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Abstract Zadeh’s extension principle is one of the most fundamental principles in

fuzzy set theory. It provides a powerful technique in order to extend a real continuous

function to a function accepting fuzzy sets as arguments. If the function is monotone,

then the endpoints of the output can be determined quite easily. However, the difficulty

arises when the function is non-monotone. In that case, the computation of the output

is not an easy task. The purpose of this paper is to provide a new method to reduce this

difficulty. The method is based on the implementation of optimisation technique over

the α-cuts of fuzzy set. By doing so, the endpoints of the output can be approximated.

The method proposed in this paper is easy to implement and can be applied to many

practical applications. Several examples are given to illustrate the effectiveness of the

proposed method.

Keywords Continuous Function, Fuzzy Set, Optimisation, Zadeh’s Extension Prin-

ciple.

1 Introduction

Fuzzy set theory was formalised by Zadeh in his paper work entitled “Fuzzy Sets” [15].
Since its introduction in 1965, the theory of fuzzy sets has been deeply developed and it
has influenced in many fields of application. One of the most important tools in fuzzy set
theory is Zadeh’s extension principle. It enables to extend any real continuous function to a
function accepting fuzzy set as its arguments. If the function is monotone then the extend-
ing process is straightforward, i.e. by computing the endpoints of the α-cuts. However, if
the function is non-monotone, then the extending process becomes more complicated. This
is because the function values at the endpoints of the α-cuts are not the correct endpoints
of the output.

There are several methods proposed in the literature to compute real continuous function
accepting fuzzy sets as its arguments. For example, fuzzy arithmetic based on LR-fuzzy
numbers [4] and interval arithmetic [6]. The latter method, however, shows a serious prob-
lem since it has overestimation in computation. This is because the same fuzzy set in fuzzy
arithmetic is computed separately even it occurs multiple times in a single expression. In
order to avoid this problem, Dong and Wong [3] have proposed a new method called fuzzy
weighted average. However, the proposed method is only applicable for monotone func-
tions. For non-monotone functions, the method has been extended by Wood et al. [14],
which consists an additional method to locate extreme points. Usually, the extreme points
of non-monotone functions are obtained by either analytically or numerically, depending on
the functions under consideration. However, in general, this is not an easy task as well. It
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requires a global optimisation technique. Until now, there is no efficient method to solve
global optimisation with low computational complexity. Klir [7] have suggested a differ-
ent approach to reduce overestimation in the standard fuzzy arithmetic. He proposed a
theoretical framework called constrained fuzzy arithmetic, which takes into account the de-
pendencies problem among fuzzy sets. Some new techniques can be found in the literature
such as the transformation method [5], the L-U representation [12] and the spline approxi-
mation method [2]. However, these proposed methods increased computational complexity
when applied to non-monotone functions as well. To overcome these problems, a new high
accuracy technique with low computational complexity need to be investigated.

This paper is organised as follows: in Section 2, we recall some basic definitions and theo-
retical background we need throughout this paper. In Section 3, we present a new strategy
for computing Zadeh’s extension principle, which is the main contribution in this paper.
In Section 4, several examples are given to show the capability of our proposed method.
Finally, it is followed by a conclusion in Section 5.

2 Preliminaries

In the following, we recall some basic definitions and theoretical background we need
throughout this paper.

2.1 Basic notion of fuzzy sets

Definition 1. Let S be a nonempty set called universe. A fuzzy set U in S is a function

from the universe S to the unit interval [0, 1] that maps an element s to U(s)

U : S → [0, 1] , (1)

where U(s) is the degree of membership of s in U . The nearer the value of U(s) to 1, the

higher the degree of membership of s in U . In contrast, the nearer the value of U(s) to 0,
the lower the degree of membership of s in U .

Definition 2. Let U be a fuzzy set defined on R. The support of U is the crisp set of all

points on R such that the degree of membership of U is non-zero, that is

supp(U) = {s ∈ R | U(s) > 0} .

Definition 3. Let U be a fuzzy set defined on R. The core of U is the crisp set of all points

on R such that the degree of membership of U is 1, that is

core(U) = {s ∈ R | U(s) = 1} .

Definition 4. Let U be a fuzzy set on R. U is called a fuzzy interval if:

(i) U is normal: there exists s0 ∈ R such that U(s0) = 1;

(ii) U is convex: for all s, t ∈ R and 0 ≤ λ ≤ 1, it holds that

U(λs + (1 − λ)t) ≥ min (U(s), U(t)) ;
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(iii) U is upper semi-continuous: for any s0 ∈ R, it holds that

U(s0) ≥ lim
s→s±

0

U(s);

(iv) [U ]0 = {s ∈ R | U(s) > 0} is a compact subset of R.

