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Abstract In this paper, we introduce quaternion-valued wavelets in the context of
the duplex matrix-valued function. We then formulate quaternion scaling and wavelet
functions using quaternion multiresolution analysis (QMRA). With these formulations,
we obtain coefficients of highpass and lowpass filters of QMRA.
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1 Introduction

The concept of matrix-valued wavelets has been recently introduced by [1, 3] by utilizing
the theory of paraunitary marix filterbanks. Matix-valued wavelets have applications such
as video images, multispectral images and color images.

Recently, the concept of generalizing classical wavelets to quantum algebra has gained
lot of popularity. He and Zhao [11, 12] constructed the continuous quaternion wavelet
transform of quaternion-valued function. They also demonstrated a number of properties
of these extended wavelets using the classical Fourier transform (FT). In [2], Traversoni
proposed the discrete quaternion wavelet transform using the quaternionic Fourier transform
and latter these were applied by Corrochano [8] and Zhou et al. [9].

The purpose of this paper is to construct discrete quaternion wavelet transform based
on the complex duplex matrix-valued function. The Fourier transform in a duplex complex
matrix introduced in this paper is not the same with that in matrix-valued function of [?],
which presents a difference for the design of filters.

2 Basics

The quaternion algebra [10] was first invented by Sir Hamilton in 1843 and is denoted by
H in his honor. It is an extension of complex numbers to a four-dimensional (4-D) algebra.
Every element of H is a linear combination of a real scalar and three imaginary units i, j,
and k with real coefficients

H = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R}, (1)

which obey Hamilton’s multiplication rules

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1. (2)

Because H is according to (2) non-commutative, one cannot directly extend various
results on complex numbers to quaternions. For simplicity, we express a quaternion q as
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sum of a scalar q0 , and a pure 3D quaternion q,

q = q0 + q = q0 + iq1 + jq2 + kq3, (3)

where the scalar part q0 is also denoted by Sc(q). The conjugate of a quaternion q is
obtained by changing the sign of the pure part, i. e.

q̄ = q0 − q = q0 − q1i − q2j − q3k. (4)

The quaternion conjugation (4) is a linear anti-involution

p = p, p + q = p + q, pq = q p, ∀p, q ∈ H. (5)

Using (2) the multiplication of the two quaternions q = qo + q and p = po + p can be
expressed as

qp = q0p0 + q · p + q0p + p0q + q × p, (6)

where we recognize the scalar product q ·p = −(q1p1 + q2p2 + q3p3) and the antisymmetric
cross type product q × p = i(q2p3 − q3p2) + j(q3p1 − q1p3) + k(q1p2 − q2p1). The scalar
part of the product is

Sc(qp) = q0p0 + q · p, (7)

and the pure part is
q0p + p0q + q × p. (8)

In particular, if both q and p are pure quaternions, (6) reduces to

qp = q · p + q × p. (9)

According to (6), the multiplication of a quaternion q and its conjugate can be expressed
as

qq̄ = q0q0 − q · q + q0(−q) + q0q + q × (−q)

= q2
o + q2

1 + q2
2 + q2

3 . (10)

This leads to the modulus |q| of a quaternion q defined as

|q| =
√

qq̄ =
√

q2
o + q2

1 + q2
2 + q2

3 . (11)

Using the conjugate (4) and the modulus of q, we can define the inverse of q ∈ H \ {0}
as

q−1 =
q̄

|q|2 (12)

which shows that H is a normed division algebra. Furthermore, we get |q−1| = |q|−1. It is
straightforward to see that, with (5) and (11), the following modulus properties hold

|pq| = |p||q|, |p| = |p|, ∀p, q ∈ H. (13)

Note that the unit orthogonal imaginary units i, j, and k in (2) can be represented
using Pauli spin matrices
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i = iσ1 =

(

0 i

i 0

)

, j = −iσ2 =

(

0 −1
1 0

)

, k = iσ3 =

(

i 0
0 −i

)

(14)

where σ1, σ2, and σ3 are the usual Pauli matrices and i is the complex unit imaginary. It
means that quaternions can be represented as

q =

(

q0 + iq3 iq1 − q2

iq1 + q2 q0 − iq3

)

. (15)

It is convenient to introduce the inner product of two quaternion functions, f, g : R
2 −→

H, as follows:

(f, g)L2(R2;H) =

∫

R2

f(x)g(x) d2x. (16)

