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Abstract Developable alternative patches is introduced as a choice in the design of

developable surfaces. This paper extends the previous work by joining consecutive

alternative patches subject to various continuity conditions. With a first boundary

curve freely specified, 2n + 3, n + 4 and 5 DOF’s are available for a second boundary

curve of a developable alternative surface containing n patches, when the surface is

G
0, G

1 and C
1 continuity, respectively. The composite surfaces are then evaluated by

using highlight lines, which effectively in detecting surface irregularities.
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1 Introduction

A ruled surface is generated by sweeping a straight line through 3-dimensional space [1].
This straight line is referred to as a ruling, or generator of the surface. Developable surfaces
are a subset of ruled surfaces, which has a constant tangent plane at all points along any
ruling. This surfaces can be rolled out into a plane without tearing or creasing, and are
widely utilized in computer aided design and manufacturing [2–6].

Our recent findings [7] of developable alternative patches provide effective solutions
compare to Chu and Séquin [8]. This paper extends these findings into geometric design of
developable composite alternative surfaces. Adjacent developable patches are joined along
their end rulings while maintaining continuity conditions G0, G1 or C1 are then evaluated
by using highlight lines, so the quality of the composite surfaces can be determined.

2 Developability Constraints in Alternative Patches

Given any two boundary curves A(w) andB(w), a ruled surface patch is defined by con-
necting each pair of corresponding points (with equal w) with a straight line segment AB
as shown in Figure 1. The line segment AB is called the ruling at parameter value w. The
surface patch is expressed as

X(t, w) = (1 − t)A(w) + tB(w), 0 ≤ t ≤ 1 and 0 ≤ w ≤ 1

where t is the parameter along the rulings.
If the tangent lines of A(w) and B(w) at every w and the corresponding ruling remain

coplanar, then the surface becomes developable. The co-planarity can be represented as

Ȧ(w) × Ḃ(w) • [B(w) − A(w)] = 0. (1)
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Figure 1: A Ruled Surface

Let both curves A(w) and B(w) are alternative cubic curves with control points A0, A1,
A2 and B0, B1, B2 respectively as shown in Figure 2. By using de Casteljau construction,
we have

A(w) = (1 − w)I + wK = (1 − w)[(1 − w)A0 + wA1] + w[(1 − w)A1 + wA2],

B(w) = (1 − w)J + wL = (1 − w)[(1 − w)B0 + wB1] + w[(1 − w)B1 + wB2].

Figure 2: Two Boundary Curves with Six Control Points

Note that for this alternative patch, line segments IK and JL lie in the tangent direction
at A(w) and B(w), respectively. Therefore, the developability condition indicates that
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I, J, K andL lie in the same plane, and equation (1) can be written as

IK • IJ ×KL = 0. (2)

For solving this equation, let

ai = Ai −Ai−1 for i = 1 and 2,

cj = Bj −Aj for j = 0, 1 and2

as shown in Figure 3. By substituting the above equations into (2), we have

[(1 − w)a1 + w a2] • [(1 − w)c0 + w c1] × [(1 − w)c1 + w c2] = 0

which gives
a1 • c0 × c1 = 0, (3)

a2 • c1 × c2 = 0, (4)

a1 • c0 × c2 + a2 • c0 × c1 = 0, (5)

and
a1 • c1 × c2 + a2 • c0 × c2 = 0. (6)

Figure 3: Solving the Developability Condition for Equation (2)

The constraint (3) indicates that the first two pairs of control points A0 − B0 and
A1 −B1 lie in the same plane. The last two pairs of control points A1 − B1 and A2 −B2

are also coplanar because of constraint (4). These two constraints will be referred to as the
co-planarity condition.

Suppose both of the boundary curves have m control points respectively. Then the
coordinates of I, J, K andL are (m − 2)-degree polynomials in the curve parameter w.
Vectors IJ, KL and IK also have coefficients that are (m−2)-degree polynomial with 3(m−
2) + 1 = 3m − 5 coefficients that must vanish for any w. Alternatively stated, there are
3m − 5 coefficients that must vanish for any w.
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3 Composite Developable Alternative Surfaces

A composite developable alternative surfaces is constructed by joining consecutive patches
along their end rulings. In addition to the developability constraints of each patch, the
control points of the surface must satisfy certain constraints to maintain continuities across
the patch boundary. The degrees of freedom available for the surface design are thus
reduced.

