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Abstract Gronwall inequality based technique of Mattos Lopes [3] for frequency
domain and wavelet-Galerkin solution in scaling space of the standard parabolic prob-
lem has been developed and extended to analyze non standard Cauchy problem for
parabolic heat conduction.
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1 Introduction

In a number of industrial problems, one needs to find the surface temperature when the
surface itself is inaccessible for measurement. In such cases, on the basis of internal mea-
surement at a fixed location inside the body, the surface temperature is computed. The
situation can just be reverse, the problem is then called inverse one; the example can be of
determining temperature on both sides of a thick wall if one side is inaccessible to measure-
ment. The situation can be moduled as to determine the temperature u(x, t) ∈ L2(0,∞)
for 0 ≤ x < 1 from temperature measurement g(t) = u(1, t) ∈ L2(0,∞) at x = 1 such that
it satisfies







uxx = ut, 0 ≤ x < 1, t ≥ 0
u(x, 0) = 0, 0 ≥ x ≥ 1
u(1, t) = g(t), t ≥ 0, u|x→∞ bounded

(1)

Equation (1) is called the Sideways Heat Equation, and is an example of an ill-posed Cauchy
problem, i.e., solution u(x, t) if exists, does not depend continuously on the initial data: a
small disturbance in data may cause a dramatically large error in the solution u(x, t) for
0 ≤ x < 1. Extend u(x, t) and g(t) to the whole of t-axis by defining

u(x, t), g(t), F (t) = u(0, t) ∈ L2(R)

to be zero for t < 0. Ill-posedness of (1) is due to increasing of ĝε(ω) in the frequency domain
for noisy temperature gε(t), where gε ∈ L2(R) is the measured data with data error

‖g − gε‖ ≤ ε (2)

for some constant ε > 0.
Impose a priori bound on the solution at x = 0, i.e.,

‖u(0, t)‖ ≤M. (3)

The problem (1) has the stability in the sense that any two solutions u and û of (1) satisfies
[1]

‖u(x, t) − û(x, t)‖ ≤ 2M1−xεx, 0 ≤ x < 1.
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The problem (1) with conditions (2) and (3) was approximated for the first time by Reginska
[4] by multiscale analysis and wavelet techniques of measured data. For stability results and
optimal error estimates one can refer to Carasso [1], Elden at al. [2], and Seidman and Elden.
[5].

The frequency space solution û(x, ω) ∈ L2(R) of (1) is given by

û(x, ω) = e(1−x)
√

iω ĝ(ω), (4)

where
√
iω =

√

|ω| /2 is the principal square-root of iω. Alsof̂(ω) = û(0, ω) = e
√

iω ĝ(ω).

Since
√
iω tends to infinity as |ω| → ∞, the problem thus is ill-posed. Further, the

existence of the solution in L2(R) depends on fast decay of ĝε at high frequencies.
The solution u(x, t) to (1) is

u(x, t) =

∞
∫

−∞

eiωte(1−x)
√

iω ĝ(ω)dω. (5)

By Parseval formula,

‖u(x, t)‖2
= ‖û(x, ω)‖2

=

∞
∫

−∞

e(1−x)
√

2|ω| |ĝ(ω)|2 dω.

This shows the rapid decay of ĝ(ω) at high frequencies, i.e. as ω → ∞. “If the initial data
g(t) is noisy, the Fourier transform (Ft) ĝ(ω) will have high frequency components” (Vani
et al. [6]).

The Meyer scaling function ϕ and wavelet function ψ are well localized, i.e., they have
compact support in frequency (Ft) domain (and not in time-domain) and decay very fast.
“The orthogonal projections onto Meyer scaling (and wavelet) spaces can be considered as
low-pass filter, filtering off the high frequencies” [3]. In other words, “the high frequency
components, which normally present data error, are filtered away by expanding the data
function in wavelet basis” (Vani et al. [6]).

