \delta A}}\}}\right]^{1 / 2}<1 \tag{7}
\end{equation*}
$$

Proof. Let $f \in G(\alpha, \delta)$. A theorem of Daud [1] gives us $\operatorname{Re} f^{\prime}(z) \geq 0$ for

$$
|z|<\frac{A-\sqrt{1-A(2 \delta+A)}}{2(A+\delta) A-1}
$$

Put $\lambda=\frac{A-\sqrt{1-A(2 \delta+A)}}{2(A+\delta) A-1}$ and let $g(z)=\frac{f(\lambda(z))}{\lambda} \in G(0,0)$. It is known from MacGregor[4] that g is convex for $|z|<\sqrt{2}-1$. Thus f is convex if

$$
|z|<\frac{\sqrt{2}-1}{\lambda}=(\sqrt{2}-1)\left|\frac{2(A+\delta) A-1}{A-\sqrt{1-A(2 \delta+A)}}\right|
$$

We consider an extreme point $g(z)=-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right) z-2 e^{-i \alpha} A \log (1-z)$ of $G(\alpha, \delta)$ as in Daud [1]. Then

$$
g^{\prime}(z)=-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)+2 e^{-i \alpha} A\left(\frac{1}{1-z}\right)
$$

and

$$
z g^{\prime}(z)=-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right) z+2 e^{-i \alpha} A\left(\frac{z}{1-z}\right)
$$

So

$$
g^{\prime}(z)+z g^{\prime \prime}(z)=\left(z g^{\prime}(z)\right)^{\prime}=-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)+2 e^{-i \alpha} A\left(\frac{1}{1-z}\right)^{2}
$$

and this expression is zero if and only if

$$
\begin{equation*}
z=1 \pm \sqrt{1+\frac{e^{i 2 \alpha}}{1-2 \delta e^{i \alpha}}} \tag{8}
\end{equation*}
$$

These values are well defined since the condition $\delta<\frac{1}{3}$ implies $1-2 \delta e^{i \alpha} \neq 0$. Now let $\rho=\rho(\alpha, \delta)$ be the smallest of the modulii of these two roots. Then we must have $R_{c v}[G(\alpha, \delta)] \leq \rho$. To see this, we argue as follows. If $g^{\prime}(z)=0$ for some z satisfying $|z|<\rho$, then

$$
\begin{equation*}
1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)} \tag{9}
\end{equation*}
$$

is not defined, and g is not convex on the disc $|z|<\rho$. If $g^{\prime}(z) \neq 0$ on the disc, then (9) is zero on $|z|=\rho$ and g is not convex on any larger disc.

To determine ρ, we first find Rez, Imz for the z in (9). If $\alpha=0$ or $\alpha= \pm \pi$, we have

$$
\rho=\sqrt{\frac{2(1-\delta)}{1-2 \delta}}-1 \quad, \quad \rho=\sqrt{\frac{2(1+\delta)}{1+2 \delta}}-1
$$

respectively, and these are the values given by (7). Assume now that $\cos \alpha \neq 1$. Let

$$
\zeta^{2}=1+\frac{e^{i \alpha}}{1-2 \delta e^{i \alpha}}
$$

and put

$$
\zeta=x+i y \quad,(x, y \text { real }) .
$$

We have

$$
\frac{e^{i 2 \alpha}}{1-2 \delta e^{i \alpha}}=\frac{\cos 2 \alpha+i \sin 2 \alpha}{1-2 \delta(\cos \alpha+i \sin \alpha)}=\frac{\cos 2 \alpha-2 \delta \cos \alpha+i(\sin 2 \alpha-2 \delta \sin \alpha)}{1-4 \delta \cos \alpha+4 \delta^{2}}
$$

which gives

$$
\zeta^{2}=x^{2}-y^{2}+i 2 x y=1+\frac{\cos 2 \alpha-2 \delta \cos \alpha}{1-4 \delta \cos \alpha+4 \delta^{2}}+i \frac{\sin 2 \alpha-2 \delta \sin \alpha}{1-4 \delta \cos \alpha+4 \delta^{2}}
$$

so that

$$
\begin{equation*}
x^{2}-y^{2}=1+\frac{\cos 2 \alpha-2 \delta \cos \alpha}{1-4 \delta \cos \alpha+4 \delta^{2}}=\frac{2 A(A-\delta)}{1-4 A \delta} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
2 x y=\frac{\sin 2 \alpha-2 \delta \sin \alpha}{1-4 \delta \cos \alpha+4 \delta^{2}} \quad=\frac{2 A \sqrt{1-(A+\delta)^{2}}}{1-4 A \delta} \tag{11}
\end{equation*}
$$