We first examine an alternative patch consisting of two adjecent patches with various
continuity conditions. The results are then generalized for a surface consisting of n patches
of m pair of control points.

3.1 Counting Degrees of Freedom (DOF)

Suppose the first boundary curve can be freely specified by the designer, there are six
control points in 3-dimensional space to be determined for the other curve. Each patch
must satisfy its four developability constraints as stated in section 2. Therefore, the number
of the remaining degrees of freedom is 6(3) – 4 – 4 =10.

Figure 4 shows that the last control point of the first patch must coincide with the first
control point of the second patch due to positional continuity (G0), that is B2 = E0, using
up three DOF’s. As a result, 10 – 3 = 7 DOF’s are available for the design of the second
curve.

Figure 4: Composite Alternative Surfaces with Two Patches

For gradient continuity (G1), the tangent vector of the second patch must be collinear
with that of the first patch at the end point, which is written as

B1B2 = µE0E1 (7)

where µ is the length ratio of the two tangent vectors. Note that A1 , A2 = D0, D1, B1,
B2 = E0 and E1 lie in the same plane due to the co-planarity condition. Hence to impose
equation (7) only consumes one DOF and thus 10 – 3 – 1 = 6 DOF’s remain for the surface
design.

The first derivative continuity (C1) requires

E1 − E0 = B2 −B1
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which uses up only two DOF’s. Hence, only 10 – 3 – 2 = 5 DOF’s remain in this case.
As shown in section 2, a developable alternative patch consisting of m pair of control

points has 3m − 5 constraints in specifying the second boundary curve after the first one
has been chosen. Thus the composite surface containing n patches must satisfy totally
n(3m − 5) equations to ensure its developability.

Any two consecutive patches impose three more constraints on their common boundary
for the positional continuity. There are (n−1) such boundaries in the surface, summing up
to 3(n − 1) constraints that to be satisfy by the surface.

The second boundary curve has n(m) control points, contributing 3nm degrees of free-
dom. For satisfying positional continuity, the number of DOF’s thus becomes 3nm−n(3m−
5) − 3(n − 1) = 2n + 3.

To ensure the gradient continuity across each boundary gives additional (n − 1) con-
straints. The degrees of freedom for the surface design are further reduced to (2n + 3) −
(n − 1) = n + 4.

As discussed before, the first derivative continuity impose two constraints on each com-
mon boundary. Since there has (n − 1) of such boundaries, the remaining DOF’s are
computed as (2n +3)− 2(n− 1) = 5. Table 1 summarizes the corresponding DOF’s for G0,
G1 and C1.

Table 1: Available Degrees of Freedom for Various Continuity Conditions

Continuity Number of Degrees of Freedom
G0 2n + 3

G1 n + 4
C1 5

4 Highlight Lines

A highlight line [9] is created by an assumed linear light source idealized by a straight line
with an infinite extension, as shown in Figure 5. The imprint of the light source on the
surface is the collection of all the surface points for which the extended surface normal
passed through the light source.

From Figure 5, assume the light source L(t) is given by

L(t) = G + Ht

where G is a point on L(t) and H is a vector defining the direction of L(t). Let Q be a
point on the surface, while N be the directional vector of the corresponding surface normal.
The extended surface normal M(s) at Q is a line passing through Q in the direction of N,
and it can be difined as

M(s) = Q + Ns.

If lines L(t) and M(s) intersect, that is, if the perpendicular distance d between both lines
given by [10]

d =
|(H ×N) • (G −Q)|

‖(H× N)‖
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Figure 5: Definition of Highlight Line

is zero, then point Q belongs to the highlight line.

For evaluating the quality of a given surface, the user can inspect the entire surface by
translating or rotating the light source, and thereby sweeping the highlight line over the
surface. Besides, a single light source can be replaced by an array of parallel light sources.
This creates a family of highlight line covering the surface as shown in Figure 6. Therefore,
the sensitivity of the highlight lines allows for the detection of the small surface irregularities
effectively.

5 Examples and Discussion

An alternative surface comprised of two developable alternative patches with each one
having three pair of control points is used as a test example to verify the derived results. The
first and second boundary curves are referred to as the A-curve and B-curve respectively
in the following examples.

There are various ways [7] to use in the surface design, each of which has different
computational requirement in solving the constrained control points. This paper will not
address the advantages of one particular design method over another. Instead, the focus
is to demonstrate some feasible steps for designing the surfaces with limited DOF’s and
satisfy the required continuity conditions.

