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Abstract In this note, we introduce a new class of functions pertaining to binomial
coefficients

`

n

m

´

and Eulerian numbers
˙

n

m

¸

, which arise in the recent study of descents

in permutations. Given positive integers a and b, let fi(x) = 2−i
`

a+b

i

´˙

i

x

¸

and f(x) =
P

i
fi(x). Based on the generating function methods, some identities involving fi and

f are provided.
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1 Introduction

Given positive integers n and k, Eulerian number [1], denoted by
〈

n

k

〉

, is the number of
permutations π1π2 · · ·πn of {1, 2, · · · , n} that have exactly k ascents, namely, k places
where πi < πi+1. An easy observation shows that

〈

n

k

〉

= 0 for k ≥ n since there can be at
most n− 1 ascents. In combinatorics Eulerian numbers can be viewed as the coefficients of
the Eulerian polynomials [2]

An(x) =

n
∑

k=0

〈

n

k

〉

xn−k. (1)

For example, A0(x) = A1(x) = 1 and A2(x) = 1 + x.

Eulerian numbers as well as some more familiar Bernoulli numbers, harmonic numbers,
Fibonacci numbers, Stirling numbers, Catalan numbers and binomial coefficients, to name
only a few, have a number of applications in combinatorics and number theory (see e.g. [2,3]).
Since the recurrence for Eulerian numbers is more complicated than for many other special
numbers, and they increase very rapidly, combinatorial identities for Eulerian numbers
receive less research attention.

Recently, the authors of [4] propose a symmetrical Eulerian identity which appears to
be elegant, and provide several different proofs for it. This kind of identities arises in
the study of descents in permutations which have a restriction on their largest drop [5].
An interesting inequality concerning Eulerian numbers is introduced in [6]. The work [7]
treats the chromatic polynomials of incomparability graphs of posets by virtue of these
Eulerian identities. The argument involved there leads us to a new class of functions of
Eulerian numbers. Given positive integers a and b, we define fi(x) = 2−i

(

a+b

i

)〈

i

x

〉

and the

summation f(x) =
∑a+b

i=x+1 fi(x). We remark that we use the convention throughout this

paper that the Eulerian number
〈

0
0

〉

= 0. With our notations, the result in [4] can be
rewritten in the following form
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Theorem 1 [4] For positive integers a and b,

a+b
∑

i=a

2ifi(a − 1) =

a+b
∑

i=b

2ifi(b − 1). (2)

In this paper, we provide another identity satisfied by these functions utilizing the
instrumental generating function methods, which has numerous applications [8].

Theorem 2 Let a ≥ 2 and b ≥ 1 be integers. We have

f(b − 1) − f(a − 2) =
fb(b − 1)

2a
−

fa−1(a − 2)

2b+1
. (3)

The resulting identity (3) is interesting even for the special case of a = b. It states that
for any integer a ≥ 2,

f(a − 1) − f(a − 2) =
fa(a − 1)

2a
−

fa−1(a − 2)

2a+1
. (4)

2 Proof of Theorem 2

In this section, we present a proof of Theorem 2 based on the generating function of Eulerian
numbers (see e.g. [2] pp.351).

The generating function for Eulerian numbers is given by

E(w, z) =
ez − ewz

ewz − wez
=

∞
∑

n=0

∞
∑

i=0

〈

n

i

〉

wi
zn

n!
, (5)

which is slightly different from Eq. (7.56) in [2] since they use the convention
〈

0
0

〉

= 1.
Thereby, we obtain

(e2wz − w2e2z)E(w, z) = (ewz + wez)(ewz − wez)E(w, z) = (ewz + wez)(ez − ewz). (6)

We first calculate the left-hand side of (6). Employing (5), we have

e2wzE(w, z) =

∞
∑

k=0

(2wz)k

k!

∞
∑

n=0

∞
∑

i=0

〈

n

i

〉

wi
zn

n!

=

∞
∑

k=0

(2wz)k

k!

