Diagram Groups over Union of Two Semigroup Presentations of Natural Numbers by Adding Relations

${ }^{1,2}$ Yousof Gheisari and ${ }^{2}$ Abd Ghafur Bin Ahmad
${ }^{1}$ Islamic University Branch of Boushehr, Iran
${ }^{1,2}$ School of Mathematical Science, Faculty of Science and Technology
Universiti Kebangsaan country-regionMalaysia,43600,UKM, Bangi, Malaysia
e-mail: ${ }^{1}$ Yousof.gheisari@yahoo.com,, ${ }^{2}$ ghafur@ukm.my

Abstract

For any given semigroup presentation P, we may obtain diagram groups with base point u, where u is a word in generating set. The purpose of this paper is to determine the graphs $\Gamma_{p_{n}}(n \in N)$, which are obtained from diagram group for union of two semigroup presentations with two and three different initial generators. The general polynomial of vertices, edge in these graphs with three and two different initial generators by adding a relation will be computed.

Keywords Diagram groups, semigroup presentation; generators; relation; initial generators.

1 Introduction

We obtained the general polynomial of component in graphs for semigroup presentation $P=\langle x, y, z \mid x=y, y=z, x=z\rangle$ and also we obtain the spanning tree in graphs of diagram group over this semigroup presentation using lifting method (refer to [1], and [2]. In this research we want to determine the semigroup presentation of union of two semigroup presentation of natural numbers with three and two different initial generators by adding a relation.

Let $P_{1}=\langle x, y, z \mid x=y, y=z, x=z\rangle, P_{2}=\langle a, b \mid a=b\rangle$ be semigroup presentations. Now we consider the new semigroup presentation

$$
P=\langle x, y, z, a, b \mid x=y, y=z, x=z, a=b, x=a\rangle
$$

obtained from union of initial generators and relations of P_{1} and P_{2} by adding a relation $x=a($ for more detail see [3-5].

In section 2, we will determine the graphs $\Gamma_{p_{n}}(n \in N)$ obtained from semigroup presentation $P=\langle x, y, z, a, b \mid x=y, y=z, x=z, a=b, x=a\rangle$.

In section 3 , the general polynomial of vertices, edges will be computed.

2 Determining the Graphs $\Gamma_{p_{n}(n \in N)}$

Let $P=\langle x, y, z, a, b \mid x=y, y=z, x=z, a=b, x=a\rangle$ be a semigroup presentation which is obtained from union of initial generators and relations of P_{1} and P_{2} by adding a relation $x=a$. Note that the graph $\Gamma\left(P_{1}\right)$ obtained from Semigroup presentation P_{1} is just a collection of subgraphs $\Gamma_{p_{1_{n}}}$ where $\Gamma_{p_{1_{n}}}$ contains all vertices of length n and respective edges. Similarly we obtain $\Gamma_{p_{2_{n}}}$ for semigroup presentation P_{2}. Now we may obtain the graph $\Gamma_{p_{n}}$ for semigroup presentation P, the graph Gamma $a_{p_{n}}=\Gamma_{p_{1_{n}}} \cup \Gamma_{p_{2_{n}}} \cup\left\{\left(u, x_{1} \rightarrow a_{1}, v\right)\right\}$ such length $u v=n-1$. If W_{n} is a vertex in $\Gamma_{p_{n}}$ then $w_{n} g, g \in\{x, y, z, a, b\}$ is a vertex in $\Gamma_{p_{n+1}}$.

Similarly if $\left(u, R_{\varepsilon} \rightarrow R_{-\varepsilon}, v\right)$ is an edge in $\Gamma_{p_{n}}$, then $\left(u, R_{\varepsilon} \rightarrow R_{-\varepsilon}, v g\right)$ is the respective edges in $\Gamma_{p_{n+1}}$. Thus $\Gamma_{p_{n+1}}$ is just five copy of $\Gamma_{p_{n}}$ together with five vertices and edges $\left(u, x_{1} \rightarrow a_{1}, v g\right), g \in\{x, y, z, a, b\}$. For example the graph of $\Gamma_{p_{1}}$ is shown in Figure 1.

Figure 1: Graph $\Gamma_{p_{1}}$
The graph of $\Gamma_{p_{2}}$ is just five copies of $\Gamma_{p_{1}}$ as shown in Figure 2.
Similarly we may obtain the graph for $\Gamma_{p_{n}}(n \in N)$.
Note that $\Gamma_{p_{2}}$ is five copies of $\Gamma_{p_{1}}$ and each vertex in each copy are joined together, respectively by considering the relation $x_{1}=a_{1}$. Similarly, with five copies of $\Gamma_{p_{2}}$, we may obtain $\Gamma_{p_{3}}$. Repeat similar procedures for $\Gamma_{p_{4}}$ and so on.

