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Abstract The steady two-dimensional flow adjacent to a vertical, continuously stretch-
ing sheet in a viscous and incompressible fluid is studied. It is assumed that the sheet
is stretched with a power-law velocity and is subjected to a variable surface heat flux.
The governing partial differential equations are reduced to nonlinear ordinary differ-
ential equations by a similarity transformation, before being solved numerically by
the Keller-box method. Results showed that the heat transfer rate at the surface
increases as the velocity exponent parameter, mixed convection parameter and the
Prandtl number are increased.
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1 Introduction

Extrusion of a polymer in a melt-spinning process, metals and plastics, the boundary layer
along material handling conveyers, the cooling and/or drying of papers and textiles, glass
blowing, continuous casting and spinning of fibers are examples of industrial applications,
involves flow due to a stretching surface. The two-dimensional steady flow of an incom-
pressible viscous fluid caused by a linearly stretching plate was first discussed by Crane [1].
Since then, many authors have studied various aspects of this problem. For instance, Mag-
yari et al. [2] studied the heat and mass transfer characteristics of the boundary-layer flows
induced by continuous surfaces with rapidly decreasing velocities. This problem was then
extended by Ali [3] to a vertical surface, where the effect of buoyancy force was taken into
consideration. Quite recently, Partha et al. [4] studied the similar problem, by considering
exponentially stretching surface. The temperature field in the flow over a linearly stretching
surface subject to a variable surface temperature was studied by Grubka and Bobba [5],
while Dutta et al. [6] reported the temperature distribution for the uniform surface heat flux
condition. Elbashbeshy [7] and Lin and Chen [8] considered the heat transfer characteristics
on a stretching horizontal surface subject to a power-law velocity and variable surface heat
flux.

Motivated by the above investigations, the present study considers the heat transfer
characteristics adjacent to a stretching vertical sheet with a power-law velocity subjected
to a variable surface heat flux. This problem is different from the above mentioned investi-
gations where the effect of buoyancy force was not taken into consideration.
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2 Problem Formulation

Consider a steady, two-dimensional flow of a viscous and incompressible fluid adjacent to
a vertical, continuously stretching sheet placed in the plane y = 0 of a Cartesian system of
coordinates xy with the x -axis along the sheet, while the y-axis is measured normal to the
surface of the sheet. It is assumed that the surface heat flux and the stretching velocity
vary in a power-law with the distance from the leading edge, i.e. qw(x ) = axn and uw(x ) =
bxm respectively, where a and b are constants and m and n are the exponents. Under these
assumptions along with the Boussinesq and boundary-layer approximations, the equations
which model the problem under consideration are
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where u and v are the velocity components along the x-axis and y-axis, respectively.
Further, ν, α, β, T , T∞ and g are the kinematic viscosity, thermal diffusivity, thermal ex-
pansion coefficient, fluid temperature, ambient temperature and acceleration due to gravity
respectively. The boundary conditions are

u = uw(x), v = 0, ∂T
∂y = − qw

k at y = 0,

u→ 0, T → T∞ as y → ∞,
(4)

where uw, qw and k are the velocity of the stretching sheet, the surface heat flux and
the thermal conductivity, respectively.

The continuity equation can be satisfied by introducing a stream function ψ such that
u = ∂ψ/∂y and v = −∂ψ/∂x. The momentum and energy equations can be transformed
into the corresponding nonlinear ordinary differential equations by the following transfor-
mation [9, 10]:

η =
(uw
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(νxuw)
1/2

, θ(η) =
k(T − T∞)

qw

(uw
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, (5)

where η is the independent similarity variable. The transformed nonlinear ordinary differ-
ential equations are

f ′′′ +
m+ 1

2
ff ′′ −mf ′2 + λθ = 0, (6)

1

Pr
θ′′ +

m+ 1

2
fθ′ − nf ′θ = 0, (7)

where primes denote differentiation with respect to η, m is the velocity exponent parameter,
n is the temperature exponent parameter, Pr = ν/α is the Prandtl number and λ =

Grx/Re
5/2
x is the buoyancy or mixed convection parameter with Grx = gβqwx

4/(kν2) and
Rex = uwx/ν are the local Grashof number and the local Reynolds number, respectively.
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It can be shown that λ is independent of x if n = (5m − 3)/2. Thus, in the presence of
buoyancy force, similarity is achieved under this limitation. For n = (5m− 3)/2, equation
(7) becomes

1

Pr
θ′′ +

m+ 1

2
fθ′ − 5m− 3

2
f ′θ = 0. (8)

The transformed boundary conditions are:

f(0) = 0, f ′(0) = 1, θ′(0) = −1,
f ′(∞) → 0, θ(∞) → 0.

(9)

Further, λ > 0 and λ < 0 correspond to assisting (aiding) and opposing flows, respectively.
It is worth mentioning that for λ = 0, equations (6) and (8) are decoupled and this case
corresponds to the forced convection flow past a stretching sheet.

