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Abstract S-semipermutable subgroup and weakly s-permutable subgroup are two
different generalizations of s-permutable subgroup. In this paper, we investigate the
influence of s-semipermutable and weakly s-permutable subgroups on the structure
of finite groups. We give some conditions of p-nilpotency and supersolvability under
assumption that some primary subgroups ( for example, maximal subgroups or minimal
subgroups of Sylow subgroups ) are either s-semipermutable or weakly s-permutable.
Meanwhile, some results are extended by using formation theory.
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1 Introduction

All groups considered in this paper will be finite. Our notation is standard and taken mainly
from B. Huppert [1] and W. Guo [2].

G always means a group, |G| is the order of G, π(G) denotes the set of all primes dividing
|G| and Gp is a Sylow p-subgroup of G for some p ∈ π(G). Let F be a class of groups.
We call F a formation provided that (1) if G ∈ F and H � G, then G/H ∈ F , and (2) if
G/M and G/N are in F , then G/(M ∩N) is in F for any normal subgroups M , N of G.
A formation F is said to be saturated if G/Φ(G) ∈ F implies that G ∈ F . In this paper, U
will denote the class of all supersolvable groups. Clearly, U is a saturated formation.

Two subgroups H and K of G are said to be permutable if HK = KH. A subgroup H
of a group G is said to be s-permutable ( or s-quasinormal, π-quasinormal ) in G if H per-
mutes with all Sylow subgroups of G, i.e, HS = SH for any Sylow subgroup S of G. This
concept was introduced by Kegel [3] and was investigated by many authors. More recently,
Zhang and Wang [4] generalized s-permutable subgroups to s-semipermutable subgroups.

Definition 1.1. A subgroup H of a group G is said to be s-semipermutable in G if
HGp = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1.

Wang and Wang [5] proved the following theorem:

Theorem 1.2. Let G be a group and P a Sylow p-subgroup of G, where p is the smallest
prime dividing |G|. If all maximal subgroups of P are s-semipermutable in G, then G is
p-nilpotent.

As another generalization of s-permutable subgroups, Skiba [6] introduced the following
concept:

Definition 1.3. A subgroup H of a group G is called weakly s-permutable in G if there
is a subnormal subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the
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subgroup of H generated by all those subgroups of H which are s-quasinormal in G.

In fact, this concept is also a generalization of c-normal subgroups given in Wang [7]
( A subgroup H of a group G is said to be c-normal in G if there is a normal subgroup
K of G such that G = HK and H ∩ K ≤ HG, where HG denotes the core of H in G ).
There are examples to show that weakly s-permutable subgroups are not s-semipermutable
subgroups and in general the converse is also false. The aim of this article is to unify and
improve some earlier results using s-semipermutable and weakly s-permutable subgroups.

2 Preliminaries

Lemma 2.1. Suppose that H is an s-semipermutable subgroup of a group G and N is a
normal subgroup of G. Then

(1) H is s-semipermutable in K whenever H ≤ K ≤ G.

(2) If H is p-group for some prime p ∈ π(G), then HN/N is s-semipermutable in G/N .

(3) If H ≤ Op(G), then H is s-permutable in G.

Proof: (a) is [3, Property 1], (b) is [3, Property 2], and (c) is [3, Lemma 3].

Lemma 2.2. ( [6], Lemma 2.10) Let H be a weakly s-permutable subgroup of a group G.

(1) If H ≤ L ≤ G, then H is weakly s-permutable in L.

(2) If N E G and N ≤ H ≤ G, then H/N is weakly s-permutable in G/N .

(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N is weakly
s-permutable in G/N .

Lemma 2.3. ( [8], A, 1.2) Let U, V , and W be subgroups of a group G. Then the following
statements are equivalent:

(1) U ∩ VW = (U ∩ V )(U ∩W ).

(2) UV ∩ UW = U(V ∩W ).

Lemma 2.4. ( [9],Lemma 2.2) If P is an s-permutable p-subgroup of a group G for some
prime p, then NG(P ) ≥ Op(G).