Thus

$$
x^{2}-\frac{A^{2}\left(1-(A+\delta)^{2}\right)}{x^{2}(1-4 A \delta)^{2}}=\frac{2 A(A-\delta)}{1-4 A \delta}
$$

which we rewrite as

$$
(1-4 A \delta)^{2} x^{4}-2 A(A-\delta)(1-4 A \delta) x^{2}-A^{2}\left(1-(A+\delta)^{2}\right)=0
$$

An elementary argument shows that $1-4 A \delta>0$ when $\delta<\frac{1}{3}$, and so

$$
\begin{gathered}
x^{2}=\frac{2 A(A-\delta)(1-4 A \delta) \pm \sqrt{(2 A(A-\delta)(1-4 A \delta))^{2}+4 A^{2}(1-4 A \delta)^{2}\left(1-(A+\delta)^{2}\right)}}{2(1-4 A \delta)^{2}} \\
=\frac{A(A-\delta) \pm A \sqrt{1-4 A \delta}}{1-4 A \delta} .
\end{gathered}
$$

The product of these roots is negative since $|A+\delta|=|\cos \alpha|<1$, and $A-\delta+\sqrt{1-4 A \delta}$ is positive since $\delta<\frac{1}{3}$, so we must have

$$
x^{2}=\frac{A(A-\delta)+A \sqrt{1-4 A \delta}}{1-4 A \delta}
$$

which gives

$$
\begin{equation*}
x= \pm \sqrt{\frac{A(A-\delta)+A \sqrt{1-4 A \delta}}{1-4 A \delta}} \tag{12}
\end{equation*}
$$

Substituting x in (11), we obtain

$$
\begin{equation*}
y= \pm \sqrt{\frac{A\left(1-(A+\delta)^{2}\right)}{(1-4 A \delta)((A-\delta)+\sqrt{1-4 A \delta})}} \tag{13}
\end{equation*}
$$

and the possible values of $\zeta=x+i y$ are determined. It follows from (8) that

$$
\rho=\rho(\alpha, \delta)=\sqrt{(1-x)^{2}+y^{2}}
$$

where x and y are the positive alternatives in (12) and (13). Thus

$$
\begin{gathered}
|\rho|^{2}=\left[\frac{1-[A(A-\delta)+A \sqrt{1-4 A \delta}]^{\frac{1}{2}}}{1-4 A \delta}\right]^{2}+\frac{A\left(1-(A+\delta)^{2}\right)}{(1-4 A \delta)[(A-\delta)+\sqrt{1-4 A \delta}]} \\
=1+2\left[\frac{A}{1-4 A \delta}\right]^{\frac{1}{2}}\left[\sqrt{A}-(A-\delta+\sqrt{1-4 A \delta})^{\frac{1}{2}}\right]
\end{gathered}
$$

as required. The expression in the second bracket is negative when $\delta<\frac{1}{3}$, so we have $\rho<1$. This completes the proof.

We note that the restriction on δ in Theorem 3(ii) of the theorem is inevitable, since the function g used in the proof to obtain upper bound for $R_{c v}[G(\alpha, \delta)]$ is actually convex in the case $\alpha=0, \delta=\frac{1}{2}$. The following result is obtained by using a different choice of g.

Theorem 4. $\quad R_{c v}[G(\alpha, \delta)] \leq\left(\frac{1}{n A}\right)^{1 /(n-1)}$ where n is the smallest integer satisfying $n \geq 2, n>\frac{1}{A}$. This result is sharp.

