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Abstract Let G (α, δ) denote the class of function f , f (0) = f ′ (0)− 1 = 0 for which
Re

˘

eiαf ′ (z)
¯

> δ in D = {z : |z| < 1} where |α| ≤ π and cos α > δ. We obtain some
sharp results related to its radius of convexity.
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1 Introduction

We denote G (α, δ) the class of normalised analytic functions f in the unit disc D where

f (z) = z + a2z
2 + · · ·+ anzn + · · ·

satisfying Re
{

eiαf ′ (z)
}

> δ where |α| ≤ π and cosα > δ. This class of functions has
been studied by many researches among others MacGregor [5] who extensively looked into
its basic properties for G (0, 0), Goel and Mehrok [3] for G (0, δ) (δ ≥ 0) and Silverman and
Silvia [6] for G (α, 0). Daud [1] obtained some basic properties for G (α, δ) including its
representation theorem, extremals and argument. In this paper we have extended the later
work by looking at, in particular, the radius of convexity of the class.

Let S be the class of normalized univalent functions analytic in the unit disc. Let K (β)
denote the subclass of S consisting of functions g (z) for which

Re

{

1 +
g′′ (z)

g′ (z)

}

≥ β (0 ≤ β ≤ 1) .

This class is called convex of orderβ. In particular f(z) is in the class G (α, δ) if there exists
a function g (z) ∈ K (β) such that

Re

{

eiα f ′ (z)

g′ (z)

}

> δ (0 ≤ δ ≤ 1, |z| < 1) .

Define a function p is in the class P if and only if

p (z) =

∫

|x|=1

1 + zx

1 − zx
dµ (x) ,

for some probability measure µ. Denote by Pδ the functions p (z) that are analytic in |z| < 1
and satisfy the conditions p (0) = 1 and Re p (z) > δ, and set P0 = p. It is well known that
a function q (z) is in Pδ if and only if there exists a function p (z) ∈ P such that

q (z) = (1 − δ) p (z) + δ =
p (z) + h

1 + h
,



34 Daud Mohamad & Shaharuddin Cik Soh

where

h =
δ

1 − δ
. (1)

Thus if f (z) ∈ C (β, δ), then we may write

eiα f ′ (z)

g′ (z)
=

p (z) + h

1 + h

so that

f ′ (z) = e−iαg′ (z)

(

p (z) + h

1 + h

)

, (2)

where g (z) ∈ K (β),p (z) ∈ P , and h is defined by (1). Taking derivatives of (2), we find
that

f ′′ (z) = e−iα

{

g′′ (z)

(

p (z) + h

1 + h

)

+
g′ (z)

(1 + h)
(p′ (z))

}

zf ′′ (z) = e−iαz

{

g′′ (z)

(

p (z) + h

1 + h

)

+
g′ (z)

(1 + h)
(p′ (z))

}

zf ′′ (z)

f ′ (z)
=

zg′′ (z)

g′ (z)
+

zp′ (z)

p (z) + h

and hence

1 +
zf ′′ (z)

f ′ (z)
= 1 +

zg′′ (z)

g′ (z)
+

zp′ (z)

p (z) + h
. (3)

In determining the radius of convexity for the class G (α, δ) we note that for |z| = r, (3)
yields

min
f∈C(β,δ)

Re

{

1 +
zf ′′ (z)

f ′ (z)

}

= min
g∈K(β)

Re

{

1 +
zg′′ (z)

g′ (z)

}

+ min
p∈P

Re

{

zp′ (z)

p (z) + h

}

. (4)

and from a simple calculation, it can be shown that

min
|z| = r
g ∈ K (β)

Re

{

1 +
zg′′ (z)

g′ (z)

}

= 1.

Thus, the radius of convexity of G (α, δ) is seen to be the smallest positive r for which

1 + min
|z| = r
p ∈ P

Re

{

zp′ (z)

p (z) + h

}

= 0. (5)
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2 Main Results

The following result is obtained using the above argument which is a result given by Silver-
man [7] and Daud and Shaharuddin [2].

Theorem 1. Suppose p(z) ∈ P, h is defined by (1) and

a =
1 + r2m

1 − r2m
.

Then

Re

{

zp′ (z)

p (z) + h

}

≥







− 2r
(1+r)[1+h−(1−h)r]

2
√

h2 + ah − a − 2h

(0 ≤ r ≤ rδ)
(rδ < r < 1) ,

where rδ is the unique root of the equation (1 − 2δ) r3 − 3 (1 − 2δ) r2 + 3r − 1 = 0 in the
interval (0, 1]. This result is sharp.

For the proof, refer to Silverman [7] when δ taken only positive values, whereas Daud
and Shaharuddin [2] completed it when δ taken any negative values.