Another version of (1) as given in Mattos and Lopes[3], is

k(x)uxx(x, t) = ut(x, t), t ≥ 0, 0 ≤ x < 1 [0 < α ≤ k(x) <∞]
u(0, t) = g(t), ux(0, t) = 0

where k(x)is assumed to be smooth.
Literature finds yet another type of Cauchy problem in non standard parabolic equation

form [2]:
(k(x)ux(x, t))x = ut(x, t), t ≥ 0, 0 ≤ x < 1
u(0, t) = g(t), ux(0, t) = 0, u(x, 0) = 0.

where coefficient k(x) satisfies 0 < α ≤ k(x) <∞.2

2 Wavelet-Galerkin Solution of Non-Standard Parabolic Equations

Theorem 1. (Mattos and Lopes, [3], pp. 216-217) The operator Dj(x) defined by

[

(Dj)lk
(x)

]

l,k∈Z
=

[

1
k(x)

< ϕ′
jl, ϕjk >

]

l,k∈Z
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satisfies the following three conditions:

(i) (Dj)lk
= − (Dj)kl

, i.e., matrix (Dj) is skew symmetric

(ii) (Dj)lk
= (Dj)(l−k)0 , i.e., (Dj)lk

are equal along diagonals

(iii) ‖Dj(x)‖ ≤ π2j

k(x) .

The theorem below is a version of Gronwall inequality.
Theorem 2. (Mattos and Lopes, [3], pp. 215-216). Let u and v be positive continuous

functions, x ≥ a and c > 0. If

u(x) = c +

x
∫

a

s
∫

a

v(τ )u(τ )dτ ds.

then

u(x) ≤ c exp





x
∫

a

s
∫

a

v(τ ) dτ ds



 .

K

We state and prove the following theorem and find the solution of (9) in frequency domain
as well as in scaling spaces:

Theorem 3. Let W (x) be continuous functions, x ≥ 0, γ = W (0) > 0, and k′(x) is the
derivative of k(x). If

W (x) = γ +

x
∫

0

s
∫

0

[

l

k(τ )
W (τ ) − k′(τ )

k(τ )
W ′(τ )

]

dτ ds. (6)

then

W (x) ≤ γ exp

x
∫

0

s
∫

0

[

l
k(τ)

+ k′2(τ)
4k2(τ)

]

dτ ds. (7)

Proof. From (6),

W ′′ =
lW

k
− k′

k
W ′ ⇒ W ′′

W
+
k′

k

W ′

W
=
l

k
. (8)

Now
(

W ′

W

)′
= WW ′′−W ′2

W2 = W ′′

W
−

(

W ′

W

)2

implies

W ′′

W
=

(

W ′

W

)′
+

(

W ′

W

)2

.

Therefore,

W ′′

W
+
k′

k

W ′

W
=

(

W ′

W

)′
+

(

W ′

W

)2

+
k′

k

W ′

W
=

[

W ′

W
+

1

2k

]2

+

(

W ′

W

)′
− k′2

4k2
≥

(

W ′

W

)′
− k′2

4k2
.
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Thus, from (8),
(

W ′

W

)′
≤ l

k
+
k′2

4k2
.

This implies

W ′

W
≤

x
∫

0

[

l

k
+
k′2

4k2

]

dτ.

Integrating,

lnW (x) − lnγ ≤
x
∫

0

s
∫

0

[

l
k(τ) + k′2

4k2(τ)

]

dτds,

i.e., ln
W (x)

γ
≤

x
∫

0

s
∫

0

[

l

k(τ )
+

k′2

4k2(τ )

]

dτds .

This implies

W (x) ≤ γ exp

x
∫

0

s
∫

0

[

l

k(τ )
+

k′2

4k2(τ )

]

dτds. 2

Consider the following heat conduction problem






k(x)uxx(x, t) + k′ux(x, t)− ut(x, t) = 0, t ≥ 0, 0 ≤ x < 1
u(0, t) = g(t)
ux(0, t) = 0

(9)

for 0 < α ≤ k(x) ≤ β <∞, 0 < δ ≤ k′(x) ≤ ϑ <∞.