The proof is immediate once we have proved
Lemma 5. The class $G(\alpha, \delta)$ contains the function

$$
g(z)=z+\left(\frac{A}{n}\right) z^{n} \quad(z \in D)
$$

where $n \geq 2$ is an integer, and the radius of the largest disc in which g is convex is

$$
\left(\frac{1}{n A}\right)^{1 /(n-1)}
$$

where $n>\frac{1}{A}$. This result is sharp. Proof of the lemma. Let $g(z)=z+\left(\frac{A}{n}\right) z^{n} \quad(z \in D)$. Then $g^{\prime}(z)=1+A z^{n-1}$ and so

$$
\begin{gathered}
\operatorname{Re}\left[e^{i \alpha} g^{\prime}(z)\right]=\operatorname{Re}\left[e^{i \alpha}\left(1+A z^{n-1}\right)\right] \\
=\cos \alpha+A \operatorname{Re}\left(e^{i \alpha} z^{n-1}\right) \\
>\cos \alpha-A \\
=\delta
\end{gathered}
$$

Hence $g \in G(\alpha, \delta)$. Now $g^{\prime \prime}(z)=(n-1) A z^{n-2}$ which gives

$$
1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=1+\frac{z(n-1) A z^{n-2}}{1+A z^{n-1}}=n+\frac{1-n}{1+A z^{n-1}}
$$

So,

$$
\operatorname{Re}\left[1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right]>0
$$

if and only if

$$
\operatorname{Re}\left[n+\frac{1-n}{1+A z^{n-1}}\right]>0
$$

and simplifying the above inequality, we have

$$
\begin{gathered}
(n-1)\left(1+R e \overline{A z^{n-1}}\right)<n\left|1+A z^{n-1}\right|^{2} \\
(n-1)+(n-1) R e \overline{A z^{n-1}}<n\left[1+2 R e \overline{A z^{n-1}}+\left|A z^{n-1}\right|^{2}\right] \\
n\left|A z^{n-1}\right|^{2}+(n+1) R e \overline{A z^{n-1}}+1>0
\end{gathered}
$$

This inequality is true on $|z|=\rho$ if and only if $n\left(A \rho^{n-1}-1\right)^{2}-(n+1) A \rho^{n-1}+1 \geq 0$ or $\left(n A \rho^{n-1}-1\right)\left(A \rho^{n-1}-1\right) \geq 0$, and when $n>\frac{1}{A}$ it follows that g is convex on $|z|<$ $\left(\frac{1}{n A}\right)^{\frac{1}{(n-1)}}$, but not on any larger disc.

Following Silverman and Silvia [6], we next consider polynomials of degree n in $G(\alpha, \delta)$. We find sufficient conditions in terms of α, δ, n for these to be convex. Theorem 6. Suppose $p_{n}(z)=z+\sum_{k=2}^{n} c_{k} z^{k}$ is in $G(\alpha, \delta)$. Then p_{n} is convex if $\cos \alpha \leq \frac{1}{(n+2)(n-1)}+\delta$. This result is sharp.

Proof. Let $f(z)=z+\sum_{k=2}^{n} c_{k} z^{k}$. Then by a result of Kobori [4], f is convex if $\sum_{k=2}^{\alpha} k^{2}\left|a_{k}\right| \leq 1$ for the p_{n} in the statement. We have, using the result on coefficient bound of $G(\alpha, \delta)$ in Daud [1],

$$
\begin{gathered}
\sum_{k=2}^{n} k^{2}\left|c_{k}\right| \leq \sum_{k=2}^{n} 2 k(\cos \alpha-\delta) \\
=2\left[\frac{n(n-1)}{2}-1\right](\cos \alpha-\delta) \\
\leq 1
\end{gathered}
$$

if $\cos \alpha \leq \frac{1}{(n+2)(n-1)}+\delta$. This completes the proof of the theorem.
The function $f_{1}(z)=z$ is a member of each of the classes $G(\alpha, \delta)$. In fact f_{1} is the only function with this property. To see that this is the case, suppose that some other function g has the same property, so that g^{\prime} takes a value $\lambda \neq 1$. Consider the line in the Argand diagram containing λ and 1 . Rotate this line about any point between λ and 1 so that in its new position it contains neither of these points. The line now separates the plane into two half planes, and one of these contains 1 but does not contain λ. The plane can be described as the collection of points w for which $\operatorname{Re} e^{i \alpha} w>\delta$ and since w may be taken as 1 , we havecos $\alpha>\delta$. For this α and δ, any function in $G(\alpha, \delta)$ fails to take value λ, and so is not in $G(\alpha, \delta)$. This is the required contradiction.