5.1 G0 Continuity

Suppose the A-curve is constructed with A0 = (−15,−15, 10), A1 = (−10,−5, 20), A2 =
(0, 0, 22), D0 = (0, 0, 22), D1 = (5, 5, 22) and D2 = (16, 8, 18). The user is allowed to
specify B0 = (−10,−25, 0) and direction of vector c2 = (10,−5,−6), consuming three and
two DOF’s respectively. The remaining two DOF’s are used to place the control point E1

of the second patch at (18,−2, 14). Figure 7 illustrates the frame of composite developable
surfaces solved from the system with B1 =

(

−10

3
,−35

3
, 40

3

)

, B2 = (10,−5, 16) and E2 =
(

163

5
,−23

5
, 38

5

)

.
There are various choices that can be used to form the alternative cubic curves as
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Figure 6: Family of Highlight Lines Created from Array of Parallel Light Sources

Figure 7: Frame of G0 Continuity
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boundary curves, [7]. However, all the boundary curves in this section are formed by using
the same basis functions, so the comparison between surfaces with different continuity
conditions can be done effectively.

Figure 8 shows one resultant developable surfaces base on the control points of Figure 7.
The surface is then evaluated by a family of highlight lines which crosses the common
boundary of the two patches, as illustrated in Figure 9.

Figure 8: Design Example of G0 Continuity

Figure 9: Composite Surface of Figure 8 with a Family of Highlight Lines

From Figure 9, it is obvious that all highlight lines forming disconnected curves while
crossing the common boundary. Therefore, the composite surface with G0 continuity is not
satisfactory from the viewpoint of smoothness.

5.2 G1 Continuity

Suppose the A-curve is constructed with A0 = (−15,−15, 10), A1 = (−10,−5, 20), A2 =
(0, 0, 22), D0 = (0, 0, 22), D1 =

(

10

2
, 5

2
, 46

2

)

, and D2 = (15, 5, 19). To place B0 = (−10,−25, 0)
and direction of vector c2 = (10,−5,−6) for the first patch consumes three and two DOF’s
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respectively. Positions for B1 =
(

−10

3
,−35

3
, 40

3

)

and B2 = (10,−5, 16) are fully determined
after these five DOF’s have been used up. The last DOF is used to locate the position of
E1 at

(

50

3
,−5

3
, 52

3

)

along the B1B2 direction. Figure 10 shows the resulting surface with

E2 =
(

90

3
, 5

3
, 36

3

)

, while Figure 11 illustrates the smoothness of the surface by using a family
of highlight lines.

Figure 10: Design Example of G1 Continuity

Figure 11: Composite Surface of Figure 10 with a Family of Highlight Lines

In this case all the highlight lines are connected and continuous when crossing the com-
mon boundary. This means that the composite surface with G1 continuity has overcomes
the poor quality of G0 continuity.
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5.3 C1 Continuity

Suppose the A-curve is specified as A0 = (−15,−15, 10), A1 = (−10,−5, 20), A2 =
(0, 0, 22), D0 = (0, 0, 22), D1 = (10, 5, 24), and D2 = (20, 8, 20). Five DOF’s are consumed
in specifying position of B0 = (−10,−25, 0) and direction of vector c2 = (10,−5,−6) for the
first patch. B1 =

(

−10

3
,−35

3
, 40

3

)

and B2 = (10,−5, 16) are then automatically determined

by the system. E0 = (10,−5, 16) and E1 =
(

70

3
, 5

3
, 56

3

)

are also fully defined because of

C1 continuity. The remaining control point is computed as E2 =
(

110

3
, 17

3
, 40

3

)

and Figure
12 shows the resulting surface for this situation. This surface is then evaluated by using a
family of highlight lines as illustrated in Figure 13.

Figure 12: Design Example of C1 Continuity

Figure 13: Composite Surface of Figure 12 with a Family of Highlight Lines

From Figure 13, every highlight line forms a connected and also straight line while
crossing the common boundary. Therefore, composite with C1 continuity provides the best
quality or smoothness that is needed for surface design.
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6 Conclusion

From the discussion above, we know that the smoothness of the composite surfaces is
endorsed beginning G1 continuity. As the conclusion, the composite developable alternative
surfaces that can be formed by easy way, provide satisfactory quality surface with low
continuity conditions (G1 or C1), can be readily extend the applications of developable
surfaces in geometric modelling.
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