In particular, if f = g, then we obtain the associated norm

‖f‖L2(R2;H) = (f, f)
1/2
L2(R2;H) =

(
∫

R2

|f(x)|2 d2x

)1/2

. (17)

The quaternion module L2(R2; H) is then defined as

L2(R2; H) = {f : R
2 −→ H, ‖f‖L2(R2;H) < ∞}. (18)

3 Quaternion-Valued Multiresolution Analysis

Before we give the definition for biorthogonal quaternion-valued wavelets, we introduce
quaternion-valued multiresolution analysis (QMRA). Let

L2(R, C2×2) =

{

f(x) =

(

f1(x) −f̄2(x)
f2(x) f̄1(x)

)

: x ∈ R, fk ∈ L2(R; C), k, l = 1, 2

}

, (19)

denotes the space of quaternion matrix-valued functions defined on R with values in C2×2.

The matrix Fourier transform f on R is defined by

f̂(ω) =

∫

R

f(x)D(e−iωx, eiωx) dx, (20)

where D(e−ikω, eikω) is a 2x2 diagonal matrix. The inverse of the above matrix Fourier
transform is given by

f(x) =
1

2π

∫

R

f̂(ω)D(eiωx, e−ωx) dω, (21)

By inserting (20) to (19) we easily obtain

f̂(ω) =

(

f1(x)e−iωx dx −f̄2(x)eiωx dx

f2(x)e−iωx dx f̄1(x)eiωx dx

)

=

(

f̂1(ω) − ¯̂
f2(ω)

f̂2(ω)
¯̂
f1(ω)

)

. (22)
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Definition 1 A quaternion-valued multiresolution analysis (QMRA) is the decomposition
of the space L2(R, C2×2) into a chain of closed subspaces V j called scaling spaces

. . . ⊂ V −2 ⊂ V −1 ⊂ V 0 ⊂ V 1 ⊂ V 2 . . .

such that the following four axioms are satisfied:

Axiom 1 (completeness)

⋃

j∈Z

V j = lim
j→∞

V j = L2(R, C2×2),
⋂

j∈Z

V j = lim
j→−∞

V j = {02}.

Axiom 1 means that the space L2(R) is the closure of the union of all V j and the intersection
of all V j is empty.

Axiom 2 (scale invariance)

f(x) ∈ V j ⇔ f(2x) ∈ V j+1, j ∈ Z.

Axiom 3 (translation invariance)

f(x) ∈ V 0 ⇔ f(x − k) ∈ V 0, ∀k ∈ Z.

Axiom 4 (translation invariant basis) There exists a function Φ(x) ∈ V 0 such that

{Φ(x − k), k ∈ Z}

is an orthonormal basis in V 0. The function Φ(x) is called the quaternion scaling function
in QMRA. Orthonormality means that

∫

R

Φ(x − k1)Φ(x − k2) dx = δk1,k2
I2, ∀k1, k2 ∈ Z, (23)

where δk1,k2
is the Kronecker delta and I2 is 2 × 2 identity matrix .

Since V 0 ⊂ V 1, any function in V 0 can be expanded in terms of the basis functions
Φ1,k =

√
2Φ(2x − k) of V 1. In particular, the scaling function Φ ∈ V0 can be expanded in

terms of {Φ1,k} as

Φ(x) =
√

2
∑

k

HkΦ(2x − k), (24)

where Hk are all 2 × 2 constant matrices. Equation (24) is called a quaternion dilation
equation and Φ(x) is quaternion scaling functions.

Proposition 1 The scaling coefficients {Hk} of the quaternion dilation equation (24) sat-
isfy the normality condition, i.e.

∑

k

HkHk−2l = I2δ0l, ∀ l ∈ Z. (25)
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Proof. Notice first that by repeated applications of (24) we have

Φ(x)Φ(x − l) =
√

2
∑

k

HkΦ(2x − k)Φ(x − l)

= 2
∑

k

HkΦ(2x− k)
∑

m

HmΦ(2x − 2l − m). (26)

By integrating both sides of (26) with respect to x we get

I2δ0l = 2
∑

k

Hk

(

∑

m

1

2

∫

R

Φ(2x − k)Φ(2x − 2l − m) d(2x)Hm

)

=
∑

k

∑

m

HkI2δk,2l+mHm

=
∑

k

HkHk−2l. (27)

The last line is obtained by taking m = k − 2l. This completes the proof of (25). 2

As an easy consequence of Proposition 1, we obtain

∑

k

H2
k = I2, and

∑

k

HkHk−2l = 02 for l ∈ Z \ {0}. (28)

