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Abstract In this paper, a double-population thermal lattice Boltzmann was applied
to solve three dimensional, incompressible thermal fluid flow problem. The simplest lat-
tice BGK D3Q6 model was proposed to determine the temperature field while D3Q15
or D3Q19 for the density and velocity fields. The simulation of natural convection in
a cubic cavity with Prandtl number 0.71 and Rayleigh number ranging from 103 to
105 were carried out and compared with the published results in literature. It was ob-
served that the combination of D3Q6 and D3Q19 gave better numerical stability and
accuracy compared to D3Q6 with D3Q15 for the simulation at high Rayliegh number.
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1 Introduction

For more than a decade, lattice Boltzmann method (LBM) has been demonstrated to be
a very effective numerical tool for a broad variety of complex fluid flow phenomena that
are problematic for conventional methods [1]. Compared with traditional computational
fluid dynamics, LBM algorithms are much easier to be implemented especially in complex
geometries and multicomponent flows.

Historically, LBM was derived from lattice gas (LG) automata [1]. It utilizes the particle
distribution function to describe collective behaviors of fluid molecules. Although promis-
ing, the current LBM still have a few shortcomings that limit its general application as a
practical computational fluid dynamics tool. One of these shortcomings, which is specif-
ically addressed in this paper, is lack of reliable three dimensional (3D) thermal lattice
Boltzmann model with low computational cost.

Generally, there are three types of thermal lattice Boltzmann models that have been
proposed; multi-speed model [2], passive scalar model [3] and double-distribution func-
tion (DDF) model [4]. Among these models, the passive scalar and DDF model are re-
ported to be numerically stable [5] and widely used in simulating thermal fluid flow prob-
lems Azwadi1,Peng,Onishi.

Natural convection heat transfer in a square cavity has attracted much attention in
recent years due to its wide applications such as cooling of radioactive waste containers,
ventilation of rooms, solar energy collectors and crystal growth in liquids. A comprehensive
review was presented by Davis [6]. However, among the previous numerical studies pertinent
to this problem, little works have been done using 3D simulation model.
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As far as authors’ knowledge, few attempts have been made to predict the phenomenon
of natural convection in a cubic cavity using 3D thermal lattice Boltzmann models. Peng
et. al [7] proposed and investigated the efficiency and stability of the DDF model using two
different particles velocity models of D3Q15 [8] (three-dimension fifteen-particle velocity)
and D3Q19. All macroscopic variables such as density, velocity and temperature fields
were calculated using the same models whether D3Q15 or D3Q19. They showed that for
the simulation at Rayleigh number, Ra = 103, the results obtained were almost the same
for D3Q15 and D3Q19 models. While for Ra = 104 and 105, D3Q19 gave better results
than D3Q15 when compared with Navier-Stokes solver. However, these models require
high computational cost due to the application of high number of particle velocity for both
density and temperature distribution function.

The recent work by Azwadi et. al [9] focused on the development of lattice model for the
calculation of temperature field. They found that an eight-particle velocity model, D3Q8
can be developed for internal energy density distribution function if the viscous and com-
pressive heating effect were neglected. Though Azwadi et. al’s model has been successfully
simulated 3D natural convection problem to a certain degree with low computational cost,
this model is limited for the simulation at low Rayleigh numbers. They reported that this
was due to the limitation on the value of time relaxation for the internal energy density
distribution function where very close to its stability limit at high Rayleigh numbers simu-
lation. However, for real thermal engineering applications, the value of Rayleigh numbers
could reach up to 105. Therefore, a 3D thermal model which is capable in simulating up to
this value of Rayleigh number is expected.

In this research, works have been done on the improvement of passive scalar model.
In passive scalar approach, the distribution function for the temperature field is relatively
independent of that for the velocity field, so the passive scalar model can use two indepen-
dent lattices for two distribution functions respectively. Although Peng [7] and Azwadi et.
al [9] have developed lattice models based on the double distribution function approach,
the proposed final form of governing equations for density and internal energy density were
exactly the same as in the passive scalar model if the viscous heat dissipation and the work
done by pressure were neglected. In this paper, the simplest pasive scalar model of D3Q6
for the calculation of temperature field is proposed and coupled with D3Q15 or D3Q19 for
the calculation of density and velocity field.

The rest of the paper is organized as follows. In the next section, the 3D double-
population passive scalar model is constructed. In the subsequent section, the proposed
model is employed to simulate the natural convection flow in a cubic cavity with two side
walls maintained at different temperatures. The final section concludes this study.