The physical quantities of interest are the skin friction coefficient Cf and the local
Nusselt number Nux, which are defined as

Cf =
τw

ρu2w/2
, Nux =

xqw
k(Tw − T∞)

, (10)

where the wall shear stress τw and surface heat flux qw are given by

τw = µ

(
∂u

∂y

)
y=0

, qw = −k
(
∂T
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)
y=0

, (11)

with µ being the dynamic viscosity. Using the non-dimensional variables (5), we obtain

1

2
CfRe

1/2
x = f ′′(0), Nux/Re

1/2
x = 1/θ(0). (12)

We notice that in the absence of buoyancy force, the analytical solution of equation (6)
for m = 1 was reported by Crane [1] as

f(η) = 1− e−η, (13)

and the solution for the thermal field is

θ(η) =
1

Pr
e−ηPrM (Pr−n,Pr+1,−Pr e−η)

M (Pr−n,Pr,−Pr)
, (14)

whereM(a, b, z) denotes the confluent hypergeometric function (see Abramowitz and Stegun
[11]) with

M(a, b, z) = 1 +

∞∑
k=1

ak
bk

zk

k!
,

ak = a(a+ 1)(a+ 2) · · · (a+ k − 1),

bk = b(b+ 1)(b+ 2) · · · (b+ k − 1).

Further, from equations (13) and (14), the skin friction coefficient f ′′(0) and the surface
temperature θ(0) can be shown to be given by

f ′′(0) = −1,

θ(0) =
1

Pr

M(Pr−n,Pr+1,−Pr)

M(Pr−n,Pr,−Pr)
. (15)
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3 Results and discussion

The nonlinear ordinary differential equations (6) and (8) subjected to (9) have been solved
numerically using a finite-difference scheme known as the Keller-box method [12], for some
values of velocity exponent parameter m, buoyancy parameter λ and Prandtl number Pr.
Comparison of the values of θ(0) with those obtained by Elbashbeshy [7] and Liu [13] for
several values of Pr when m = 1 in the case of force convection flow (λ = 0) is listed in
Table 1. It is observed that the results show a very good agreement.

Table 1: Values of the Surface Temperature θ(0) for different values of λ, m and Pr

λ m Pr Numerical
solution

Series solution,
equation (15)

Elbashbeshy [7] Liu [13]

0 0.6 1 1.8900
0 0.72 2.3703
0 1 1.2367 1.236657472 1.2253

1 1 1 1
10 0.2688 0.268768515 0.2688
6.7 0.3333 0.333303061 0.333303

1 1 1 0.9240
2 0.8842

Figure 1: Velocity Profiles f ′(η) for some values of m (and n)

Figures 1 and 2 show the velocity and temperature distributions for some values of ve-
locity exponent parameter m (and temperature exponent parameter n) with fixed values
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Figure 2: Temperature Profiles θ (η) for some values of m (and n)

of Pr and λ, respectively. It is seen that the boundary layer thickness of both velocity and
temperature profiles decrease as the value of m increases, and in consequence increase the
skin friction coefficient f ′′(0) (in absolute sense) and the local Nusselt number 1/θ(0). The
effects of buoyancy parameter λ on velocity and temperature distributions are presented
respectively in Figures 3 and 4 when the other parameters are fixed to unity. It is ob-
served that the mixed convection parameter results in a diverse behavior of velocity and
temperature profiles in the boundary layer.

The samples of velocity and temperature profiles for various values of Prandtl number
(Pr) are displayed in Figures 5 and 6, respectively. Both the graphs demonstrate that
the increase of Pr results in a decrease of the velocity and temperature boundary layer
thicknesses. Thus, both the skin friction coefficient |f ′′(0)| and the local Nusselt number
1/θ(0) increase as Pr increases. Figures 1 – 6 show that the far field boundary conditions
are satisfied asymptotically, which support the validity of the numerical results obtained.

Finally, the numerical results for the skin friction coefficient f ′′(0) and the local Nusselt
number (heat transfer rate at the surface) 1/θ(0) for various values of velocity exponent pa-
rameter m when Pr = 1 are presented in Figures 7 and 8, respectively. The results presented
in these figures are in agreement with the velocity and temperature profiles presented in
Figures 1 and 2. As the value of the buoyancy parameter λ increases, the velocity gradient
at the surface f ′′(0) changes its signs from negative to positive (for m = 0.6 and m = 1).
Physically positive values of f ′′(0) mean the fluid exert a drag force on the sheet, and nega-
tive values mean the opposite. This is not surprising since in the absence of buoyancy force
(λ = 0), the formation of the boundary layer depends solely on the stretching sheet (the
sheet exerts a drag force on the fluid). Different behaviors are observed for the temperature
profiles, where it is observed that for all values of parameters considered, the values of the
local Nusselt number 1/θ(0) are always positive, which mean the heat is transferred from
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Figure 3: Velocity Profiles f ′(η) for some values of Buoyancy Parameter λ

Figure 4: Temperature Profiles θ(η) for some values of Buoyancy Parameter λ
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Figure 5: Velocity Profiles f ′(η) for some values of Prandtl Number, Pr

Figure 6: Temperature Profiles θ (η) for some values of Prandtl Number, Pr
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the hot sheet to the cool fluid, regardless of the existence of the buoyancy force. Moreover,
Figures 7 and 8 show that for the buoyancy opposing flow (λ < 0), the solution exists only
for small negative values of λ. Beyond these values, the boundary layer separates from the
surface, and thus no solution is obtained.

Figure 7: Variation of the Skin Friction Coefficient CfRex
1/2against λ for some values of

m (and n)

4 Conclusions

In this paper, the heat transfer characteristics near a stretching vertical sheet have been
studied. The boundary layer equations governing the flow are reduced to ordinary dif-
ferential equations using a similarity transformation. Using a numerical technique, these
equations are then solved to obtain the velocity and temperature distributions as well as
the skin friction coefficient and the local Nusselt number for various values of the velocity
exponent parameter, buoyancy parameter and Prandtl number. It is found that the heat
transfer rate at the surface increases with increasing values of these parameters.
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Figure 8: Variation of the Local Nusselt Number Nux/Rex
1/2against λ for some values of

m (and n)
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