Theorem 7. (i) Let >0, and let F_{\in} be the family of classes $G(\alpha, \delta)$ for which $\cos \alpha \geq$ $\delta+\varepsilon$. Then $\cap F_{\in}$ contains a function, which is not convex.
(ii) Let F_{0} be any family of classes $G(\alpha, \delta)$ with the property that, for any >0, there exists a member $G(\alpha, \delta)$ of F_{0} with $\cos \alpha<\delta+\varepsilon$. Then $\cap F_{0}$ contains only the function $f_{1}(z)=z,(z \in D)$.

As an immediate corollary to the theorem we have the following result that answers the above question in the case of convexity.

Corollary 8. Let F be the intersection of any family of classes $G(\alpha, \delta)$. Then either F contains just the identity function $f_{1}(z)=z$, or F contains a function which is not convex.

Part (i) of the theorem was proved by Silverman and Silvia [6] in the case $|\alpha|<\frac{\pi}{2}-$ $\varepsilon,|\alpha| \leq \frac{\pi}{2}$. Our proof is rather more geometrical than theirs, using the following property of any half plane $\operatorname{Re}^{i \alpha} w>\delta$ in the w-Argand diagram with $|\alpha| \leq \pi, \cos \alpha>\delta$: the largest radius of any circle centered at 1 whose interior is a subset of the half plane, is $\cos \alpha>\delta$.

Proof of theorem.
(i) Let $f(z)=z+\lambda z^{n}$. A slight modification to the last part of proof of Lemma 5 shows that f is convex if and only if $|\lambda|<\frac{1}{n^{2}}$. Choose n so that $\varepsilon>\frac{1}{n}$ and then λ so that $\frac{1}{n}<n \lambda<\varepsilon$. Then $\lambda>\frac{1}{n^{2}}$ and f is not convex. Also $f^{\prime}(z)=1+n \lambda z^{n-1}$, so that f^{\prime} maps D onto a circle centered at 1 and radius ε, and $f \in G(\alpha, \delta)$ whenevercos $\alpha-\delta>\varepsilon$.
(ii) Suppose that $\cap F_{0}$ contains a function $g \neq f_{1}$, so that, by the open mapping theorem, the interior of some disc centered at 1 is a subset of $g^{\prime}(D)$. Let the radius of this disc be d, and let $G(\alpha, \delta)$ be a class in F_{0} for which $\cos \alpha-\delta<d$. The derivative of any function in $G(\alpha, \delta)$ maps D into the half plane $R e e^{i \alpha} w>\delta$ and the radius of the largest circle, centred at 1 , inside this half plane, is $\cos \alpha-\delta$. This implies $g \notin \cap F_{0}$, which contradicts our assumption. So $\cap F_{0}$ contains only f_{1}.

4 Conclusion

This paper extends some of the results given by Silverman and Silvia [6] and Daud [1] on bounds for $R_{c v}[G(\alpha, \delta)]$, the radius of convexity of $G(\alpha, \delta)$. Using the approach by Silverman [7] and Goel and Mehrok [3], we extend the results when δ taken as any negative values in Daud and Shaharuddin [2]. With this results, we emphasis on using the extreme values function to look on the consideration of convexity and starlikeness of the class.

References

[1] Daud Mohamad, On a class of functions whose derivatives map the unit disc into a half plane, Bull. Malaysian Math. Soc. (Second Series)(2001), 163-171.
[2] Daud Mohamad \& Shaharuddin Cik Soh, The radius of convexity of a class of analytic functions, Int. J. Contemp. Math. Sciences 26(2009), vol.4, 1289-1297.
[3] R.M. Goel \& B.S. Mehrok, A class of univalent functions, J. Austral. Math. Soc. (Series A) $35(1983), 1-17$.
[4] A. Kobori, Uber sterngie und konvexe Abbildung, Mem. Coll. Sci. Kyoto A 15(1932), 267-278.
[5] T.H. MacGregor, Functions whose derivative has positive real part, Trans. Amer. Math. Soc. 104(1962), 532-537.
[6] H. Silverman \& E.M. Silvia, On α-close-to-convex functions, Publ. Math. Debrecen 49(1996) no. 3-4, 305-316.
[7] H. Silverman, Convexity theorems for subclasses of univalent functions, Pacific Journal of Mathematics, 64(1976) no. 1, 253-263.