2.1 Solution of (9) in Frequency Domain







k(x)ûxx(x, ω) + k′(x)ûx − iω û(x, ω) = 0, ω ∈ R, 0 ≤ x < 1
û(0, ω) = ĝ(ω)
ûx(0, ω) = 0

(10)

û′′ = i
ω

k
û− 1

k
û′. (11)

û(x, ω) = ĝ(ω) +

x
∫

0

s
∫

0

[

iω
k(τ) û(τ, ω) − k′(τ)

k(τ)
d

dx
û(τ, ω)

]

dτ ds. (12)

Also from (12),

|û(x, ω)| ≤ |ĝ(ω)| +
x

∫

0

s
∫

0

∣

∣

∣i ω
k(τ) û(τ, ω) − k′(τ)

k(τ)
d
dx
û(τ, ω)

∣

∣

∣dτ ds.

From Theorem 3

|û(x, ω| ≤ |ĝ(ω)| exp





x
∫

0

s
∫

0

[

1
k(τ) |ω| +

k′2(τ)
4k2(τ)

]

dτ ds



 .
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2.2 Galerkin Solution in Scaling Spaces

Approximating solution of (9) in scaling spaces

< k(x)uxx + k′(x)ux − ut, ϕjk >= 0
< u(0, t), ϕjk >=< Pjg, ϕjk >
< ux(0, t), ϕjk >=< 0, ϕjk >, k ∈ Z

(13)

where ϕjk is the orthonormal basis of Vj given by the scaling function ϕ.

Let the approximate solution be uj(x, t) ∈ Vj be

uj(x, t) =
∑

l∈Z

Wl(x)ϕjl(t).

From (13)

< k(x)
∑

l∈z

W ′′
l (x)ϕjl(t) + k′(x)

∑

l∈Z

W ′
l (x)ϕjl −

∑

l∈z

Wl(x)ϕ
′
jl(t), ϕjk >= 0.

That is,

k(x)W ′′
k + k′(x)W ′

k(x) − ∑

Wl(x) < ϕ′
jl, ϕjk > = 0 or

d2Wk

dx2 + k′(x)
k(x) W

′
k(x) − 1

k(x)

∑

l

Wl(x) < ϕ′
jl, ϕjk > = 0

d2Wk

dx2 + k′(x)
k(x) W

′
k(x) − ∑

l

Wl(x) (Dj)lk
(x) = 0, k ∈ Z

That is we get infinite dimensional differential equation

d2W
dx2 + k′

k
dW
dx

−Dj(x)W = 0 with W (0) = γ, W ′(0) = 0, (14)

where γ = Pjg =
∑

z∈Z

γzϕjz =
∑

z∈Z

< g, ϕjz > ϕjz.

Solution of (2.9) is analogous to the solution of (13)

W (x) = γ +

x
∫

0

s
∫

0

[

Dj(τ )W (τ ) − k′(τ)
k(τ) W

′(τ )
]

dτ ds, (15)

‖W (x)‖ ≤ ‖γ‖ +

x
∫

0

s
∫

0

∥

∥

∥Dj(τ )W (τ ) − k′(τ)
k(τ) W

′(τ )
∥

∥

∥ dτ ds.

Thus, by Theorem 3 and using Theorem 1,

‖W (x)‖ ≤ ‖γ‖ exp

x
∫

0

s
∫

0

[

2−jπ
k(τ) + k′2(τ)

4k2(τ)

]

dτ ds. (16)
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3 Numerical Example

We consider the following test problem:

(x+ a)2uxx(x, t) + 2(x+ a)ux(x, t) − ut(x, t) = 0, t ≥ 0, 0 ≤ x < 1 (17)

where u(0, t) = g(t), ux(0, t) = 0.

By taking approximating solution uj(x, t) ∈ Vj of equation (17) in scaling spaces, we
get an infinite dimensional differential equation

d2W

dx2
+

2(x+ a)dW

(x+ a)2dx
− lW = 0

with W (0) = γ,W ′(0) = 0, l = 2−jπ,where j may large, and γ =
∑

z∈Z

〈g, ϕjz〉ϕjz.