The α-cut of a fuzzy interval U , with 0 < α ≤ 1 is the crisp set

[U ]α = {s ∈ R | U(s) ≥ α} .

For a fuzzy interval U , its α-cuts are closed intervals in R. Let denote them by

[U ]α = [uα
1 , uα

2 ] .

Definition 5. A fuzzy interval U is called a triangular fuzzy interval if its membership

function has the following form:

U(s) =



















0 , if s < a ,
s−a
b−a

, if a ≤ s ≤ b ,
c−s
c−b

, if b ≤ s ≤ c ,

0 , if s > c ,

and its α-cuts are simply [U ]α = [a + α(b − a), c − α(c − b)], α ∈ (0, 1].

In this paper, the set of all fuzzy intervals is denoted by F(R).
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Figure 1: Triangular fuzzy interval U(0, 1, 2).

2.2 Fuzzy interval arithmetic

Consider two fuzzy intervals U and V . The fuzzy intervals U and V can be decomposed
into the sets of intervals I1 and I2, respectively with

I1 =
{

[uα1

1 , uα1

2 ], [uα2

1 , uα2

2 ], ..., [u
αj

1 , u
αj

2 ], ..., [uαn

1 , uαn

2 ]
}

, j = 1, 2, ..., n , (2)
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I2 =
{

[vα1

1 , vα1

2 ], [vα2

1 , vα2

2 ], ..., [v
αj

1 , v
αj

2 ], ..., [vαn

1 , vαn

2 ]
}

, j = 1, 2, ..., n . (3)

The basic arithmetic operations of U and V can be defined by applying interval arithmetic
[9] seperately to each αj, j = 1, 2, ..., n, in the following ways:

(i) Addition : [U + V ]αj = [u
αj

1 + v
αj

1 , u
αj

2 + v
αj

2 ],

(ii) Subtraction : [U − V ]αj = [u
αj

1 − v
αj

2 , u
αj

2 − v
αj

1 ],

(iii) Multiplication : [U × V ]αj = [c
αj

1 , c
αj

2 ], where

c
αj

1 = min
(

u
αj

1 v
αj

1 , u
αj

1 v
αj

2 , u
αj

2 v
αj

1 , u
αj

2 v
αj

2

)

,

c
αj

2 = max
(

u
αj

1 v
αj

1 , u
αj

1 v
αj

2 , u
αj

2 v
αj

1 , u
αj

2 v
αj

2

)

.

(iv) Division :
[

U
V

]αj
= [d

αj

1 , d
αj

2 ], with 0 /∈ [V ]0, where

d
αj

1 = min

(

u
αj

1

v
αj

2

,
u

αj

1

v
αj

1

,
u

αj

2

v
αj

2

,
u

αj

2

v
αj

1

)

,

d
αj

2 = max

(

u
αj

1

v
αj

2

,
u

αj

1

v
αj

1

,
u

αj

2

v
αj

2

,
u

αj

2

v
αj

1

)

.

2.3 Zadeh’s extension principle

In [15], Zadeh proposed the so-called extension principle which becomes an important tool
in fuzzy set theory and its applications. The principal idea of Zadeh’s extension principle
is that each function f : X → Y induces another function f̂ : F(X) → F(Y ) defined for
each fuzzy interval U in X by

f̂(U)(y) =







sup
x∈f−1(y)

U(x) , if y ∈ range(f) ,

0 , if y /∈ range(f) .
(4)

In this case, the function f̂ is said to be obtained from f by Zadeh’s extension principle. In
general, the computation of f̂ is not an easy task. An exception occurs when f is monotone.
For example, if f : R → R defined by

f(x) = ex ,

and the fuzzy interval U defined by

U(x) =



















0 , if x < 0 ,

x , if 0 ≤ x ≤ 1 ,

−x + 2 , if 1 ≤ x ≤ 2 ,

0 , if x > 2 ,

(5)
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then we can easily obtain f̂ : F(R) → F(R) as follow:

f̂(U)(y) =



















0 , if y < 1 ,

log(y) , if 1 ≤ y ≤ e1 ,

− log(y) + 2 , if e1 ≤ y ≤ e2 ,

0 , if y > e2 .