2 Double-Population Thermal Lattice Boltzmann Model

In 3D lattice Boltzmann method, the physical space is divided into cubic lattices, and the
evolution of particle population at each lattice site is computed by using particle distribution
function. Following the passive scalar approach proposed by Shan [4] and Guo et. al [14],
the evolution of particle distribution functions are computed by the following equations

fi (x+ ci∆x, t+∆t)− fi (x, t) = − 1

τv
(fi (x, t)− feq

i (x, t)) + Ff (1)
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gi (x+ ci∆x, t+∆t)− gi (x, t) = − 1

τc
(gi (x, t)− geqi (x, t)) (2)

where density distribution function f = f (x, t) is used to calculate density and velocity fields
and temperature distribution function g = g (x, t) is used to calculate the temperature field.
Ff , τv, and τc are the external force and the relaxation times for density and temperature
distribution function respectively. Note that Bhatnagar-Gross-Krook (BGK) collision model
[15] with a single relaxation time is used for the collision term. The macroscopic variables,
such as density ρ, velocity u, and temperature T can be evaluated as the moment to the
distribution function

ρ =

∫
fdc, ρu =

∫
cfdc, ρT = gdc (3)

Suffix i in each evolution equation indicates the number of microscopic velocity applied to
density and temperature distribution function. In the present study, D3Q15 and D3Q19
are used for the density while D3Q6 for the temperature distribution function. The config-
urations of lattice velocities for density distribution functions are shown in Figure 1.

Figure 1: Lattice Structure for D3Q15 (left) and D3Q19 (Right)

The discretised equilibrium distribution function for both D3Q15 and D3Q19 is given
as [8].

feq
i = ρωi

[
1 + 3

c · u
c2

+
9 (c · u)2

2c4
− 3u2

2c2

]
(4)

where ω0 = 2/9, ω1−6 = 1/9, and ω7−14 = 1/72 for D3Q15 and ω0 = 1/3, ω1−6 = 1/18,
and ω7−18 = 1/36 for D3Q19. The viscosity in both models is related to the time relaxation
through the same equation as

υ =
2τv − 1

6
(5)

Through a multiscaling expansion, the mass and momentum equation can be derived
from the evolution equation of (1). The detail derivation is given in He and Luo [10] and
will not be shown here.

It has been proven in [11,12] that the effects of heat viscous dissipation and work done
by the pressure can be neglected for incompressible flow. Under these assumptions, the
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temperature field is passively advected by the fluid flows and obeys the so-called passive-
scalar equation as

∂T

∂t
+∇ · (uT ) = χ∇2T (6)

Here, the thermal diffusivity, χ can be related to the time relaxation carried by the energy
as follow [13]

χ =
2τc − 1

6
(7)

The lattice structure of D3Q6 for temperature distribution function is shown in Figure 2
and the discretised equilibrium can be written as [4]

geqi =
1

6
ρT [1 + 3c · u] (8)

Figure 2: Lattice Structure for D3Q6

3 Natural Convection in a Cubic Cavity

Numerical simulation for the natural convection flow in a cubic cavity was carried out to test
the validity of the combination of D3Q15 or D3Q19 with D3Q6 thermal lattice Boltzmann
model. Figure 3 shows a schematic diagram of the setup in the simulation.

No-slip boundary conditions for the velocity fields are imposed on all faces of the cubes.
The thermal conditions applied on the left and right walls are T (x = 0, y, z) = TH and
T (x = 1, y, z) = TC . The other faces being adiabatic, ∂T/∂n = 0 where ∂T/∂n is the
appropriate normal derivative. The temperature difference between the left and right walls
introduces a temperature gradient in a fluid, and the consequent density difference induces
a fluid motion, that is, convection.

In the simulation, the Boussinesq approximation is applied to the buoyancy force term.

ρG = ρβg0 (T − Tm) j (9)

where β is the thermal expansion coefficient, g0 is the acceleration due to gravity, Tm is
the average temperature, and j is the vertical direction opposite to that of gravity. So the
external force, Ff in Eq. (1) can be written as

Ff = 3G (c− u) feq (10)
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Figure 3: Schematic Geometry for Natural Convection in a Cubic Cavity

The dynamical similarity depends on two dimensionless parameters: the Prandtl number
Pr and the Rayleigh number Ra,

Pr =
υ

χ
, Ra =

g0β∆TL3

υχ
(11)

Nusselt number, Nu is one of the most important dimensionless numbers in describing
the convective transport. Nusselt number at the midplane (y = 0.5) is defined by

Nump =

∫ 1

0

∂T (y, z)

∂x
dz (12)

In all simulations, Pr is set to be 0.71 and due to the limitation of computer capability (2
GHz and 0.99 GB of RAM), the grid sizes of 101 × 101 is used for the simulation at all
Rayleigh numbers

(
Ra = 103, 104, 105

)
. The R. M. S convergence criterion for all the tested

cases is

max

∣∣∣∣((u2 + v2 + w2
)n+1

) 1
2 −

((
u2 + v2 + w2

)n) 1
2

∣∣∣∣ ≤ 10−7 (13)

max
∣∣Tn+1 − Tn

∣∣ ≤ 10−7 (14)

where the calculation is carried out over the entire system.