Lemma 2.5. ( [5] Theorem 3.3) Let P be a Sylow p-subgroup of a group G, where p is
the smallest prime dividing |G|. If every maximal subgroup of P is s-semipermutable in G,
then G is p-nilpotent.

Lemma 2.6. ( [10],Lemma 2.6) Let H be a solvable normal subgroup of a group G(H ̸= 1).
If every minimal normal subgroup of G which is contained in H is not contained in Φ(G),
then the Fitting subgroup F (H) of H is the direct product of minimal normal subgroups of
G which are contained in H.

Lemma 2.7. ( [6] Lemma 2.16) Let F be a saturated formation containing U , the class of
all supersolvable groups. Suppose that G is a group with a normal subgroup N such that
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G/N ∈ F . If N is cyclic, then G ∈ F .

Lemma 2.8. ( [11], Lemma 2.4) Let H be a normal subgroup of a group G such that G/H
is p-nilpotent and let P be a Sylow p-subgroup of H, where p is the smallest prime divisor
of |G|. If |P | ≤ p2 and G is A4-free, then G is p-nilpotent.

Lemma 2.9.( [12], Lemma 3.16)Let F be the class of groups with Sylow tower of super-
solvable type. Also let P be a normal p-subgroup of a group G such that G/P ∈ F . If G is
A4-free and |P | 6 p2, then G ∈ F .

3 Main results

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is the smallest prime
divisor of |G|. If every maximal subgroup of P is either s-semipermutable or weakly s-
permutable in G, then G is p-nilpotent.

Proof: Suppose that the theorem is false and let G be a counterexample of minimal order.
We will derive a contradiction in several steps.

(i) G has a unique minimal normal subgroup N and G/N is p-nilpotent. Moreover
Φ(G) = 1.

Let N be a minimal normal subgroup of G. Consider G/N . We will show that G/N
satisfies the hypothesis of the theorem. Let M/N be a maximal subgroup of PN/N .
It is easy to see M = P1N for some maximal subgroup P1 of P . It follows that
P1 ∩ N = P ∩ N is a Sylow p-subgroup of N . If P1 is s-semipermutable in G, then
M/N is s-semipermutable in G/N by Lemma 2.1. If P1 is weakly s-permutable in G,
then there is a subnormal subgroup T of G such that G = P1T and P1 ∩ T ≤ (P1)sG.
So G/N = M/N · TN/N = P1N/N · TN/N . Since

(|N : P1 ∩N |, |N : T ∩N |) = 1,

we have
(P1 ∩N)(T ∩N) = N = N ∩G = N ∩ P1T.

By Lemma 2.3, (P1N) ∩ (TN) = (P1 ∩ T )N . It follows that

(P1N/N)∩ (TN/N) = (P1N ∩TN)/N = (P1 ∩T )N/N ≤ (P1)sGN/N ≤ (P1N/N)sG.

Hence M/N is weakly s-permutable in G/N . Therefore, G/N satisfies the hypothesis
of the theorem. The choice of G yields that G/N is p-nilpotent. Consequently the
uniqueness of N and the fact that Φ(G) = 1 are obvious.

(ii) Op′(G) = 1.

If Op′(G) ̸= 1, then N ≤ Op′(G) by step (1). since

G/Op′(G) ∼= (G/N)/(Op′(G)/N)
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is p-nilpotent, hence G is p-nilpotent, a contradiction.

(iii) Op(G) = 1.

If Op(G) ̸= 1, Step (1) yields N ≤ Op(G) and Φ(Op(G)) ≤ Φ(G) = 1. Therefore, G
has a maximal subgroup M such that G = MN and G/N ∼= M is p-nilpotent. Since
Op(G)∩M is normalized by N and M , Op(G)∩M is normal in G. The uniqueness of
N yields N = Op(G). Clearly, P = N(P ∩M). Furthermore P ∩M < P , thus there
exists a maximal subgroup P1 of P such that P ∩M ≤ P1. Hence P = NP1. By the
hypothesis, P1 is either s-semipermutable or weakly s-permutable in G. If we assume
P1 is s-semipermutable in G, then P1Mq is a group for q ̸= p. Hence