Exact solution of the problem is

W (x) =
γ

α− β

[

αeβ log(x+a)

eβ log a
− βeα log(x+a)

eα log a

]

,

where

α =
−1 +

√
1 + 4l

2
and β

−1 −
√

1 + 4l

2
.

Wavelet Galerkin solution in scaling space is

‖W (x)‖ ≤ ‖γ‖ exp(l+ 1)
(x

a
− log(x+ a) + log a

)

.

Remarks: With increasing a and j = 10, the solution is found to be better. The values
of exact and approximate solution for a = 15, 20, 25 and j = 10 show that the errors
decreases as a increases. For j below and beyond 10 the bad result is obtained.

Table 1: Errors in the solution at the values of a = 25, j = 10

values Exact Solution Wavelet Galerkin Solution Error

0.1 1 1.00001 0.00001
0.2 1.00001 1.00004 0.00004

0.3 1.00001 1.00008 0.00008
0.4 1.00001 1.00013 0.00012

0.5 1 1.0002 0.0002
0.6 1.00001 1.00029 0.00028

0.7 1.00001 1.00039 0.00038
0.8 1 1.00051 0.00051

0.9 1.00001 1.00064 0.00063



Wavelet Solutions of Parabolic Equations 67

Figure 1: Graph of the solution at the values of a = 25, j = 10

Table 2: Errors in the solutions at the values a = 20, j = 10

Values Exact Solution Wavelet Galerkin Solution Error

0.1 1 1.00001 0.00001
0.2 0.99999 1.00005 0.00004

0.3 1.00003 1.00011 0.00008
0.4 1 1.0002 0.0002

0.5 0.99998 1.00031 0.00033
0.6 1.00001 1.00044 0.00043

0.7 1 1.0006 0.0006
0.8 1 1.00078 0.00078
0.9 1 1.00098 0.00098
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Figure 2: Graph of the solutions at the values a = 20, j = 10

Table 3: Errors in the solutions at the values a = 15, j = 10

Values Exact Solution Wavelet Galerkin Solution Error

0.1 0.99999 1.00003 0.00004
0.2 0.99999 1.00008 0.00009

0.3 0.99999 1.0002 0.00021
0.4 1 1.00035 0.00035

0.5 1 1.00054 0.00054
0.6 1 1.00078 0.00078

0.7 1 1.00106 0.00106
0.8 1 1.00138 0.00138
0.9 1 1.00174 0.00174
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Figure 3: Graph of the solutions at the values a = 15, j = 10

4 Conclusion

Wavelet-Galerkin method is one of the important and effective tools applied recent days in
obtaining solutions of standard parabolic heat conduction problems. So far, we extended
the Gronwall inequality technique of Mattos and Lopes, [3] and applied to non-standard
Cauchy problem for parabolic heat conduction. For k > 0, as in the statement, the above
extended technique has far reaching consequence for interval 0 ≤ x < 1 of existence. A
comparable solution to that of exact solution can easily be obtained for certain large values
of j.

References

[1] A. Carasso, Determining Surface Temperatures from Interior Observations, SIAM J.
Appl. Math. 42 (1982), 558-574.

[2] L. Elden, F. Berntsson and T. Regniska, Wavelet and Fourier Methods for Solving the

Sideways Heat Equation, SIAM J. Sci. Comput. 21 (2000), 2187-2205.

[3] J. R. L. Mattos and E.P. Lopes, A Wavelet Galerkin Methods Applied to Partial Dif-

ferential Equation with Variable Coefficients, EJDE / Conf / 10, 2003, 211-225.

[4] T. Reginska, Sideways Heat Equation and Wavelets, Journal of Computational and
Applied Mathematics 63 (1995), 209-204.

[5] T. Seidman and L. Elden, An Optimal Filtering Method by Sideways Heat Equation by

Difference Approximation in Time, Inverse Problems 11 (1995), 913-923.

[6] C. Vani and A. Ayudainayagam, Regularized Solution of the Cauchy Problem for the

Laplace Equation using Meyer Wavelets, Mathematical and Computer Modeling 36
(2002), 1151-1159.