Theorem 2. Suppose rδ is the unique root of t (r) = (1 − 2δ) r3−3 (1 − 2δ) r3 +3r−1
in the interval (0, 1]. Set

r (β, δ) =
1

(1 − 2δ) +
√

4δ2 − 6δ + 2
.

Then the radius of convexity of G (α, δ)is r (β, δ) when 0 < r (α, β) ≤ rδ, and is otherwise
the smallest root greater then rδ of the polynomial equation v (r) = (1 − 2δ) r4 + 2 δr2 − δ.
This result is sharp for all δ.

Proof. By applying Theorem 1 to (5), the radius of convexity of G (α, δ) is the smallest
positives root of







1 − 2r
(1+r)[(1+h)−(1−h)r] = 0 (0 ≤ r < rδ)

1 + 2
√

h2 + ah − a − 2h = 0 (rδ < r < 1)
(6)

where h is defined by (1). The first expression in (6) may be written as

− (1 − 2δ) r2 − 2 (1 − 2δ) r + 1

(1 + r) [(1 + h) − (1 − h) r]
= 0,

whose roots are

(1 − 2δ) ∓
√

(1 − 2δ)
2

+ (1 − 2δ)

− (1 − 2δ)
=

1

(1 − 2δ) ±
√

4δ2 − 6δ + 2
.

If both roots are positive, the minimum root is r (α, δ). Similarly, a computation shows that
r∗ is a root of the second expression in (6) if an only if it is a root of v (r). This completes
the proof.
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3 Further Results

We let Rcv [G (α, δ)] = sup
{

r : Re
[

1 + zf ′′(z)
f ′(z)

]

> 0, |z| = r, f ∈ G (α, δ)
}

be the radius of

convexity of G (α, δ). The estimation of the lower and upper bound of Rcv [G (α, δ)] is
obtained for a choice of an extreme point.

Theorem 3. Let A = cos α − δ.

(i) Rcv [G (α, δ)] ≥
(√

2 − 1
)

∣

∣

∣

∣

2(A+δ)A−1

A−
√

1−A(2δ+A)

∣

∣

∣

∣

,

(ii) If δ < 1
3 ,

Rcv [G (α, δ)] ≤
[

1 + 2

√

A

1 − 4δA

{√
A −

√

(A + δ) +
√

1 − 4δA

}

]

1/2

< 1. (7)

Proof. Let f ∈ G (α, δ). A theorem of Daud [1] gives us Ref ′ (z) ≥ 0 for

|z| <
A −

√

1 − A (2δ + A)

2 (A + δ)A − 1
.

Put λ =
A−

√
1−A(2δ+A)

2(A+δ)A−1 and let g (z) = f(λ(z))
λ ∈ G (0, 0). It is known from MacGregor[4]

that g is convex for |z| <
√

2 − 1. Thus f is convex if

|z| <

√
2 − 1

λ
=

(√
2 − 1

)

∣

∣

∣

∣

∣

2 (A + δ)A − 1

A −
√

1 − A (2δ + A)

∣

∣

∣

∣

∣

.

We consider an extreme point g (z) = −e−iα
(

e−iα − 2δ
)

z − 2e−iαA log (1 − z) of G (α, δ)
as in Daud [1]. Then

g′ (z) = −e−iα
(

e−iα − 2δ
)

+ 2e−iαA

(

1

1 − z

)

and

zg′ (z) = −e−iα
(

e−iα − 2δ
)

z + 2e−iαA

(

z

1 − z

)

.

So

g′ (z) + zg′′ (z) = (zg′ (z))
′
= −e−iα

(

e−iα − 2δ
)

+ 2e−iαA

(

1

1 − z

)2

and this expression is zero if and only if

z = 1 ±
√

1 +
ei2α

1 − 2δeiα
. (8)

These values are well defined since the condition δ < 1
3 implies 1 − 2δeiα 6= 0. Now

let ρ = ρ (α, δ) be the smallest of the modulii of these two roots. Then we must have
Rcv [G (α, δ)] ≤ ρ. To see this, we argue as follows. If g′ (z) = 0 for some z satisfying
|z| < ρ, then

1 +
zg′′ (z)

g′ (z)
(9)
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is not defined, and g is not convex on the disc |z| < ρ. If g′ (z) 6= 0 on the disc, then (9) is
zero on |z| = ρ and g is not convex on any larger disc.

To determine ρ, we first find Rez, Imz for the z in (9). If α = 0 or α = ±π, we have

ρ =

√

2 (1 − δ)

1 − 2δ
− 1 , ρ =

√

2 (1 + δ)

1 + 2δ
− 1

respectively, and these are the values given by (7). Assume now that cos α 6= 1. Let

ζ2 = 1 +
eiα

1 − 2δeiα

and put

ζ = x + iy , (x, y real).