P1 < Mp,Mq|q ∈ π(M), q ̸= p >= P1M

is a group. Then P1M = M or G by maximality of M . If P1M = G, then P =
P ∩P1M = P1(P ∩M) = P1, a contradiction. If P1M = M , then P1 ≤ M . Therefore,
P1 ∩ N = 1 and N is of prime order. Then the p-nilpotency of G/N implies the p-
nilpotency of G, a contradiction. Therefore we may assume P1 is weakly s-permutable
in G. Then there is a subnormal subgroup T of G such that G = P1T and P1 ∩ T ≤
(P1)sG ≤ Op(G) = N ≤ Op(G) since N is the unique minimal normal subgroup of G.
Since |G : T | is a number of p-power, Op(G) ≤ T . Hence

P1 ∩ T ≤ (P1)sG ≤ Op(G) ∩ P1 ≤ T ∩ P1,

and so P1 ∩ T = (P1)sG = Op(G) ∩ P1. Consequently, G = POp(G) implies that
(P1)sG E G by Lemma 2.4. By the minimality of N , we have (P1)sG = N or
(P1)sG = 1. If (P1)sG = N , then N ≤ P1 and P = NP1 = P1, a contradiction.
Thus P1 ∩ T = (P1)sG = 1, and so |T |p = p. Then T is p-nilpotent. Let Tp′ be the
normal p-complement of T . Then Tp′ is subnormal in G and Tp′ is a p′-Hall subgroup
of G. It follows that Tp′ is the normal p-complement of G, a contradiction.

(iv) The final contradiction.

If P has a maximal subgroup P1 which is weakly s-permutable in G, then there is a
subnormal subgroup T of G such that G = P1T and P1 ∩ T ≤ (P1)sG ≤ Op(G) = 1.
Then P1 ∩ T = 1. Hence |T |p = p. Therefore, T is p-nilpotent. Thus G is p-
nilpotent, a contradiction. Now we may assume that all maximal subgroups of P are
s-semipermutable in G. Then G is p-nilpotent by Lemma 2.5, a contradiction.

Corollary 3.2. Let p be a prime dividing the order of a group G, where p is the small-
est prime divisor of |G| and H a normal subgroup of G such that G/H is p-nilpotent. If
there exists a Sylow p-subgroup P of H such that every maximal subgroup of P is either
s-semipermutable or weakly s-permutable in G, then G is p-nilpotent.

Proof: By Lemma 2.1 and 2.2, every maximal subgroup of P is either s-semipermutable or
weakly s-permutable inH. By Theorem 3.1, H is p-nilpotent. Now, letHp′ be the normal p-
complement of H. Then Hp′ E G. Assume Hp′ ̸= 1 and consider G/Hp′ . Applying Lemma
2.1 and 2.2 it is easy to see that G/Hp′ satisfies the hypotheses for the normal subgroup
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H/Hp′ . Therefore by induction G/Hp′ is p-nilpotent and so G is p-nilpotent. Hence we
may assume Hp′ = 1 and therefore H = P is a p-group. Since G/H is p-nilpotent, we can
consider K/H be the normal p-complement of G/H. By Schur-Zassenhaus’s theorem, there
exists a Hall p′-subgroup Kp′ of K such that K = HKp′ . A new application of Theorem
3.1 yields K is p-nilpotent and so K = H ×Kp′ . Hence Kp′ is a normal p-complement of
G. This completes the proof.

Corollary 3.3. ( [12], Theorem 3.4) Let G be a group and P a Sylow p-subgroup of G,
where p is the smallest prime dividing |G|. If all maximal subgroups of P are c-normal in
G, then G is p-nilpotent.

Corollary 3.4. Suppose that every maximal subgroup of any Sylow subgroup of a group
G is either s-semipermutable or weakly s-permutable in G, then G is a Sylow tower group
of supersolvable type.

Proof: Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. Then
every maximal subgroup of P is either s-semipermutable or weakly s-permutable in G. By
Theorem 3.1, G is p-nilpotent. Let U be the normal p-complement of G. By Lemma 2.1
and 2.2, U satisfies the hypothesis of the Corollary. Therefore it follows by induction that
U , and hence G is a Sylow tower group of supersolvable type.