Similarly, according to (24) we have the quaternion wavelet equation

Ψ(x) =
∑

k∈Z

< Φ1,k, Ψ > Φ1,k =
√

2
∑

k∈Z

GkΦ(2x − k). (29)

Proposition 2 The coefficients {Gk}k∈Z of the wavelet equation (29) satisfy

∑

k

Gk = 02. (30)

The integer translated quaternion wavelet functions Ψ(x − l) form an orthonormal set

∫

R

Ψ(x)Ψ(x − l) dx = I2δ0l, ∀l ∈ Z. (31)

Therefore
∑

k

GkGk−2l = I2δ0l. (32)

Let us define

m0(ω) =
∑

k

Hk√
2

D(e−ikω, eikω). (33)

If m0 is a 2π-periodic function in L2(R, C2×2), the function m0 is called the lowpass filter
associated with the scaling function Φ. The dilation equation (24) becomes

Φ̂(ω) = m0(
ω

2
)Φ̂(

ω

2
). (34)
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Equation (34) follows from

Φ̂(ω) =

∫

R

Φ(x)D(e−iωx, eiωx) dx

(24)
=

∑

k

√
2 Hk

∫

R

Φ(2x− k)D(e−iωx, eiωx) dx

=
∑

k

Hk√
2

D(e−
ikω

2 , e
ikω

2 )

∫

R

Φ(2x − k)D(e−i(2x−k) ω

2 , ei(2x−k)ω

2 ) d(2x − k)

=
∑

k

Hk√
2

D(e−
ikω

2 , e
ikω

2 )Φ̂(
ω

2
)

= m0(
ω

2
)Φ̂(

ω

2
). (35)

Without loss of generality we assume Φ(0) = I2, iterating (34) leads to

Φ̂(ω) = m0(
ω

2
)m0(

ω

4
) · · · =

∞
∏

n=1

m0(
ω

2n
). (36)

Similarly, we define the highpass filter

m1(ω) =
∑

k

Gk√
2

D(e−iωx, eiωx), (37)

where m1 is also a 2π-periodic function. The Fourier transform of the wavelet equation (29)
becomes therefore

Ψ̂(ω) = m1(
ω

2
)Φ̂(

ω

2
). (38)

The following proposition provides (in the Fourier domain) a necessary condition for the
orthonormality of the scaling function and its integer translations.

Proposition 3 If the quaternion scaling function Φ(x) ∈ L2(R) and if Φ(x) is orthonormal
to its integer translations {Φ(x − k), k ∈ Z} then

∞
∑

l=−∞

Φ̂(ω + 2πl)Φ̂(ω + 2πl) = I2. (39)

Proof Using the inverse matrix Fourier transform (21) gives (k ∈ Z)

δk,0I2 =

∫

R

Φ(x)Φ(x − k) dx

=

∫

R

[
1

2π

∫

R

Φ̂(ω)D(eiωx, e−iωx) dω] Φ(x − k) dx

=
1

2π

∫

R

Φ̂(ω)

∫

R

Φ(x − k)D(e−iω(x−k), eiω(x−k) d(x− k)D(eiωk, e−iωk) dω

=
1

2π

∫

R

Φ̂(ω)Φ̂(ω) D(eiωk, e−iωk) dω

=
1

2π

∫ 2π

0

∞
∑

l=−∞

Φ̂(ω + 2πl)Φ̂(ω + 2πl)D(eiωk, e−iωk) dω. (40)
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The last line in equation (40) follows because eiωk = ei(ω+2πl)k , ∀l, k ∈ Z, and represents the

-kth Fourier coefficient of a periodic function f(ω) =
∑

∞

l=−∞
φ̂(ω + 2πl)φ̂(ω + 2πl). Since

the k = 0 coefficient of f(ω) equals I2 and all the other coefficients are zero matrix, this
implies that

∞
∑

l=−∞

Φ̂(ω + 2πl)Φ̂(ω + 2πl) = I2.

Therefore (39) in Proposition 3 is proved. 2

4 Conclusion

Using the basic concepts of the complex duplex matrix-valued function and its Fourier trans-
form we introduced quaternion-valued wavelets. We then constructed quaternion-valued
multiresolution analysis. Using the spectral representation of the Fourier transform, we
derived several important properties such as the highpass and lowpass filters. In the future
we will show that the construction can also be extended using the a complex representation
of a quaternion matrix.
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