(6)

Furthermore, in [11] if f : R → R is a real continuous function, then f̂ : F(R) → F(R) is
well-defined function and

[f̂(U)]α = f([U ]α), ∀α ∈ [0, 1], U ∈ F(R) , (7)

where f([U ]α) = {f(x) | x ∈ [U ]α}. Consequently, if U is a fuzzy interval with the closure
of its support is [U ]0 = [u1, u2] and f is a real continuous function, then we have that

[

f̂(U)
]0

=

[

min
x∈[u1,u2]

f(x), max
x∈[u1,u2]

f(x)

]

. (8)

Therefore, in order to find the endpoints of (8), we need optimisation technique.

Definition 6. Let f : R → R be a real continuous function defined on [u1, u2]. An opti-

misation problem is concerned with finding the minimum and maximum values of f on the

interval [u1, u2].

If the problem seeks a minimum value for f on the interval [u1, u2], then the problem is
simply called a minimisation problem and is denoted by

bmin = min
x∈[u1,u2]

f(x) . (9)

If the problem seeks a maximum value for f on the interval [u1, u2], then the problem is
simply called a maximisation problem and is denoted by

bmax = max
x∈[u1,u2]

f(x) . (10)

Definition 7. Let f : R → R be a real continuous function defined on [u1, u2]. We say that

(i) f attains a global minimum at xmin if f(xmin) ≤ f(x) for all x ∈ [u1, u2] ,

(ii) f attains a global maximum at xmax if f(xmax) ≥ f(x) for all x ∈ [u1, u2] .

Theorem 1. Let f : R → R be a real continuous function defined on [u1, u2]. Define the

function −f : R → R so that its value for any point x ∈ [u1, u2] is −f. Then

(i) xmin is a global minimum of f on the interval [u1, u2] if and only if it is a global

maximum of −f on the interval [u1, u2] ,

(ii) xmax is a global maximum of f on the interval [u1, u2] if and only if it is a global

minimum of −f on the interval [u1, u2] .

Proof. See [13].
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3 α-Discretisation and Interval Partitioning

Let U be a fuzzy interval and its α-cuts are denoted by [U ]α = [uα
1 , uα

2 ]. First, we discretise
α ∈ [0, 1] up to n points. These points are equally spaced, that is the points spacing is
h = 1/n. After discretisation, we have a set of α as follows:

α = {α1, α2, ..., αi−1, αi, αi+1, ..., αn−1, αn} , (11)

where α1 = 0, αn = 1 and i = 2, ..., n− 1. From (11), we have the following set of α-cuts:

I = {[U ]α1, [U ]α2, ..., [U ]αi−1, [U ]αi, [U ]αi+1, ..., [U ]αn−1, [U ]αn} . (12)

For the different α-cuts of U the following property holds [8]:

[U ]α1 ⊇ [U ]α2 ⊇ ... ⊇ [U ]αi−1 ⊇ [U ]αi ⊇ [U ]αi+1 ⊇ ... ⊇ [U ]αn−1 ⊇ [U ]αn , (13)

for i = 2, ..., n− 1. From (13), it is clear that one α-cut includes another α-cut. So, the
diameter of the α-cuts becomes smaller and smaller, and finally converges to a single point
as α approaches to 1. In contrary, the diameter of the α-cuts becomes wider and wider as
α approaches to 0 (see Fig. 2).

a
αi−1

1 aαi

1 a
αi+1

1 a
αi+1

2 aαi

2 a
αi−1

2

...
αi+1

αi

αi−1...
α1 = 0

αn = 1

x

U(x)

Figure 2: α-discretisation and interval partitioning.
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Since one α-cut includes another α-cut, [U ]α can be constructed as follows:

[U ]αn = [uαn] , (14)

[U ]αn−1 = [u
αn−1

1 , uαn ] ∪ [uαn , u
αn−1

2 ] , (15)

...

[U ]αi+1 = [u
αi+1

1 , u
αi+2

1 ] ∪ [u
αi+2

1 , u
αi+2

2 ] ∪ [u
αi+2

2 , u
αi+1

2 ] , (16)

[U ]αi = [uαi

1 , u
αi+1

1 ] ∪ [u
αi+1

1 , u
αi+1

2 ] ∪ [u
αi+1

2 , uαi

2 ] , (17)

[U ]αi−1 = [u
αi−1

1 , uαi

1 ] ∪ [uαi

1 , uαi

2 ] ∪ [uαi

2 , u
αi−1

2 ] , (18)

...