Theorem 3.5. Let F be a saturated formation containing U , the class of all supersoluble
groups. A group G ∈ F if and only if there is a normal subgroup H of G such that G/H ∈ F
and every maximal subgroup of any Sylow subgroup of H is either s-semipermutable or
weakly s-permutable in G.

Proof: The necessity is obvious. We only need to prove the sufficiency. Suppose that the
assertion is false and let G be a counterexample of minimal order.

(i) By Lemma 2.1 and 2.2, every maximal subgroup of any Sylow subgroup of H is either
s-quasinormally embedded or weakly s-permutable in H. By Corollary 3.4, H is a
Sylow tower group of supersolvable type. Let p be the largest prime divisor of |H| and
let P be a Sylow p-subgroup ofH. Then P is normal in G. Let N be a minimal normal
subgroup of G contained in P . We consider G/N . It is easy to see that (G/N,H/N)
satisfies the hypothesis of the Theorem. By the minimality of G, we have G/N ∈ F .
Since F is a saturated formation, N is the unique minimal normal subgroup of G
contained in P and N � Φ(G). By Lemma 2.6, it follows that P = F (P ) = N .

(ii) SinceN E G, we may take a maximalN1 ofN such thatN1 E Gp, where Gp is a Sylow
p-subgroup of G. Then N1 is either s-semipermutable or weakly s-permutable in G.
If N1 is weakly s-permutable in G, then there is a subnormal subgroup T of G such
that G = N1T and N1∩T ≤ (N1)sG. Thus G = NT and N = N ∩N1T = N1(N ∩T ).
This implies that N ∩T ̸= 1. But since N ∩T is normal in G and N is minimal normal
in G, N ∩ T = N . It follows that T = G and so N1 = (N1)sG is s-permutable in G.
By Lemma 2.4, Op(G) ≤ NG(N1). Thus N1 E GpO

p(G) = G. It follows that N1 = 1
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and so |N | = p. By Lemma 2.7, G ∈ F , a contradiction. If N1 is s-semipermutable in
G, then N1 is s-permutable in G by Lemma 2.1 and it follows the same contradiction.

Corollary 3.6. ( [10], Theorem 3.3) Let H be a normal subgroup of a group G such that
G/H is supersolvable. If every maximal subgroup of any Sylow subgroup of H is c-normal
in G, then G is supersolvable.

Theorem 3.7. Let p is the smallest prime dividing the order of a group |G| and P a
Sylow p-subgroup of G. If G is A4-free and every 2-maximal subgroups of P is either s-
semipermutable or weakly s-permutable in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order.
We will derive a contradiction in several steps.

(i) By Lemma 2.8, |P | > p3 and so every 2-maximal subgroups P2 of P is non-identity.

(ii) G is not a non-abelian simple group.

Suppose G is simple. Let P2 a 2-maximal subgroup of P . If P2 is weakly s-permutable
in G, then there is a subnormal subgroup T of G such that G = P2T and P2 ∩ T ≤
(P2)sG ≤ Op(G) = 1. Since G is simple, we have P2 = P2∩T = P2∩G = 1. By Lemma
2.8, G is p-nilpotent, a contradiction. Hence we may assume P2 is s-semipermutable
in G. Suppose Q is a Sylow q-subgroup with q ̸= p. Then P2Q

g = QgP2 for any
g ∈ G. Since G is simple, we have G = P2Q from [1, VI, 4.10], a contradiction.

(iii) G has a unique minimal normal subgroup N such that G/N is p-nilpotent, moreover
Φ(G) = 1.

(iv) Op′(G) = 1.

(v) Op(G) = 1.