We have

ei2α

1 − 2δeiα
=

cos 2α + i sin 2α

1 − 2δ (cos α + i sin α)
=

cos 2α− 2δ cos α + i (sin 2α− 2δ sinα)

1 − 4δ cos α + 4δ2

which gives

ζ2 = x2 − y2 + i2xy = 1 +
cos 2α − 2δ cos α

1 − 4δ cos α + 4δ2
+ i

sin 2α− 2δ sinα

1 − 4δ cosα + 4δ2

so that

x2 − y2 = 1 +
cos 2α− 2δ cosα

1 − 4δ cosα + 4δ2
=

2A (A − δ)

1 − 4Aδ
(10)

and

2xy =
sin 2α− 2δ sin α

1 − 4δ cosα + 4δ2
=

2A

√

1 − (A + δ)
2

1 − 4Aδ
. (11)

Thus

x2 −
A2

(

1 − (A + δ)
2
)

x2 (1 − 4Aδ)
2 =

2A (A − δ)

1 − 4Aδ

which we rewrite as

(1 − 4Aδ)
2
x4 − 2A (A − δ) (1 − 4Aδ)x2 − A2

(

1 − (A + δ)
2
)

= 0.

An elementary argument shows that 1 − 4Aδ > 0 when δ < 1
3 , and so

x2 =

2A (A − δ) (1 − 4Aδ) ±
√

(2A (A − δ) (1 − 4Aδ))2 + 4A2 (1 − 4Aδ)2
(

1 − (A + δ)2
)

2 (1 − 4Aδ)
2

=
A (A − δ) ± A

√
1 − 4Aδ

1 − 4Aδ
.
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The product of these roots is negative since |A + δ| = |cosα| < 1, and A− δ +
√

1 − 4Aδ is
positive since δ < 1

3
, so we must have

x2 =
A (A − δ) + A

√
1− 4Aδ

1 − 4Aδ

which gives

x = ±

√

A (A − δ) + A
√

1 − 4Aδ

1 − 4Aδ
. (12)

Substituting x in (11), we obtain

y = ±

√

√

√

√

A
(

1 − (A + δ)
2
)

(1 − 4Aδ)
(

(A − δ) +
√

1 − 4Aδ
) , (13)

and the possible values of ζ = x + iy are determined. It follows from (8) that

ρ = ρ (α, δ) =

√

(1 − x)
2
+ y2

where x and y are the positive alternatives in (12) and (13). Thus

|ρ|2 =





1 −
[

A (A − δ) + A
√

1 − 4Aδ
]

1
2

1 − 4Aδ





2

+
A

(

1 − (A + δ)2
)

(1 − 4Aδ)
[

(A − δ) +
√

1 − 4Aδ
]

= 1 + 2

[

A

1 − 4Aδ

]
1
2

[√
A −

(

A − δ +
√

1 − 4Aδ
)

1
2

]

as required. The expression in the second bracket is negative when δ < 1
3 , so we have ρ < 1.

This completes the proof.
We note that the restriction on δ in Theorem 3(ii) of the theorem is inevitable, since

the function g used in the proof to obtain upper bound for Rcv [G (α, δ)] is actually convex
in the case α = 0, δ = 1

2
. The following result is obtained by using a different choice ofg.

Theorem 4. Rcv [G (α, δ)] ≤
(

1
nA

)1/(n−1)
where n is the smallest integer satisfying

n ≥ 2, n > 1
A .This result is sharp.

The proof is immediate once we have proved

Lemma 5. The class G (α, δ) contains the function

g (z) = z +

(

A

n

)

zn (z ∈ D)

where n ≥ 2 is an integer, and the radius of the largest disc in which g is convex is

(

1

nA

)1/(n−1)

,
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where n > 1
A . This result is sharp. Proof of the lemma. Let g (z) = z +

(

A
n

)

zn (z ∈ D).

Then g′ (z) = 1 + Azn−1 and so

Re
[

eiαg′ (z)
]

= Re
[

eiα
(

1 + Azn−1
)]

= cosα + ARe
(

eiαzn−1
)

> cos α − A

= δ.

Hence g ∈ G (α, δ). Now g′′ (z) = (n − 1)Azn−2 which gives

1 +
zg′′ (z)

g′ (z)
= 1 +

z (n − 1)Azn−2

1 + Azn−1
= n +

1 − n

1 + Azn−1
.

So,

Re

[

1 +
zg′′ (z)

g′ (z)

]

> 0

if and only if

Re

[

n +
1 − n

1 + Azn−1

]

> 0,

and simplifying the above inequality , we have

(n − 1)
(

1 + ReAzn−1
)

< n
∣

∣1 + Azn−1
∣

∣

2
,

(n − 1) + (n − 1)ReAzn−1 < n
[

1 + 2ReAzn−1 +
∣

∣Azn−1
∣

∣

2
]

,

n
∣

∣Azn−1
∣

∣

2
+ (n + 1)ReAzn−1 + 1 > 0.