∞
∑

n′=k

∞
∑

i′=k

〈

n′ − k

i′ − k

〉

wi
′
−k

zn
′
−k

(n′ − k)!

=

∞
∑

k=0

∞
∑

n′=k

∞
∑

i′=k

2k

k!

〈

n′ − k

i′ − k

〉

wi
′ zn

′

(n′ − k)!

=

∞
∑

k=0

∞
∑

n=k

∞
∑

i=k

2k

(

n

k

)〈

n − k

i − k

〉

wi
zn

n!
, (7)
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and

w2e2zE(w, z) = w2
∞

∑

k=0

(2z)k

k!

∞
∑

n=0

∞
∑

i=0

〈

n

i

〉

wi
zn

n!

= w2
∞

∑

k=0

(2z)k

k!

∞
∑

n′=k

∞
∑

i′=2

〈

n′ − k

i′ − 2

〉

wi
′
−2 zn

′
−k

(n′ − k)!

=

∞
∑

k=0

∞
∑

n′=k

∞
∑

i′=2

2k

k!

〈

n′ − k

i′ − 2

〉

wi
′ zn

′

(n′ − k)!

=

∞
∑

k=0

∞
∑

n=k

∞
∑

i=2

2k

(

n

k

)〈

n − k

i − 2

〉

wi
zn

n!
. (8)

Next, we expand the right-hand side of (6) and get

(ewz + wez)(ez − ewz) = e(w+1)z − e2wz + we2z − we(w+1)z

=
∞

∑

k=0

(w + 1)kzk

k!
−

∞
∑

k=0

(2wz)k

k!

+w

∞
∑

k=0

(2z)k

k!
− w

∞
∑

k=0

(w + 1)kzk

k!
. (9)

Expanding the corresponding sums in (7)–(9) and identifying coefficients of wizn in (6),
we obtain for n ≥ 2 and i ≥ 2,

i
∑

k=0

2k

(

n

k

)〈

n − k

i − k

〉

−

n−i+1
∑

k=0

2k

(

n

k

)〈

n − k

i − 2

〉

=

(

n

i

)

−

(

n

i − 1

)

. (10)

Recall that we have
〈

n

m

〉

=

〈

n

n − m − 1

〉

(11)

for integers n ≥ 0 and m ≥ 0. Setting n = a + b and i = a in (10), we have

a
∑

k=0

2k

(

a + b

a + b − k

)〈

a + b − k

b − 1

〉

−

b+1
∑

k=0

2k

(

a + b

a + b − k

)〈

a + b − k

a − 2

〉

=

(

a + b

b

)

−

(

a + b

a − 1

)

(12)

by using (11) and a basic property of binomial coefficients. Setting i = a + b− k in the first
summation of (12) and i = a + b − k + 1 in the second summation of (12), we obtain

a+b
∑

k=b

2−i

(

a + b

i

)〈

i

b − 1

〉

−

a+b
∑

i=a

2−(i−1)

(

a + b

i − 1

)〈

i − 1

a − 2

〉

=

(

a+b

b

)

−
(

a+b

a−1

)

2a+b
(13)

by rearranging the terms.
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Now, the right-hand side of (13) is exactly f(b − 1) − f(a − 2) by our definitions. The
left-hand side of (13) may be rewritten as

2−b
(

a+b

b

)〈

b

b−1

〉

2a
−

2−(a−1)
(

a+b

a−1

)〈

a−1
a−2

〉

2b+1
(14)

which is fb(b − 1)/2a − fa−1(a − 2)/2b+1 as in Eq. (3). The proof of Theorem 2 is thus
completed.

3 Conclusion

We defined a class of functions of Eulerian numbers in this note. Some useful Eulerian
identities can be expressed in terms of these functions. Our proof is based on a generating
function method which is shown to be useful in many different fields (see e.g. [?] for an
application in network theory). One can easily imagine extensions of these functions that
incorporate multiple variables. Other properties such as convexity and recursive formula
are worth further investigation.
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