If Op(G) ̸= 1, Step (3) yields N ≤ Op(G) and Φ(Op(G)) ≤ Φ(G) = 1. Therefore,
G has a maximal subgroup M such that G = MN and G/N ∼= M is p-nilpotent.
Since Op(G)∩M is normalized by N and M , hence by G, the uniqueness of N yields
N = Op(G). Clearly, P = N(P ∩M). Furthermore P ∩M < P . If P ∩M is a maximal
subgroup of P , then N is a subgroup of order p. By applying [16, Lemma 2.8], we
obtain that N ≤ Z(G). Since G/N is p-nilpotent, it follows that G is p-nilpotent, a
contradiction. Therefore P ∩M is contained in a 2-maximal subgroup P2 of P . By the
hypothesis, P2 is either s-semipermutable or weakly s-permutable in G. If we assume
P2 is s-semipermutable in G, then P2Mq is a group for q ̸= p. Hence

P2 < Mp,Mq|q ∈ π(M), q ̸= p >= P2M

is a group. Then P2M = M or G by maximality of M . If P2M = G, then P =
P ∩P2M = P2(P ∩M) = P2, a contradiction. If P2M = M , then P2 ≤ M . Therefore,
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P2 ∩ N = 1. Since P = NP2, we have |N | = p2. Then the p-nilpotency of G/N
implies the p-nilpotency of G by Lemma 2.8, a contradiction. Now we suppose P2 is
weakly s-permutable in G. Then there is a subgroup T of G such that G = P2T and
P2 ∩ T ≤ (P2)sG. From Lemma 2.4 we have Op(G) ≤ NG((P2)sG). Since (P2)sG is
subnormal in G,

P2 ∩ T ≤ (P2)sG ≤ Op(G) = N.

Thus, (P2)sG ≤ P1 ∩ N , where p1 is a maximal subgroup of P which contains P2.
Then

(P2)sG ≤ ((P2)sG)
G = ((P2)sG)

Op(G)P = ((P2)sG)
P ≤ (P1 ∩N)P = P1 ∩N ≤ N.

It follows that ((P2)sG)
G = 1 or ((P2)sG)

G = P1∩N = N . If ((P2)sG)
G = P1∩N = N ,

then N ≤ P1 and P = NP1 = P1, a contradiction. If ((P2)sG)
G = 1, then P2 ∩ T = 1

and so |T |p = p2. Hence T is p-nilpotent by Lemma 2.8. Since T is subnormal in G,
we have G is p-nilpotent, a contradiction.

(vi) The final contradiction.

If we suppose NP < G, then NP satisfies the hypothesis of the theorem. The choice
of G yields that N is p-nilpotent, a contradiction with steps (2) and (3). Therefore we
may assume G = NP . Since G/N is a p-subgroup, we may assume G has a normal
subgroup M such that |G : M | = p and N ≤ M . Hence the maximal subgroups of
Sylow p-subgroup P ∩M of M are the 2-maximal subgroups of Sylow p-subgroup P
of G. By Lemma 2.1 and 2.2, every maximal subgroup of Sylow p-subgroup P ∩M is
either s-semipermutable or weakly s-permutable in M . Now applying Theorem 3.1,
we get M is p-nilpotent, and so G is p-nilpotent, a contradiction.

Corollary 3.8. ( [12], Theorem 3.2) Let p be the smallest prime dividing the order of a
group |G| and P a Sylow p-subgroup of G. If G is A4-free and every 2-maximal subgroups
of P is c-normal in G, then G is p-nilpotent.

Corollary 3.9. Let p be the smallest prime dividing the order of a group G and G is
A4-free. Assume that H is a normal subgroup of G such that G/H is p-nilpotent. If there
exists a Sylow p-subgroup P of H such that every 2-maximal subgroup of P is either s-
semipermutale or weakly s-permutable in G, then G is p-nilpotent.

Using similar arguments as in the proof of Theorem 3.5 and Lemma 2.9, we also obtain
the following.

Theorem 3.10. Let F be the class of groups with Sylow tower of supersolvable type and G is
A4-free. Then G ∈ F if and only if there is a normal subgroup H of G such that G/H ∈ F
and every 2-maximal subgroup of any Sylow subgroup of H is either s-semipermutale or
weakly s-permutable in G.

Theorem 3.11. Let F be a saturated formation containing U , the class of all supersoluble
groups. A group G ∈ F if and only if there is a normal subgroup E of G such that G/E ∈ F
and every cyclic subgroup < x > of any Sylow subgroup of E with prime order or order 4 (if
the Sylow 2-subgroups are non-abelian) is either s-semipermutable or weakly s-permutable
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in G.