3 General Polynomials of Component in Graph $\Gamma_{p_{n}}(n \in N)$, and Theorems

Lemma 3.1: $\operatorname{Let} P=\langle x, y, z, a, b \mid x=y, y=z, x=z, a=b, x=a\rangle$ be the presentation. If u and v are two positive words on $\{x, y, z, a, b\}$, then $\pi_{1}(K(S), u)=\pi_{1}(K(S), v)$ if and only if length $(u)=$ length (v).
Proof: See the proof in [6].
Lemma 3.2: Let the semigroup presentation $P_{1}=\langle x, y, z \mid x=y, y=z, x=z\rangle$. The general polynomial of the number of vertices in $\Gamma_{p_{n}}(n \in N)$ is $v_{n}=3^{n}$, wherev v_{i} is the number of vertices $\operatorname{in} \Gamma_{p_{i}}(i=1,2,3, \ldots)$.

Proof: By induction on n, and refer to [2].
Lemma 3.3: Let the presentation $P_{2}=\langle a, b \mid a=b\rangle$. The general polynomial of the number of vertices in $\Gamma_{p_{n}}(n \in N)$ is $v_{n}=2^{n}$, wherev v_{i} is the number of vertices in $\Gamma_{p_{i}}(i=$ $1,2,3, \ldots$).

Proof: By induction on n.
Theorem 3.4: Let the presentation $P=\langle x, y, z, a, b \mid x=y, y=z, x=z, a=b, x=a\rangle$. The general polynomial of the number of vertices in $\Gamma_{p_{n}}(n \in N)$ is $v_{n}=5^{n}$, wherev i_{i} is the number of vertices $\operatorname{in} \Gamma_{p_{i}}(i=1,2,3, \ldots)$.

Figure 2: Graph $\Gamma_{p_{2}}$

Proof: By induction, for $k=1$ the number of all vertices in $\Gamma_{p_{1}}$ is 5 , thus for $k=1$ is true (Figure 1). Now assume $v_{k}=5^{k}$ be the number of all vertices in $\Gamma_{p_{k}}$. We will prove that the number of all vertices in $\Gamma_{p_{k+1}}$ is $v_{k+1}=5^{k+1}$. By definition $\Gamma_{p_{k+1}}$ is five copies of $\Gamma_{p_{k}}$ and assumption, then the number of vertices of $\Gamma_{p_{k+1}}$ is $v_{k+1}=5.5^{k}=5^{k+1}$.

Theorem 3.5: The general polynomial of the number of all edges in $\Gamma_{p_{n}}(n \in N)$ is $e_{n}=5 e_{n-1}+5^{n}$, where e_{i} is the number of all edges $\operatorname{in} \Gamma_{p_{i}}(i=1,2,3, \ldots)$.
Proof: By definition $\Gamma_{p_{n}}$ is five copies of $\Gamma_{p_{n-1}}$. Thus if there is e_{n-1} edges in $\Gamma_{p_{n-1}}$, then the number of edges in $\Gamma_{p_{n}}$ is $5 e_{n-1}$ plus all edges between the vertices in $\Gamma_{p_{n}}$, which is 5^{n}. Thus the number of all edges in $\Gamma_{p_{n}}$ is $e_{n}=5 e_{n-1}+5^{n}$.

Corollary 3.6: The general polynomial of the number of all edges in $\Gamma_{p_{n}}(n \in N)$ is $e_{n}=n 5^{n}$, where e_{i} is the number of all edges in $\Gamma_{p_{i}}(i=1,2,3, \ldots)$.

Proof: By induction, the number of all edges in $\Gamma_{p_{1}}$ is 3 thene $e_{1}=5$. Now let $e_{k}=k 5^{k}$ be the number of all edges in $\Gamma_{p_{k}}$. We will prove that the number of all edges in $\Gamma_{p_{k+1}}$, is $e_{k+1}=(k+1) 5^{k+1}$. By using the theorem 3.5,

$$
e_{k+1}=5 e_{k}+5^{k+1}=5\left(k 5^{k}\right)+5^{k+1}=(k+1) 5^{k+1}
$$

References

[1] Gheisari, Y. and Ahmad, A. G. B. Spanning Trees for Diagram Groups of Semigroup Presentation $P=\langle x, y, z \mid x=y, y=z, x=z\rangle$ Using Lifting Method. In Proceeding of the $5^{\text {th }}$ Asian Mathematical Conference, Malaysia. 2009. 366-372.
[2] Gheisari, Y. and Ahmad, A. G. B. General Polynomial for Component of Graphs from Diagram Group of Semigroup Presentation $P=\langle x, y, z \mid x=y, y=z, x=z\rangle$. Journal of International Mathematical Forum, 2010. 18: 875-880.
[3] Guba, V. and Sapir, M. Diagram Groups. Memoirs of the American Mathematical Society. 1997.
[4] V.Kilibarda. On the Algebra of Semigroup Diagrams. International Journal of Algebra and Computation, 1997. 7: 313-338.
[5] Pride, S. J. Geometric Method in Combinatorial Group Theory. In Proceeding of International Conference on Groups, Semigroups and Formal Languages. 1995. 215232.
[6] Ahmad, A. G. B. and Al-Odhari, A. M. The Graph of Diagram Groups Constructed from Natural Numbers Semigroup with a Repeating Generator. Journal of Institute of Mathematics and Computer Science(Math.Ser.), 2004. 17: 67-69.