[U ]α2 = [uα2

1 , uα3

1 ] ∪ [uα3

1 , uα3

2 ] ∪ [uα3

2 , uα2

2 ] , (19)

[U ]α1 = [uα1

1 , uα2

1 ] ∪ [uα2

1 , uα2

2 ] ∪ [uα2

2 , uα1

2 ] , (20)

for i = 2, 3, ..., n − 1. Let f : R → R be a real continuous function. Given a fuzzy
interval U in R and we want to find a fuzzy interval B = f(U) that is induced by f . From
α-discretisation and interval partitioning of the α-cuts (see Eqs. (14)–(20)), we can find
B = f(U) as follows:

bαn = f(uαn) , (21)

b
αn−1

1 = min

(

min
x∈[u

αn−1

1
,uαn ]

f(x), min
x∈[uαn ,u

αn−1

2
]
f(x)

)

, (22)

...

b
αi+1

1 = min

(

min
x∈[u

αi+1

1
,u

αi+2

1
]
f(x), min

x∈[u
αi+2

1
,u

αi+2

2
]
f(x), min

x∈[u
αi+2

2
,u

αi+1

2
]
f(x)

)

, (23)

bαi

1 = min

(

min
x∈[u

αi
1

,u
αi+1

1
]
f(x), min

x∈[u
αi+1

1
,u

αi+1

2
]
f(x), min

x∈[u
αi+1

2
,u

αi
2

]
f(x)

)

, (24)

b
αi−1

1 = min

(

min
x∈[u

αi−1

1
,u

αi
1

]
f(x), min

x∈[u
αi
1

,u
αi
2

]
f(x), min

x∈[u
αi
2

,u
αi−1

2
]
f(x)

)

, (25)

...

bα2

1 = min

(

min
x∈[u

α2
1

,u
α3
1

]
f(x), min

x∈[u
α3
1

,u
α3
2

]
f(x), min

x∈[u
α3
2

,u
α2
2

]
f(x)

)

, (26)

bα1

1 = min

(

min
x∈[u

α1
1

,u
α2
1

]
f(x), min

x∈[u
α2
1

,u
α2
2

]
f(x), min

x∈[u
α2
2

,u
α1
2

]
f(x)

)

, (27)
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and,

b
αn−1

2 = max

(

max
x∈[u

αn−1

1
,uαn ]

f(x), max
x∈[uαn ,u

αn−1

2
]
f(x)

)

, (28)

...

b
αi+1

2 = max

(

max
x∈[u

αi+1

1
,u

αi+2

1
]
f(x), max

x∈[u
αi+2

1
,u

αi+2

2
]
f(x), max

x∈[u
αi+2

2
,u

αi+1

2
]
f(x)

)

, (29)

bαi

2 = max

(

max
x∈[u

αi
1

,u
αi+1

1
]
f(x), max

x∈[u
αi+1

1
,u

αi+1

2
]
f(x), max

x∈[u
αi+1

2
,u

αi
2

]
f(x)

)

, (30)

b
αi−1

2 = max

(

max
x∈[u

αi−1

1
,u

αi
1

]
f(x), max

x∈[u
αi
1

,u
αi
2

]
f(x), max

x∈[u
αi
2

,u
αi−1

2
]
f(x)

)

, (31)

...

bα2

2 = max

(

max
x∈[u

α2
1

,u
α3
1

]
f(x), max

x∈[u
α3
1

,u
α3
2

]
f(x), max

x∈[u
α3
2

,u
α2
2

]
f(x)

)

, (32)

bα1

2 = max

(

max
x∈[u

α1
1

,u
α2
1

]
f(x), max

x∈[u
α2
1

,u
α2
2

]
f(x), max

x∈[u
α2
2

,u
α1
2

]
f(x)

)

, (33)

where bαi

1 and bαi

2 are the lower and upper bound of the fuzzy interval B, respectively.

The optimisation problems above will be performed by using Brent’s method [1]. The
idea of Brent’s method is to find the minimum of a parabola through three points. If the
function to be minimised is nicely parabolic near to the minimum, then the parabola fitted
through any three points in a single leap to the minimum. In the worst possible case, where
the parabolic interpolation is acceptable but useless, then the method will approximately
alternate between parabolic interpolation and golden section search [10]. However, in case
where the function is monotonically increasing or decreasing, then the minimum is obtained
at the endpoints of interval without using Brent’s method. To find the maximum, we refer
to the Theorem 1. Please note that the global minimum and global maximum are only
obtained at α1 and they are denoted by bα1

1 and bα1

2 , respectively.