Proof: We need only to prove the sufficiency part since the necessity part is evident.
Suppose that the assertion is false and let G be a counterexample of minimal order. Then

(i) E is solvable.

Let K be any proper subgroup of E. Then |K| < |G| and K/K ∈ U . Let < x > be
any cyclic subgroup of any Sylow subgroup of K with prime order or order 4(if the
Sylow 2-subgroups are non-abelian). It is clear that < x > is also a cyclic subgroup
of a Sylow subgroup of E with prime order or order 4. By the hypothesis, < x >
is either s-semipermutable or weakly s-permutable in G. By Lemma 2.1 and 2.2,
< x > is either s-semipermutable or weakly s-permutable in K. This shows that the
hypothesis still holds for (U ,K). By the choice of G, K is supersolvable. By [12,
Theorem 3.11.9], E is solvable.

(ii) GF is a p-group, where GF is the F-residual of G. Moreover GF/Φ(GF ) is a chief
factor of G and exp(GF ) = p or exp(GF ) = 4 ( if p = 2 and GF is non-abelian ).

Since G/E ∈ F , GF ≤ E. Let M be a maximal subgroup of G such that GF * M
(that is, M is an F-abnormal maximal subgroup of G). Then G = ME. We claim
that the hypothesis holds for (F ,M). In fact,

M/M ∩ E ∼= ME/E = G/E ∈ F

and by the similar argument as above, we can prove that the hypothesis holds for
(F ,M). By the choice of G, M ∈ F . Thus (2) holds by [12,Theorem 3.4.2].

(iii) < x > is s-permutable in G for any element x ∈ GF .

Let x ∈ GF . Then the order of x is p or 4 by Step (2). By the hypothesis, < x > is
either s-semipermutable or weakly s-permutable in G. If < x > is s-semipermutable
in G, then < x > is s-permutable in G by Lemma 2.1 since < x >≤ GF ≤ Op(G). If
< x > is weakly s-permutable in G, then there is a subnormal subgroup T of G such
that G =< x > T and < x > ∩ T ≤< x >sG. Hence

GF = GF ∩G = GF∩ < x > T =< x > (GF ∩ T ).

Since GF/Φ(GF ) is abelian, we have

(GF ∩ T )Φ(GF )/Φ(GF ) E G/Φ(GF ).

Since GF/Φ(GF ) is a chief factor of G, GF ∩T ≤ Φ(GF ) or GF = (GF ∩T )Φ(GF ) =
GF ∩ T . If GF ∩ T ≤ Φ(GF ), then < x >= GF E G. In this case, < x > is
s-permutable in G. If GF = GF ∩ T , then T = G and so < x >=< x >sG is
s-permutable in G.

(iv) |GF/Φ(GF )| = p.

Assume that |GF/Φ(GF )| ̸= p and let L/Φ(GF ) be any cyclic subgroup ofGF/Φ(GF ).
Let x ∈ L\Φ(GF ). Then L =< x > Φ(GF ). Since < x > is s-permutable in G by
step (3), L/Φ(GF ) is s-permutable in G/Φ(GF ). It follows from [5, Lemma 2.11]
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that GF/Φ(GF ) has a maximal subgroup which is normal in G/Φ(GF ). But this is
impossible since GF/Φ(GF ) is a chief factor of G. Thus |GF/Φ(GF )| = p.

(v) The final contradiction.

Since

(G/Φ(GF ))/(GF/Φ(GF )) ∼= G/GF ∈ F ,

we have that G/Φ(GF ) ∈ F by Lemma 2.7. But Φ(GF ) ≤ Φ(G) and F is a saturated
formation, therefore G ∈ F , the final contradiction.

Corollary 3.12. ( [13], Theorem 4.2) Let F be a saturated formation containing U , the
class of all supersoluble groups. If every cyclic subgroup of GF of prime order or order 4 is
c-normal in G, then G ∈ F .

Corollary 3.13. If every cyclic subgroup of G of prime order or order 4 is weakly s-
permutable in G, then G is supersolvable.
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