This inequality is true on |z| = ρ if and only if n
(

Aρn−1 − 1
)2 − (n + 1)Aρn−1 + 1 ≥ 0

or
(

nAρn−1 − 1
) (

Aρn−1 − 1
)

≥ 0, and when n > 1
A it follows that g is convex on |z| <

(

1
nA

)
1

(n−1) , but not on any larger disc.
Following Silverman and Silvia [6], we next consider polynomials of degree n in G (α, δ).

We find sufficient conditions in terms of α, δ, n for these to be convex. Theorem 6. Suppose

pn (z) = z +
∑n

k=2 ckzk is in G (α, δ). Then pn is convex if cos α ≤ 1
(n+2)(n−1)

+ δ. This

result is sharp.

Proof. Let f (z) = z +
∑n

k=2 ckzk. Then by a result of Kobori [4], f is convex if
∑α

k=2 k2 |ak| ≤ 1 for the pn in the statement. We have, using the result on coefficient
bound of G (α, δ) in Daud [1],

∑n

k=2
k2 |ck| ≤

∑n

k=2
2k (cos α − δ)

= 2

[

n (n − 1)

2
− 1

]

(cos α − δ)

≤ 1
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if cos α ≤ 1
(n+2)(n−1) + δ. This completes the proof of the theorem.

The function f1 (z) = z is a member of each of the classesG (α, δ). In fact f1 is the only
function with this property. To see that this is the case, suppose that some other function
g has the same property, so that g′ takes a valueλ 6= 1. Consider the line in the Argand
diagram containing λ and 1. Rotate this line about any point between λ and 1 so that
in its new position it contains neither of these points. The line now separates the plane
into two half planes, and one of these contains 1 but does not containλ. The plane can be
described as the collection of points w for which Reeiαw > δ and since w may be taken as
1, we havecos α > δ. For this α andδ, any function in G (α, δ) fails to take value λ, and so
is not in G (α, δ). This is the required contradiction.

Theorem 7. (i) Letε > 0, and let F∈ be the family of classes G (α, δ) for whichcosα ≥
δ + ε. Then ∩F∈ contains a function, which is not convex.

(ii) Let F0 be any family of classes G (α, δ) with the property that, for anyε > 0,
there exists a member G (α, δ) of F0 withcosα < δ + ε. Then ∩F0 contains only the
functionf1 (z) = z, (z ∈ D) .

As an immediate corollary to the theorem we have the following result that answers the
above question in the case of convexity.

Corollary 8. Let F be the intersection of any family of classesG (α, δ). Then either F
contains just the identity functionf1 (z) = z, or F contains a function which is not convex.

Part (i) of the theorem was proved by Silverman and Silvia [6] in the case|α| < π
2 −

ε, |α| ≤ π
2 . Our proof is rather more geometrical than theirs, using the following property

of any half plane Reeiαw > δ in the w-Argand diagram with|α| ≤ π, cos α > δ: the largest
radius of any circle centered at 1 whose interior is a subset of the half plane, is cosα > δ.

Proof of theorem.

(i) Let f (z) = z + λzn. A slight modification to the last part of proof of Lemma 5
shows that f is convex if and only if |λ| < 1

n2 . Choose n so that ε > 1
n

and then λ so that
1
n < nλ < ε. Then λ > 1

n2 and f is not convex. Alsof ′ (z) = 1 + nλzn−1, so that f ′ maps
D onto a circle centered at 1 and radiusε, and f ∈ G (α, δ) whenevercos α − δ > ε.

(ii) Suppose that ∩F0 contains a function g 6= f1, so that, by the open mapping theorem,
the interior of some disc centered at 1 is a subset of g′ (D). Let the radius of this disc be
d, and let G (α, δ) be a class in F0 for which cosα − δ < d. The derivative of any function
in G (α, δ) maps D into the half plane Reeiαw > δ and the radius of the largest circle,
centred at 1, inside this half plane, is cos α − δ. This implies g /∈ ∩F0, which contradicts
our assumption. So ∩F0 contains only f1.

4 Conclusion

This paper extends some of the results given by Silverman and Silvia [6] and Daud [1]
on bounds for Rcv [G (α, δ)], the radius of convexity of G (α, δ). Using the approach by
Silverman [7] and Goel and Mehrok [3], we extend the results when δtaken as any negative
values in Daud and Shaharuddin [2]. With this results, we emphasis on using the extreme
values function to look on the consideration of convexity and starlikeness of the class.
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