4 Numerical Results

The comparisons among D3Q15, D3Q19 and Navier-Stokes solver [13] are held for Rayleigh
number 103 till 105. Among the characteristic numerical values of the flow, the comparisons
concern the mean Nusselt number at the mid-plane wall Nump , the maximum value for
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Table 1: Comparison Among D3Q15, D3Q19 and Navier-Stokes Solver

Rayleigh Number 103 104 105

D3Q15 0.132 0.199 0.166
umax D3Q19 0.132 0.200 0.151

N-S Solver 0.131 0.201 0.147
D3Q15 0.520 0.529 0.490

x D3Q19 0.480 0.510 0.500
N-S Solver 0.480 0.500 0.500
D3Q15 0.186 0.176 0.138

y D3Q19 0.186 0.182 0.142
N-S Solver 0.200 0.183 0.145
D3Q15 0.132 0.224 0.253

vmax D3Q19 0.132 0.224 0.248
N-S Solver 0.132 0.225 0.247
D3Q15 0.817 0.882 0.892

x D3Q19 0.814 0.883 0.930
N-S Solver 0.883 0.883 0.935
D3Q15 0.500 0.529 0.510

y D3Q19 0.500 0.500 0.500
N-S Solver 0.500 0.500 0.500
D3Q15 1.097 2.301 4.975

Nump D3Q19 1.096 2.301 4.670
N-S Solver 1.105 2.301 4.646

horizontal and vertical velocity components umax and vmax with the positions where they
occur (x, y).

As can be seen from the table, for the simulation at low Rayleigh number, Ra = 103,
the results obtained were almost the same for D3Q15 and D3Q19 models. However, at
high Rayleigh number simulation

(
Ra = 105

)
the results show that the D3Q15 cannot

give a satisfactory result when compared with the Navier-Stokes solver for this problem.
Furthermore, the D3Q15 is already reported to exhibit the velocity oscillation and low
computational stability [14]. Therefore, the results which will be presented below were
obtained from D3Q19 model.

Streamline and isotherms predicted at mid-plane of the cavity for flows at different
Rayleigh numbers are shown in Figure 4 and Figure 5. At Ra = 103, streamlines are those
of a single vortex, with its centre in the centre of the system. As the Rayleigh number
increases,

(
Ra = 104

)
, the central streamline is distorted into an elliptic shape and the

effects of convection can be seen in the isotherms. At Ra = 105, the central streamline is
elongated and two secondary vortices appear inside it.

At Ra = 103, the isotherms are almost vertically parallel to the wall indicating that
conduction is the dominant heat transfer mechanism. As the Rayleigh number is increased
to 104, isotherms start to be horizontally parallel to the wall at the cavity center. This
indicates that the heat transfer mechanisms are mixed conduction and convection. For the
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Figure 4: Streamline for Ra = 103(left), 104(center) and 105(right)

Figure 5: Isotherms for Ra = 103(left), 104(center) and 105(right)

simulation at Ra = 105, the isotherms become horizontal at the center of the cavity and
vertical only in the thin boundary layers near the cold and hot walls indicating that the
dominant of heat transfer mechanism is by convection.

The plots of horizontal and vertical velocity components are shown in Figure 6 and
Figure 7. It can be seen from these figures that as the Rayleigh number increases, the
velocity maximum moves closer to the wall and its amplitude increases. These indicate
that the fluid motion mainly takes place near the differentially heated walls and the flow
in the core of the cavity becomes quasi-motionless. All of these observations are in good
agreement with the results reported in previous studies [7, 9, 13,15].

From the results presented above, it is found that the simplest 3D lattice model, D3Q6
has the capability to solve the thermal flow problems.

5 Conclusion

In this paper, the simplest combination of 3D thermal lattice Boltzmann method is pro-
posed. Computations of natural convection in a cubic cavity correctly predicted the flow
feature for different Rayleigh number and gives good agreement with the result of previous
studies. The results obtained demonstrate that this new approach in the passive scalar ther-
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Figure 6: Horizontal Velocity Components for Ra = 103(left), 104(center) and 105(right)

Figure 7: Vertical Velocity Components for Ra = 103(left), 104(center) and 105(right)

mal lattice Boltzmann model is a very efficient procedure to study flow and heat transfer
in a differentially heated cubic enclosure.
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