4 Examples

In this section, we implement the proposed method to compute Zadeh’s extension principle
for some real continuous functions.
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Example 1.

We consider the following triangular fuzzy interval U defined by

U(x) =



















0 , if x < 0 ,
2
3x , if 0 ≤ x ≤ 3

2 ,

−2
3x + 2 , if 3

2 ≤ x ≤ 3 ,

0 , if x > 3 .

(34)

The α-cuts of U are given by

[U ]
α

=

[

3

2
α, 3− 3

2
α

]

. (35)

We take the function f : R → R defined by

f(x) = (x − 1)2 , (36)

and we want to find f̂(U) = (U − 1)2. Since f is non-monotone, then the function values
at the endpoints of the α-cuts are not the correct endpoints of the output. From calculus,
this function has a minimum point at x = 1. So, the correct range of f̂(U) is defined on
the interval [0, 4]. From Zadeh’s extension principle, the analytical solution is given by

f̂(U)(y) =































0 , if y < 0 ,

max
(

−2
3

√
y + 2

3 , 2
3

√
y + 2

3

)

, if 0 ≤ y ≤ 1
4 ,

max
(

−2
3

√
y + 2

3 ,−2
3

√
y + 4

3

)

, if 1
4 ≤ y ≤ 1 ,

−2
3

√
y + 4

3 , if 1 ≤ y ≤ 4 ,

0 , if y > 4 .

(37)

The graphs of U , f(x) and f̂(U) are depicted in Figures 3(a), 3(b) and 3(c), respectively.
In Figure‘3(c) we compare the analytical solution with the approximation solution obtained
by using the method proposed in this paper. We observe that they are equal. In term of
computational complexity, the proposed method requires only 61 function evaluations with
n = 11.

Example 2.

We consider the following triangular fuzzy interval U defined by

U(x) =



















0 , if x < 3
4
π ,

4
3π

x − 1 , if 3
4
π ≤ x ≤ 3

2
π ,

− 4
3π

x + 3 , if 3
2π ≤ x ≤ 9

4π ,

0 , if x > 9
4π .

(38)

The α-cuts of U are given by

[U ]
α

=

[

3π

4
α +

3π

4
,−3π

4
α +

9π

4

]

. (39)
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Figure 3: (a) Fuzzy interval U ; (b) Function handle; and (c) Comparison between analytical
solution (solid line) and its approximation (circle mark).

We take the function f : R → R defined by

f(x) = cos(x) (40)

and we want to find f̂(U) = cos(U). The cosine function is periodic with a period of 2π.
In this example, we consider the cosine function defined on the interval [ 34π, 9

4π]. We know
that this function has two extremum points, namely at x = π and x = 2π. So, the correct

range of f̂(U) is defined on the interval [−1, 1]. Using the technique proposed in Section 3,

we obtain the approximation of f̂(U), which is closely equal to the analytical solution. As
in Example 1, the total number of function evaluations required in this example is 61 as
well with n = 11. The analytical solution is given as follow:

f̂(U )(y) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

0 , if y < −1 ,

max
`

4

3π
cos−1(y) − 1, 4

3π
(2π − cos−1(y)) − 1

´

, if −1 ≤ y ≤ − 1
√

2
,

4

3π

(2π − cos−1(y)) − 1 , if − 1
√

2
≤ y ≤ 0 ,

− 4

3π
(2π − cos−1(y)) + 3 , if 0 ≤ y ≤ 1

√

2
,

max
`

− 4

3π
(2π − cos−1(y)) + 3,− 4

3π
(2π + cos−1(y)) + 3

´

, if 1
√

2
≤ y ≤ 1 ,

0 , if y > 1 .

(41)

The graphs of U , f(x) and f̂(U) are depicted in Figures 4(a), 4(b) and 4(c), respectively.

5 Conclusion

The method presented in this paper greatly improves the solution technique for the com-
putation of functions that take fuzzy sets as their arguments. The convexity of the solution
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Figure 4: (a) Fuzzy interval U ; (b) Function handle; and (c) Comparison between analytical
solution (solid line) and its approximation (circle mark).

is also ensured. Furthermore, it is computationally easy to implement and requires only
a few function evaluations at every level of α. The proposed method can also be used in
order to solve hard global optimisation problems. In the future, the proposed method will
be incorporated into classical numerical methods for solving fuzzy differential equations.
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